CSI 409: DFA design problems Some answers and hints

1. Disprove the following: $A \circ (B \cap C) = (A \circ B) \cap (A \circ C)$ for all languages A, B, C.

Take
$$A = \{\epsilon, a\}, B = \{\epsilon\}, C = \{a\}.$$

2. Disprove the following: for all languages A, B

$$A \subsetneq B \rightarrow A^* \subsetneq B^*$$

Take
$$A = \{a\}$$
 and $B = \{\epsilon, a\}$.

- 3. Construct deterministic finite automata (DFAs) recognizing the following languages over the alphabet $\{a,b\}$:
 - (a) $\{a^ib^j \mid i \ge 0, \ j \ge 0, \ i+j \text{ is an even number}\}$

(b) The set of all strings that begin with a but do not contain aab as a substring.

(c) $(ab)^* \cup a$

(d) $b(aa)^*$

4. Consider the language $a^*b \cup b^*$ over the alphabet $\{a,b\}$. Show that <u>any</u> DFA that accepts this language has to contain a **dead state**.

No string that has ba as a prefix is in the language.