CSI 409 — Fall 2017: Midterm Exam \#I Some answers and hints

1. Exhibit languages L_{1} and L_{2} such that $L_{1} \nsubseteq L_{2}, \quad L_{2} \nsubseteq L_{1}$ and $L_{1}^{*}=L_{2}^{*}$.
(In other words, L_{1} and L_{2} are incomparable by the subset relation \subseteq, but L_{1}^{*} and L_{2}^{*} are the same.)

Take $L_{1}=\{a, a a\}$ and $L_{2}=\{a, a a a\}$. Now $L_{1}^{*}=L_{2}^{*}=\{a\}^{*}$.
2. Show that the regular expressions $(a b)^{*} a^{*}$ and $a^{*}(a b)^{*}$ are not equivalent.
(That is, explain why the languages $\{a b\}^{*}\{a\}^{*}$ and $\{a\}^{*}\{a b\}^{*}$ are not the same.)
$\{a b\}^{*}\{a\}^{*}$ does not contain the string $a a b$. First of all, $a a b$ does not belong to either $\{a b\}^{*}$ or $\{a\}^{*}$. Since every non-empty string in $\{a\}^{*}$ ends with a, we reach an impossibility.
3. Construct deterministic finite automata (DFA) that recognize the following languages. The alphabet is $\{a, b\}$:
(a) (17 points) $\{w \mid a b$ is a substring of w, but $a b b$ is not $\}$.

(b) (17 points) $(a b)^{*} \cup(b a)^{*}$.

4. Consider the following NFA. The set of states, Q, is $\{1,2,3\}$. The initial state is 1 and the accepting state is 2 . The alphabet is $\{a, b\}$.

	a	b	ε
1	$\{3\}$	$\{2\}$	$\}$
2	$\}$	$\}$	$\{3\}$
3	$\}$	$\{1\}$	$\{1\}$

Convert this NFA to a DFA. Show work clearly.

