CSI 409 — Fall 2017: Midterm Exam #I Some answers and hints

1. Exhibit languages L_1 and L_2 such that $L_1 \not\subseteq L_2$, $L_2 \not\subseteq L_1$ and $L_1^* = L_2^*$.

(In other words, L_1 and L_2 are incomparable by the subset relation \subseteq , but L_1^* and L_2^* are the same.)

Take $L_1 = \{a, aa\}$ and $L_2 = \{a, aaa\}$. Now $L_1^* = L_2^* = \{a\}^*$.

2. Show that the regular expressions $(ab)^*a^*$ and $a^*(ab)^*$ are not equivalent.

(That is, explain why the languages $\{ab\}^* \{a\}^*$ and $\{a\}^* \{ab\}^*$ are not the same.)

 $\{ab\}^*\{a\}^*$ does not contain the string *aab*. First of all, *aab* does not belong to either $\{ab\}^*$ or $\{a\}^*$. Since every non-empty string in $\{a\}^*$ ends with *a*, we reach an impossibility.

3. Construct deterministic finite automata (DFA) that recognize the following languages. The alphabet is $\{a, b\}$:

(a) (17 points) $\{w \mid ab \text{ is a substring of } w, \text{ but } abb \text{ is not }\}.$

(b) (17 points) $(ab)^* \cup (ba)^*$.

4. Consider the following NFA. The set of states, *Q*, is {1,2,3}. The initial state is 1 and the accepting state is 2. The alphabet is {*a*,*b*}.

Convert this NFA to a DFA. Show work clearly.

