Consider Example 1.68 (page 76 of the textbook). We get the equations

$$
\begin{align*}
X_{1} & =a X_{2} \cup b X_{3} \tag{1}\\
X_{2} & =a X_{1} \cup b X_{2} \cup \epsilon \tag{2}\\
X_{3} & =a X_{2} \cup b X_{1} \cup \epsilon \tag{3}
\end{align*}
$$

Eliminating X_{1} from equations (2) and (3), we get

$$
\begin{align*}
& X_{2}=(a a \cup b) X_{2} \cup a b X_{3} \cup \epsilon \tag{4}\\
& X_{3}=(a \cup b a) X_{2} \cup b b X_{3} \cup \epsilon \tag{5}
\end{align*}
$$

Applying Arden's Lemma to (4):

$$
\begin{align*}
X_{2} & =(a a \cup b)^{*}\left(a b X_{3} \cup \epsilon\right) \tag{6}\\
& =(a a \cup b)^{*} a b X_{3} \cup(a a \cup b)^{*} \tag{7}
\end{align*}
$$

Thus

$$
\begin{align*}
X_{3} & =(a \cup b a) X_{2} \cup b b X_{3} \cup \epsilon \\
& =(a \cup b a) \underbrace{\left(a b \cup X_{3} \cup \epsilon\right.}_{\left((a a \cup b)^{*} a b X_{3} \cup(a a \cup b)^{*}\right)} \tag{8}\\
& =(a \cup b a)(a a \cup b)^{*} a b X_{3} \cup(a \cup b a)(a a \cup b)^{*} \cup \underline{b b} X_{3} \cup \epsilon \tag{9}\\
& =\left(b b \cup(a \cup b a)(a a \cup b)^{*} a b\right) X_{3} \cup(a \cup b a)(a a \cup b)^{*} \cup \epsilon \tag{10}
\end{align*}
$$

Applying Arden's Lemma to (10), we get

$$
\begin{equation*}
X_{3}=\left(b b \cup(a \cup b a)(a a \cup b)^{*} a b\right)^{*}\left((a \cup b a)(a a \cup b)^{*} \cup \epsilon\right) \tag{11}
\end{equation*}
$$

Thus we have solved for X_{3}. However, our goal is X_{1}. But note that X_{1} can be expressed entirely in terms of X_{3} using (1) and (7):

$$
\begin{align*}
X_{1} & =a X_{2} \cup b X_{3} \\
& =a \underbrace{\left((a a \cup b)^{*} a b X_{3} \cup(a a \cup b)^{*}\right)} \cup b X_{3} \tag{12}\\
& =\left(a(a a \cup b)^{*} a b \cup b\right) X_{3} \cup a(a a \cup b)^{*} \tag{13}
\end{align*}
$$

Substituting for X_{3} in (13), we get the horrendous

$$
X_{1}=\left(a(a a \cup b)^{*} a b \cup b\right)\left(\left(b b \cup(a \cup b a)(a a \cup b)^{*} a b\right)^{*}\left((a \cup b a)(a a \cup b)^{*} \cup \epsilon\right)\right) \cup a(a a \cup b)^{*}
$$

