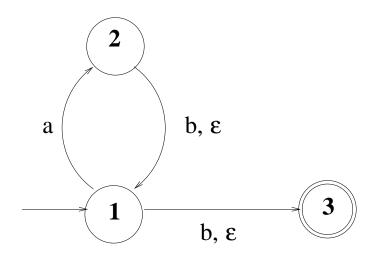
CSI 409: Conversion of NFAs to DFAs Some sample problems

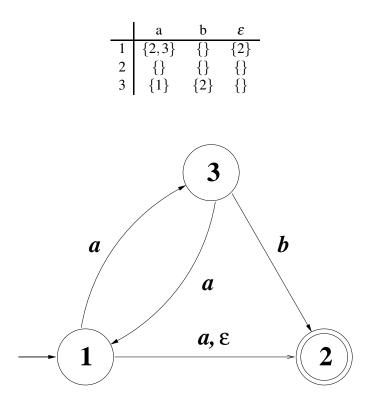
1. Consider the following NFA. The set of states, Q, is $\{q_0, q_1, q_2, q_3\}$. The initial state is q_0 and the accepting state is q_3 . The alphabet is $\{a, b\}$.

	а	b	ε
q_0	Ø	$\{q_1\}$	$\{q_2\}$
q_1	$\{q_2\}$	$\{q_3\}$	Ø
q_2	Ø	Ø	$\{q_1\}$
q_3	Ø	Ø	Ø


Convert this NFA to a DFA. Show work clearly.

2. Convert the following NFA to a DFA. The set of states, Q, is $\{q_0, q_1, q_2\}$. The initial state is q_0 and the accepting state is q_1 . The alphabet is $\{a, b\}$.

	а	b	ε
q_0	$\{q_1, q_2\}$	Ø	$\{q_2\}$
q_1	$\{q_0\}$	$\{q_1\}$	Ø
q_2	Ø	Ø	$\{q_0\}$


Show work clearly.

3. Convert the following NFA to a DFA. The set of states, Q, is $\{1,2,3\}$. The initial state is 1 and the accepting state is 3. The alphabet is $\{a,b\}$.

see next page

4. Consider the following NFA. The set of states, Q, is $\{1,2,3\}$. The initial state is 1 and the accepting state is 2. The alphabet is $\{a,b\}$.

Convert this NFA to a DFA. Show work clearly.