CSI 409: Conversion of NFAs to DFAs
 Solutions to the sample problems

1. Consider the following NFA. The set of states, Q, is $\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$. The initial state is q_{0} and the accepting state is q_{3}. The alphabet is $\{a, b\}$.

	a	b	ϵ
q_{0}	\emptyset	$\left\{q_{1}\right\}$	$\left\{q_{2}\right\}$
q_{1}	$\left\{q_{2}\right\}$	$\left\{q_{3}\right\}$	\emptyset
q_{2}	\emptyset	\emptyset	$\left\{q_{1}\right\}$
q_{3}	\emptyset	\emptyset	\emptyset

Convert this NFA to a DFA.

2. Convert the following NFA to a DFA. The set of states, Q, is $\left\{q_{0}, q_{1}, q_{2}\right\}$. The initial state is q_{0} and the accepting state is q_{1}. The alphabet is $\{a, b\}$.

	a	b	ϵ
q_{0}	$\left\{q_{1}, q_{2}\right\}$	\emptyset	$\left\{q_{2}\right\}$
q_{1}	$\left\{q_{0}\right\}$	$\left\{q_{1}\right\}$	\emptyset
q_{2}	\emptyset	\emptyset	$\left\{q_{0}\right\}$

3. Convert the following NFA to a DFA. The set of states, Q, is $\{1,2,3\}$. The initial state is 1 and the accepting state is 3 . The alphabet is $\{a, b\}$.

4. Consider the following NFA. The set of states, Q, is $\{1,2,3\}$. The initial state is 1 and the accepting state is 2 . The alphabet is $\{a, b\}$.

	a	b	ϵ
1	$\{2,3\}$	$\}$	$\{2\}$
2	$\}$	$\}$	$\}$
3	$\{1\}$	$\{2\}$	$\}$

Convert this NFA to a DFA. Show work clearly.

