CSI 409 — Fall 2017: Midterm Exam \#II Some answers and hints

1. Derive a regular expression for the language recognized by the following DFA:

The equations are

$$
\begin{align*}
& A_{1}=a A_{2} \cup b A_{4} \tag{1}\\
& A_{2}=(a \cup b) A_{3} \tag{2}\\
& A_{3}=a A_{2} \cup b A_{1} \tag{3}\\
& A_{4}=(a \cup b) A_{4} \cup \varepsilon \tag{4}
\end{align*}
$$

By Arden's Lemma, $A_{4}=(a \cup b)^{*}$ and thus equation (1) becomes $A_{1}=a A_{2} \cup b(a \cup b)^{*}$. Replacing A_{2} in (3), we get

$$
A_{3}=(a a \cup a b) A_{3} \cup b A_{1}
$$

Thus $A_{3}=(a a \cup a b)^{*} b A_{1}$ and $A_{2}=(a \cup b)(a a \cup a b)^{*} b A_{1}$. Finally replacing in (1), we get

$$
A_{1}=a(a \cup b)(a a \cup a b)^{*} b A_{1} \cup b(a \cup b)^{*}
$$

Applying Arden's Lemma,

$$
A_{1}=\left((a a \cup a b)(a a \cup a b)^{*} b\right)^{*} b(a \cup b)^{*}
$$

or

$$
A_{1}=\left((a a \cup a b)^{+} b\right)^{*} b(a \cup b)^{*}
$$

2. (This question has 3 parts.)

Consider the following language over the alphabet $\{a, b\}$:

$$
\left\{a^{m} b^{n} \mid m>n^{2} \geq 0\right\}
$$

(a) (1 point) Exhibit a string of length 6 that belongs to the above language.
a^{6}
(b) (5 points) Exhibit a string over $a^{+} b^{+}$that does not belong to the above language. $a b$
(c) (28 points) Prove that the above language is not regular.

Pick $w=a^{p^{2}+1} b^{p}$ and remove the pump.
3. Exhibit a context-free grammar for the language denoted by the regular expression

$$
\left(b a^{*} b\right)^{*} \cup a
$$

The alphabet is $\{a, b\}$.

$$
\begin{aligned}
S & \rightarrow X S|a| \varepsilon \\
X & \rightarrow b A b \\
A & \rightarrow a A \mid \varepsilon
\end{aligned}
$$

4. Show that the following context-free grammar is ambiguous

$$
S \rightarrow a S S b|a b| b a
$$

by exhibiting a string in the language that has two distinct derivation trees.

The string $a(a b)^{4} b$ has two distinct derivation trees.
5. Convert the grammar

$$
S \rightarrow S S b|a S b| \varepsilon
$$

to Chomsky Normal Form. Show steps clearly.
(a) "Add $S_{0} \rightarrow$ "

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow S S b|a S b| \varepsilon
\end{aligned}
$$

(b) "Chop down long rules"

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow S Z_{1}\left|a Z_{2}\right| \varepsilon \\
Z_{1} & \rightarrow S b \\
Z_{2} & \rightarrow S b
\end{aligned}
$$

(c) "Eliminate ε-rules"

There are 2 nullable variables: S, S_{0}

$$
\begin{aligned}
S_{0} & \rightarrow S \mid \varepsilon \\
S & \rightarrow S Z_{1}\left|a Z_{2}\right| Z_{1} \\
Z_{1} & \rightarrow S b \mid b \\
Z_{2} & \rightarrow S b \mid b
\end{aligned}
$$

(d) "Eliminate unit rules"

$$
\begin{aligned}
S_{0} & \rightarrow S Z_{1}\left|a Z_{2}\right| S b|b| \varepsilon \\
S & \rightarrow S Z_{1}\left|a Z_{2}\right| S b \mid b \\
Z_{1} & \rightarrow S b \mid b \\
Z_{2} & \rightarrow S b \mid b
\end{aligned}
$$

(e) "Fix right-hand sides of length 2"

$$
\begin{aligned}
S_{0} & \rightarrow S Z_{1}\left|X_{a} Z_{2}\right| S X_{b}|b| \varepsilon \\
S & \rightarrow S Z_{1}\left|X_{a} Z_{2}\right| S X_{b} \mid b \\
Z_{1} & \rightarrow S X_{b} \mid b \\
Z_{2} & \rightarrow S X_{b} \mid b \\
X_{b} & \rightarrow b \\
X_{a} & \rightarrow a
\end{aligned}
$$

