CSI 409: Conversion of NFAs to DFAs Solutions to the sample problems

1. Consider the following NFA. The set of states, Q, is $\{q_0, q_1, q_2, q_3\}$. The initial state is q_0 and the accepting state is q_3 . The alphabet is $\{a, b\}$.

_		a	b	ϵ
	q_0	Ø	$\{q_1\}$	$\{q_2\}$
	q_1	$\{q_2\}$	$\{q_3\}$	Ø
	q_2	Ø	Ø	$\{q_1\}$
	q_3	Ø	Ø	Ø

Convert this NFA to a DFA.

2. Convert the following NFA to a DFA. The set of states, Q, is $\{q_0, q_1, q_2\}$. The initial state is q_0 and the accepting state is q_1 . The alphabet is $\{a, b\}$.

3. Convert the following NFA to a DFA. The set of states, Q, is $\{1, 2, 3\}$. The initial state is 1 and the accepting state is 3. The alphabet is $\{a, b\}$.

4. Consider the following NFA. The set of states, Q, is $\{1, 2, 3\}$. The initial state is 1 and the accepting state is 2. The alphabet is $\{a, b\}$.

Convert this NFA to a DFA. Show work clearly.

