CSI 409: Some sample problems on regular languages and DFAs

1. Disprove the following: $A \circ (B \cap C) = (A \circ B) \cap (A \circ C)$ for all languages A, B, C.

(Exhibit languages A, B, C such that $A \circ (B \cap C) \neq (A \circ B) \cap (A \circ C)$.)

2. Disprove the following: for all languages A, B

$$A \subsetneq B \to A^* \subsetneq B^*$$

(In other words, exhibit languages A and B such that A is a proper subset of B, but A^* is not a *proper* subset of B^* .)

- 3. Exhibit a string over the alphabet $\{a, b\}$ that does **not** belong to $(a \cup ba)^*b^*a^*$. Justify your answer. (No formal proof is needed.)
- 4. Construct deterministic finite automata (DFAs) recognizing the following languages over the alphabet $\{a, b\}$:
 - (a) $\{a^i b^j \mid i \ge 0, j \ge 0, i+j \text{ is an even number}\}$

(0 is an even number, so ε is in this language.)

- (b) The set of all strings that begin with *a* but do not contain *aab* as a substring.
- (c) $(ab)^* \cup a$
- (d) $b(aa)^*$ (i.e., $\{b\} \circ \{aa\}^*$)
- 5. Consider the language $a^*b \cup b^*$ over the alphabet $\{a, b\}$. Show that <u>any</u> DFA that accepts this language *has* to contain a **dead state**.

Hint: Find a string *w* such that *any* string that has *w* as a prefix will not be in the language. It is not enough to exhibit one DFA for this language that has a dead state.