
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 2, NO. 1. MARCH 1990

Prototyping Bubba, A Highly Parallel Database
System

HARAN BORAL, WILLIAM ALEXANDER, LARRY CLAY, MEMBER, IEEE,

GEORGE COPELAND, MEMBER, IEEE, SCOTT DANFORTH, MICHAEL FRANKLIN,
BRIAN HART, MARC SMITH, AND PATRICK VALDURIEZ

Abslrucl-Since 1984, the goal of the Buhba project at MCC has been
to design a scalable, high-performance and highly available database
system that will provide significant cost/performance advantages over
conventional mainframes in the 1990’s. The design process has been
an iterative one, cycling through design, modeling, and prototyping in
progressive detail. The current Bubba prototype runs on a commercial
40-node multicomputer and includes a parallelizing compiler, distrib-
uted transaction management, object management, and a customized
version of UNIX. This paper describes the current prototype and dis-
cusses of the major design decisions that went into its construction. The
lessons learned from this prototype and its predecessors are presented.

Index Terms-Complex object management, database operating sys-
tem, database programming language, database system performance,
database system prototype, dataflow execution, parallel database sys-
tem.

I. INTRODUCTION

B UBBA is a highly parallel computer system for data-
intensive applications, which has been designed and

prototyped at MCC. The basis of the Bubba design is a
scalable shared-nothing architecture which can scale up
to thousands of nodes. Data are declustered across the
nodes (i.e., horizontally partitioned [33], [37] via hashing
or range partitioning) and operations are executed at those
nodes containing relevant data. In this way, parallelism
can be exploited within individual transactions as well as
among multiple concurrent transactions to improve
throughput and response times for data-intensive appli-
cations.

Much of the Bubba design and implementation effort
has gone into developing the technology necessary to ef-
ficiently manage and exploit parallelism. This effort can
be divided into four separate areas:

Data Placement-Bubba was designed for “data-inten-
sive” applications, where the data are too large and ac-

Manuscript received October 15, 1989; revised December 10, 1989.
H. Boral was with the Microelectronics and Computer Technology Cor-

poration (MCC), Austin, TX 78759.
W. Alexander and S. Danforth are with the Microelectronics and Com-

puter Technology Corporation (MCC). Austin, TX 78759.
L. Clay is with Tandem Computers, Austin, TX 78758.
G. Copeland and M. Smith are with IBM, Austin. TX 78758.
M. Franklin is with the Department of Computer Sciences, University

of Wisconsin, Madison, WI 53706.
B. Hart is with BULL, France.
P. Valdurier is with INRIA, Rocquencourt, France.
IEEE Log Number 8933793.

cessed too frequently to be shipped between nodes for
processing. Instead, operations are executed at the nodes
which contain the data. As a consequence, the placement
and declustering of data across the nodes of the system
directly determines the load across the system. Proper data
placement is crucial to Bubba’s performance, and must be
periodically adapted to changes in workload access pat-
terns.

Automatic Parallelization-An important requirement
for Bubba was to allow transaction programs to be written
using a centralized execution model (i.e., as if all of the
data were stored on a single node). The Bubba compiler
automatically decomposes monolithic transaction pro-
grams into multithreaded parallel programs.

Datujow Control-In most dataflow machines, each
dataflow operation executes on a single hardware unit. In
Bubba, each dataflow operation may execute in parallel
on possibly many nodes. The nodes that participate are
determined by the data required to perform the operation.
When data are sent collectively from one operation to an-
other, datajow control is needed to tell each receiving
node the identities of the sending nodes and the number
of messages to expect. The challenge in efficient dataflow
control is to identify the sending nodes and inform the
receiving nodes while keeping overhead to a minimum.

Data Recovery Techniques-Bubba supports applica-
tions that require high availability. However, as the num-
ber of nodes is increased, node failures will be more fre-
quent. We have developed a number of techniques to
allow the system to continue processing in the presence
of node failures and to quickly bring substitute nodes back
on-line after a failure.

While the main thrust of the project has been parallel-
ism, the Bubba design includes novel approaches to the
following important areas of database systems:

Database Programming Languages-In the early
stages, Bubba was part of a larger project called ADBS
(Advanced Database System) whose intent was to marry
a logic-programming language called LDL 1361, [46] with
a high-performance parallel implementation. An inter-
mediate language called FAD [9], [20] was designed.
Later, the larger project divided into two separate proj-
ects: an LDL project with emphasis on compiling logic
programs in LDL, and the Bubba project with emphasis

104 1-4347/90/0300-0004$0 1 .OO 0 1990 IEEE

BORAL CJI rd.: PROTOTYPING BUBBA. PARALLEL DATABASE SYSTEM

on parallelizing FAD. FAD includes a significant exten-
sion of relational functionality in both its data model ing
and general-purpose programming capability. The main
intent of improved data model ing was to allow expensive
joins to be avoided using arbitrarily nested structures. The
main intent of improved general-purpose programming
was to allow more of an application to be compiled and
executed directly in Bubba than is currently possible in
conventional (e.g., embedded SQL) systems, thereby
avoiding excessive data movement between the program-
ming- language and database systems.

Object Management-The concept of a single-level
store was fully exploited. A single-level store allows all
data to be uniformly represented in a large virtual address
space, regardless of whether it is transient versus persis-
tent or whether it lives in memory versus disk. The intent
was to improve performance and simplicity by avoiding
data translation between different representations, to in-
crease the amount of compile-time versus run-time sup-
port, and to have a single kind of buffer manager. Storage
management techniques were developed to allow objects
to be arbitrarily structured or sized.

Operat ing Systems Support-The intent of BOS (Bubba
Operat ing System) was to have better operat ing system
support for several of the object management functions,
including single-level store, and MMU-assisted locking
and workspace management . In addition, hooks are pro-
vided that allow the database system code to control
scheduling, paging, and locking policies.

Many aspects of Bubba have been descr ibed elsewhere
[31-PI, [91-1111, [131-[161, [181-WI, PW331, [401,
[47]-[5 11. Because of the aggressive nature of the project,
we decided at the beginning that we would need quanti-
fied performance goals for a specific workload and a de-
sign process driven by those goals. In this paper, we con-
centrate on the process of design, modeling, and
prototyping the Bubba system.

Section II presents a brief overview of the Bubba sys-
tem goals and design. Section III describes the early
phases of the project including model ing and an initial
prototype. Section IV describes the current 40-node pro-
totype. Section V presents some initial results of speedup
and scale-up experiments performed on the prototype.
Section VI summarizes the more important lessons we
learned.

II. BUBBA DESIGN OVERVIEW
A. Design Goals

The overall goal of the Bubba project has been to design
a system for current and future data-intensive applications
that has a significant cost-performance improvement over
conventional mainframe-based database systems in the
1990’s timeframe. While significant improvement for
conventional transaction processing workloads (e.g., De-
bit-credit [7]) is desired, the most dramatic improve-
ments are to be in the support of “knowledge-based”
transactions, which access and analyze large amounts of
data.

5

In addit ion to the goal of good cost-performance, we
had these goals.

l The system must have modularly-scalable perfor-
mance. That is, it can be continuously expanded in
throughput (as well as storage capacity) up to the “high-
end” by adding more hardware modules.

l The system must have more functionality than rela-
tional systems. This functionality includes an improved
data model ing capability to handle complex objects in an
object-oriented style, and a general-purpose programming
capability to allow more flexibility in deciding whether to
implement a function in Bubba versus a host system.

l The system must have high reliability and availabil-
ity. Reliability means that the system does not make un-
recoverable mistakes in spite of component failures.
Availability means that the system cont inues to work with
adequate performance in spite of component failures. Our
goal is to be at least as good as conventional systems using
both mirroring and checkpoint-and-log recovery tech-
niques.
B. Bubba Hardware Architecture

Bubba is a shared-nothing multiprocessor, i.e., the pro-
cessors do not share memory or disks [42]. W e chose this
architecture primarily because it is the only architecture
that can scale up to the performance levels dictated by our
goals, and secondari ly because it provides better reliabil-
ity and availability by isolating faults.

This hardware organization is illustrated in Fig. 1.
Bubba contains three types of nodes: interface processors
(IP’s), intelligent repositories (IR’s), and checkpoint-and-
log ZR’s (CIR’s). These nodes are connected via a scala-
ble message-passing interconnect, such as a hypercube.
The IP’s provide communicat ion with external host ma-
chines and coordinate execut ion of user requests. The IR’s
collectively store the database and perform most of the
work in execut ing transaction programs. The CIR’s main-
tain database checkpoints and update logs for data recov-
ery from IR failure. The majority of the nodes in a Bubba
system are IR’s. An IR minimally consists of a processor
(p), a large amount of main memory (m), and a disk
(d). The large memory improves performance by allow-
ing heavily accessed persistent data (including cluster in-
dexes), transient data, system tables, and programs to be
cached in memory. Although IR’s are shown to consist of
a single processor and a single disk, they could in fact
have a number of these.

The shared-nothing architecture of Bubba allows each
IR to function in many ways as an independent central ized
database system. (This feature was exploited when build-
ing the prototype systems.) Each IR contains fragments
of database relations, determined by hash or range parti-
tioning. Each IR applies program operat ions to its data-
base fragments.

C. FAD Language
The current Bubba interface is the FAD language [20].

FAD significantly extends relational database functional-
ity by providing

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL 2. NO. I. MARCH 1990

Fig. 1. Bubba hardware organization.

l complex objects, consisting of sets, tuples, and at-
oms, which can be nested to an arbitrary level

l the notion of object identity which allows objects to
be referentially shared (i.e., objects can be graph-struc-
tured)

l data manipulation functions that are oriented to ac-
cessing nested sets and tuples

l control primitives, such as while-do and if-then-
else, to support general purpose programming.

FAD treats transient and persistent data uniformly.
Transient data are visible only to the transaction that cre-
ates it and live only for the lifetime of that transaction.
Persistent data are visible to multiple transactions and ex-
ist beyond the life of any single transaction. A FAD ob-
ject becomes persistent if it is reachable from (i.e., nested
within) a special persistent root tuple called db. The root
db tuple is a FAD tuple whose attributes are the basesets
(also referred to as base relations) of the database.

By uniformity in FAD, we mean that persistence is or-
thogonal to type (i.e., an object of any type may become
persistent) and that FAD operat ions can be appl ied to ob-
jects regardless of whether they are persistent or not [8].
Atomicity , concurrency control, and recovery issues are,
for the most part, h idden from the FAD programmer.

Although data are declustered across some or all of the
IR’s in the system, FAD presents single-site semantics to
the FAD programmer (i.e., the database appears to be
centralized). The FAD compiler performs the mapping
between the single-site semantics of FAD and the multi-
node, shared-nothing model supported by Bubba.

D. Distributed Execution Model
The distributed execut ion model of Bubba is based on

dataflow concepts instead of remote-procedure calls, be-
cause dataflow allows a much higher degree of parallel-
ism.

The FAD compiler translates a FAD program to PFAD
(Parallel FAD), a language which is an extension of FAD
and in which decisions concerning distributed execut ion
on the declustered shared-nothing architecture of Bubba
are explicitly expressed. PFAD uses the notion of pro-
gram components which communicate via messages on
datajlow arcs [27], [31], [32]. The purpose of a compo-
nent in PFAD is to group PFAD actions that require ac-
cess to the same data. The PFAD program indicates log-
ically where each component will execute on Bubba, in
terms of the data it will use (e.g., “execute component 1
on baseset db.S”). The binding to physical IR’s is per-
formed at run-time, determined by the current decluster-
ing and the data objects that are selected.

This parallel execut ion model allows three types of par-
allelism to be exploited:

l intertransaction parallelism-multiple transaction
programs can execute concurrently.

l intratransaction parallelism-PFAD components of
a single transaction may execute concurrently (restricted
only by dataflow dependencies).

l intracomponent parallelism-a single component
may execute concurrently on multiple IR’s.

Fig. 2 illustrates the distributed execut ion of an exam-
ple query transaction. The physical schema consists of
three basesets and is similar to the familiar supplier-parts
schema, except that it exploits the nested capabilit ies of
FAD and includes inverted files. The query, called
“CityParts,” finds the description of parts suppl ied by
any supplier in a specific city (in this case ‘ ‘Austin”), The
PFAD query contains

1) a select on the inverted-file baseset
db.Suppliers-Scity to get the S#‘s for “Austin”

2) a join of this result with baseset db.Suppliers to get
the Item#‘s

3) a join of this result with baseset db.Items to get the
tuples that form the final result.

Each of these three operat ions corresponds to a com-
ponent whose home is the set of IR’s containing one of
the component’s operand basesets. If there is more than
one operand baseset, as in the join components, the FAD
optimizer chooses the home such that the minimum
amount of data are shipped between IR’s.

The data placement of the three relations (as shown in
the figure) is known in the global directory, which is rep-
licated in all IR’s. The global directory also knows how
the tuples of each relation are declustered across each
home (by hash or range partit ioning on key values). When
given a key value of a tuple, the global directory returns
the identity of the IR which stores the tuple.

The transaction execut ion steps are as follows.
1) The execut ion begins by creating a transaction co-

ordinator (TC) to coordinate the transaction, which re-
sides in the IP that received the execut ion request from
the user. The TC determines from the global directory
that IRO contains the tuple of db.Suppliers-Scity that has
“Austin” as a key, and sends a message to IRO to begin
the dataflow execution.

2) Component 1 (the select) has only one thread (a
lightweight process in Bubba) because it executes in only
one IR. Component 1 executes the select and saves the
S#‘s. It then determines from the global directory that IR2
and IR4 contain the tuples of db.Suppliers which have the
join values as keys, and sends a message to each of these
two IR’s. Each message to an IR contains only the Com-
ponent 1 S#‘s that can join with the corresponding tuples
of db.Suppliers in that IR.

3) Component 2 (the first join) has two threads because
it executes in two IR’s. Each thread of Component 2 ex-
ecutes the partial join and saves the Item#‘s. It then de-
termines from the global directory that IRO, IR3, and IR4
contain the tuples of Items which have the join values as

BORAL E, a/.: PROTOTYPING BUBBA. PARALLEL DATABASE SYSTEM

example schema: (cluster index keys are underlined)

db ~SuDDllers-Sclty (E&Ly, SI ()I), (an inverted tile)

TC

ill

Fig. 2. Execution of an example query transaction

keys, and sends a message to each of these three IR’s.
Each message to an IR contains only the Component 2
Item#‘s that can join with the corresponding tuples of
db.Items in that IR.

4) Component 3 (the second join) has three threads be-
cause it executes in three IR’s. Each thread of Component
3 executes the partial join, saves the tuples of db.Items,
and sends that as final results to the TC.

5) The TC sends a commit message to all involved
nodes (telling the nodes to free up clan resources and
locks) and then relays the final result to the user.

Note that the example contains only foreign-key joins,
which are most efficiently performed in the baseset homes
shown in the figure. Joins over nonkey attributes can be
performed efficiently in parallel by first redistributing the
two operand basesets across a symbolic home of arbitrary
IR’s using the join-attribute values for partitioning, and
then performing a local join at each IR (similar to tech-
niques described in [21], [23], [24]). The number of IR’s
in a symbolic home is chosen by the FAD optimizer at
compile-time; the actual IR’s are chosen (arbitrarily) at
run-time and represented in a transaction-specific sym-
bolic home directory. The symbolic home directory maps
tuples onto a symbolic home’s IR’s via hashing.

E. Run-Time Support
The Bubba run-time support for execution of transac-

tions can be divided into three main subsystems:
Distributed Execution-manages the execution of trans-

actions across multiple nodes.
Object Management-implements the semantics and

storage management for FAD complex objects.
Bubba Operating System (BOS)-A customized oper-

ating system that provides specialized database functions.
I) Distributed Execution: The distributed execution

software manages the loading, activation, execution, and
termination of transaction programs in Bubba’s distrib-
uted shared-nothing environment. Transaction programs

I

can be dynamically loaded and activated at run-time, or
preloaded and preactivated in anticipation of execution.
Each has its advantages under different conditions [3], [4].
The goal of dynamic loading and activation is to avoid the
unnecessary overhead of messages, startup, and termina-
tion of components on IR’s which do not contain data rel-
evant to the operation, and therefore do no useful work.
A component is dynamically loaded or activated on an IR
at the time that the input data for the component arrive at
the IR. The goal of preloading and preactivation is to
avoid run-time delays. Combinations of the dynamic or
anticipatory techniques are chosen to optimize the exe-
cution of a program.

Threads of components communicate using send and
receive operations. A receive operation blocks until mes-
sages have been received from all of the IR’s executing
components that send data messages to the receiving com-
ponent. Determining when all messages have been re-
ceived is complicated by the fact that the identities of the
sending IR’s are often determined at run-time by associ-
ative routing, i.e., using the value of a data object to de-
termine its appropriate destination by consulting the global
directory or symbolic home directory. As mentioned in
Section I, the process of coordinating sends and receives
is referred to as dataflow control. Bubba uses three data-
flow control methods, each of which performs best under
different circumstances. These dataflow control methods
are described in [3] and [4], and are illustrated in Section
IV-D.

2) Object Management: The object management soft-
ware provides efficient allocation, access, modification,
and garbage collection of both persistent and transient
FAD objects. The goals of the object management soft-
ware are to support the object model of FAD, and to min-
imize disk I/O and data conversions by exploiting the
novel features of BOS. For example, the object manage-
ment software implements FAD’s uniform treatment of
persistent and transient data by using identical data struc-
tures within persistent and transient virtual address spaces
provided by BOS.

The object management software supports cluster in-
dexes for associative access on sets, tuples, and large at-
oms. Concurrency control for indexes is implemented
using nontwo-phase locking techniques (i.e., sema-
phores); for data, it is implemented using implicit locking
provided by BOS. Boxing (garbage collection and clus-
tering) of persistent objects is performed to achieve high
access locality. In Bubba, simple boxing is performed at
the end of every transaction that updates the persistent
space. Additional background boxing (for optimized clus-
tering) can be performed on objects whenever an IR would
otherwise be idle.

3) Bubba Operating System: BOS is a tailored oper-
ating system, which provides specialized features for sup-
porting distributed execution and object management.
Some of these features are the following.

l Single-Level Store-BOS provides the single-level
storage abstraction in which the entire persistent space of

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 2, NO. I, MARCH 1990

an IR is mapped into the virtual address space of each
process executing a transaction in the IR.

l Locking and Workspace Management-BOS uses
conventional virtual memory management hardware to
provide implicit page locking and transaction work-
spaces.

l Two Page Sizes-BOS provides support for small
memory pages and large disk blocks. A small memory
page size (e.g., 5 12 bytes) avoids poor memory utiliza-
tion, complex and time-consuming object locking, and
time-consuming page copying. A large disk block size
(e.g., a disk track) avoids poor disk arm utilization, large
system tables, and large cluster indexes. Most conven-
tional systems try to compromise by choosing a single
medium-sized page (e. g . , 4K bytes), but instead suffer
all of the above problems to varying degrees.

l Lightweight Process Threads-BOS provides multi-
ple lightweight threads of execution within a process,
which allows PFAD components to be dynamically acti-
vated and executed without excessive overhead.

l Communication Primitives-BOS provides send and
receive primitives that are used to implement the dataflow
semantics of PFAD programs. All messages are imple-
mented by unacknowledged datagrams, for efficiency; ac-
knowledgments can be programmed explicitly when nec-
essary.

While BOS is not a distributed operating system (i.e.,
it does not provide distribution transparency), it provides
the support required to implement distributed processes in
Bubba.

III. EARLY MODELS AND PROTOTYPING
A. Iterative Performance-Driven Design Process

Given our ambitious performance goals, we adopted an
iterative design process incorporating both modeling and
prototyping feedback, in which the design of Bubba
evolved over several years. Performance predictions from
models as well as measurements from prototypes helped
us choose between design alternatives, or at least under-
stand the tradeoffs among the alternatives if the choice is
workload-dependent. In a few circumstances, the anal-
yses caused us to revise previous design decisions.

It should be emphasized that we did not rely on either
modeling or prototyping exclusively. The prototypes pro-
vide “real” measurements, but only for small system
configurations. We recognized the need to develop
models, parameterized using prototype measurements, to
demonstrate system performance in very large configura-
tions.

The earliest simplest models were developed as a quick
means of “disaster avoidance.” The system design was
characterized at a high level in terms of basic resources
such as CPU’s, disks, memory, and interconnect. Perfor-
mance predictions were made using ballpark estimates for
resource rates of service and capacities, in the style of
[39]. The goal was to expose critical performance prob-
lems with the overall architecture, even with best-case as-

sumptions about the system resources and workload. In
one case, a simple model dramatically showed the impor-
tance of data placement to good large-scale performance.

As the design progressed, more detailed models were
developed to examine specific parts of the system design,
such as the interconnect, dataflow control protocols, con-
currency control, and recovery. These models were some-
times tailored to the specific experiment, using analytic
modeling, simulation, or a combination of both.

A “full” simulation of Bubba which models the final
system design was constructed in order to more accurately
predict the scalability of Bubba’s performance over the
entire range of configuration sizes (up to 1024 nodes).
However, for various nontechnical reasons, the model was
Put “on hold” for some time, and as of this writing is
still being tested.

The prototyping effort was also iterative. A first pro-
totype was intended to help us flesh out an appropriate
system software design and identify important perfor-
mance issues, with subsequent prototypes to provide use-
ful measurements. The first prototype and the lessons we
learned from it are discussed later in this section.

B. The Order-Entry Workload
To drive our performance analyses, we developed a ge-

danken, yet realistic, characterization of an order-entry
system application, enhanced with decision-support (or
“knowledge-based”) programs. This workload was con-
sidered representative of those that might run on Bubba.
Different experiment workloads are composed by speci-
fying a desired mix of five order-entry transactions: New-
Order, Order-Shipped, Payment, Suggested-Order, and
Store-Layout. The order-entry transactions and their
workload characterizations are further described in [5].
The current order-entry physical database consists of eight
basesets containing information on items, customers, or-
ders, etc. The five transactions are summarized as fol-
lows.

l New-Order records a customer’s order for an average
of ten different items after the customer’s new outstanding
balance is checked against the customer’s credit limit.

l Order-Shipped records the shipping date for an order
and generates an invoice for the customer.

l Payment records the payment date for an order and
adjusts associated customer and salesperson sales totals.
Payment is most similar to the Debit-Credit transaction
[7], although Payment requires somewhat more work and
has less potential parallelism due to dataflow dependen-
cies.

l Suggested-Order infers the number of items to order
from suppliers, to keep a warehouse sufficiently stocked.

l Store-Layout assists a customer (e.g., a store) in con-
figuring the layout of items on the shelves in the store in
an attempt to maximize customer profit.

For each transaction type in the current order-entry
workload, Fig. 3 illustrates its relative frequency in our
most often used mix, and its performance-dominant op-
eration. The conventional transactions contain update op-

BORAL P, cd.: PROTOTYPING BUBBA. PARALLEL DATABASE SYSTEM 9

Transaction

Yew-Or&x
Order-Shqped
Payment

Fraction hminant
In Mix Operation

Slart+Tcrmination Message
Overhead Overhead

0.332 \implt: upddtr WI) O(1)
0.332 simple update O(1) O(1)
0.332 hImpIe update O(1) O(1)

SUgge\t&OrdCr 0.001 Lqe SCil” Wh’) O(N)
Store-Layout 0 on3 hrge N-M ,c,,n O(N) O(N*M)

Fig. 3. Order-entry workload characterization.

erations involving a small number of tuples. The two de-
cision-support programs, Suggested-Order and Store-
Layout, are read-only queries, and contain a large scan
and a large N-M join, where N and M refer to the number
of nodes containing the two joined relations.

As part of the workload characterization, each of the
order-entry transactions were coded in FAD and parallel-
ized with each transaction represented by a dataflow
graph. Each node in a dataflow graph represents a FAD
operation (e.g., selection, join, insert, etc). Arcs between
nodes represent transmission of intermediate results be-
tween operations and, therefore, may constrain the start
time of an operation.

The five transactions in the order-entry suite are rea-
sonably diverse, using different FAD operations and ex-
hibiting different degrees of intratransaction and intra-
component parallelism. This diversity provided us with a
wide range of test cases for experiments.

C. Analyses of Design Alternatives
Here, we summarize the results of several model-based

analyses that influenced key parts of the Bubba design.
Many of the simulations were done using a process-ori-
ented simulation package, CSIM [38].

Data Placement-In a series of data placement experi-
ments [15], an analytic model called FIRM [1 I] was used
to predict the throughput performance of the order-entry
workload running on a 1024-IR Bubba configuration.
Using this model, we developed the data placement al-
gorithm that assigns each relation to an appropriate num-
ber of IR’s (i.e., the relation’s home), in a way that bal-
ances the load for all the relations as evenly as possible
across all the IR’s. The model demonstrated the effect a
particular data placement algorithm had on performance.
One of our very first results showed how poor data place-
ment can drastically affect performance due to poor load
balancing. Using feedback from the model, the data
placement algorithm was repeatedly refined to better use
information about the “heat” (i.e., frequency of access)
and size of each relation. The throughput performance
achieved using the final algorithm described in [151 was
more than two orders of magnitude better than earlier al-
gorithms.

Process and Dataflow Control-In [3] and [4], program
loading, activation and dataflow execution strategies were
proposed for Bubba and analyzed. Cost formulas were de-
veloped to quantify the tradeoffs of preloading and dy-
namically loading program code, and show when it is
more cost effective to cache a program in memory or store
it on disk for reuse versus reloading the program over the

interconnect. Finally, two approximate analytic models
and a simulation model were used to evaluate the perfor-
mance of three different dataflow control protocols in
terms of throughput, response time, and number of pack-
ets sent. Each of the dataflow protocols differs in the num-
ber of messages sent and the number of times data must
be copied before it reaches its destination. Using the
models, we developed an algorithm that is used by the
FAD compiler’s optimizer to choose the most efficient
protocol for each dataflow arc using selectivity and size
information.

Interconnect-Early in the design of Bubba, we had
considered the use of an “intelligent switch,” which
would provide hardware assistance for data and program
routing, program control (e.g., if-then-else, while-do),
concurrency control and data merging operations. After
much analysis, it was evident that making the switch in-
telligent in these ways would not be cost-effective. There-
fore, Bubba now only relies on a more conventional mes-
sage-passing interconnect. While the Bubba design is not
tied to any particular topology, our analyses show that a
hypercube would provide ample performance which
scales nicely as the system size grows, would provide fault
tolerance, and can be easily packaged even for large con-
figurations, all using hardware technology that is easily
available today. We found that the same data declustering
mechanism used to load balance the IR’s also did an ad-
equate job of load balancing the interconnect, so that hot
spot problems often encountered in multistage intercon-
nects were avoided. In another study [6], several hyper-
cube routing algorithms were simulated, and their perfor-
mance was compared in the presence of hot spots and
faults.

Schema Design-Several order-entry schemas were de-
signed. We found that performance could be significantly
improved by nesting objects to avoid joins. One signifi-
cant example of this was the Suggested-Order transaction,
which could be transformed from a time-consuming large
join into a much faster large scan. Several other examples
included eliminating smaller joins. Interestingly, there
was little performance advantage in the order-entry work-
load for the object sharing capabilities of FAD among
persistent objects. However, we note that when creating
a local transient object from a persistent one, direct object
references can often be used to avoid copying the (per-
haps large) persistent object.

Distributed Two-Phase Locking-A series of simula-
tion experiments were performed to study two-phase
locking performance in shared-nothing parallel machines
like Bubba, ranging in size from 4 to 256 nodes [28]. An
order-entry workload was used. The results showed that
system throughput as limited by lock conflicts approaches
the asymptotic conflict-free system throughput as the sys-
tem size increases, boding well for larger system config-
urations. The results also demonstrated how performance
of timeout-based deadlock resolution schemes can some-
times be highly sensitive to the choice of timeout values.
The hottest relations rates in this study happened to be

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 2. NO. I. MARCH 1990

small, yielding higher conflict rates and making the
timeout period more critical. In turn, we have considered
the use of a separate global deadlock detector.

Safe RAM-In [18], we examined how safe RAM (i.e.,
nonvolatile and protected) can be implemented with con-
ventional hardware technology and used effectively in up-
date-intensive applications. A transaction can write its log
and/or updated data pages to safe RAM to commit. In this
way, a response time improvement can always be realized
when safe RAM is added to a system, or throughput can
be improved to the extent that the system has had to limit
disk utilization to achieve adequate response times. Safe
RAM also allows group commit to be more fully ex-
ploited without hurting response time, even when log files
are heavily parallelized. A cost-performance model quan-
tifies when the use of safe RAM is cost-effective.

High-Availability Recovery-In [191, two recovery
techniques are examined and compared: mirroring and in-
terleaved declustering. For higher availability, either of
these techniques could be used in Bubba in conjunction
with a checkpoint-and-log technique using CIR’s, each of
which provides recovery from a full IR failure. To avoid
having to make periodic checkpoint copies from the IR’s,
the CIR’s apply logs to previous checkpoints to obtain
new checkpoints. Interleaved declustering provides nearly
the same data availability as mirroring, while providing
significantly better cost performance. Spare on-line nodes
can be used to reduce the time to restore a node and to
reduce human operator involvement.

D. The First Prototype
1) Description: By the spring of 1986, progress had

been made on a number of important aspects of the de-
sign. The overall hardware architecture of the system was
defined, an initial design of the FAD language had been
proposed, and decisions on the query execution model and
transaction management had been made. There was how-
ever no clear picture of the software architecture of the
system as a whole. Thus, the definition of this architec-
ture, incorporating many of the basic techniques that had
been proposed for Bubba, was the goal of the first proto-
type system.

The system was designed by identifying modules for
important system functions, such as the FAD compiler,
FAD abstract machine code interpreter, transaction
loader, synchronization node (for concurrency control),
associative routing manager, FAD object manager, file
and index manager, buffer manager, workspace and re-
covery manager, and so on. The functionality for each of
these modules was sketched at a fairly high level, and
then external modules interfaces were defined. Each
member of the group was given responsibility for the de-
tailed design of one or two modules, which were specified
using textual descriptions and an informal pseudocode.

Out of convenience, the prototype software was ini-
tially developed on a VAX 11/780 running BSD 4.3
UNIX. The FAD compiler and interpreter were devel-
oped using C, LEX, and YACC. The database system

code was written in C + + , mainly to assess the utility of
this new object-oriented language in a large system proj-
ect. A multitasking environment was provided by a spe-
cialized database kernel, called KEV [51]. The KEV in-
terface was designed to be comprehensive yet simple, so
that it could be easily implemented on a variety of hard-
ware platforms, for system portability. For this first
implementation, KEV’s multitasking functionality was
emulated within separate UNIX processes using the CSIM
process-oriented simulation package, developed at MCC
[38]. Many UNIX processes could be used to represent
virtual IR’s.

To better test and demonstrate parallel execution, the
prototype software was later ported to a network of Sun
workstations connected by Ethernet. The software ran on
diskless workstations; a shared disk server contained the
database files corresponding to each virtual IR. In this
network environment, a single virtual IR process was run
on each of three diskless workstations; a fourth worksta-
tion ran user interface (“console”) processes for the three
IR’s. The configuration is shown in Fig. 4.

The prototype eventually consisted of approximately
30 000 lines of C + + . It was able to run multiple order-
entry transactions concurrently on three IR’s. The system
was built as a “thin vertical slice” of the Bubba system.
That is, the basic parts of all of the major components of
the system were implemented but a fair amount of func-
tionality was left out. This allowed all layers of the sys-
tem to be examined without incurring the time and ex-
pense of a complete implementation of the software.

2) Lessons Learned: A number of important lessons
were learned from the construction of the first prototype.

Distributed Execution-The prototype contained the
first complete, but simple, design of the distributed exe-
cution facility of Bubba, including associative routing, a
dataflow control method, and transaction management.
This initial attempt at distributed execution gave us our
first exposure to the costs of parallelism (processes, mes-
sages, and delays), and showed us that a single strategy
used for program loading, program activation, and data-
flow control would not be efficient for all cases. It also
prompted us to be a little more frugal with processes in
the next design. For example, program loading and trans-
action commit coordination functions, which had been
performed by separate tasks called transaction loader (TL)
and synchronization node (SN), were combined into one
process which is now the transaction coordinator (TC).

Program Loading and Activation-Program loading and
activation in the prototype were done by always sending
and executing a component’s code at every IR in the home
of an operand relation. While this scheme is comprehen-
sive, it frequently yields unnecessary costs for component
startup, messages and processing. For example, a “rifle-
shot” query in which a single tuple is selected will result
in one IR in the home finding the tuple, while the other
IR’s find nothing. We extended the design to allow for
dynamic loading and activation, so that components are
executed only on the IR’s that we know will perform use-

BORAL CI a/. PROTOTYPING BUBBA. PARALLEL DATABASE SYSTEM

Fig. 4. The first prototype.

ful work. Also, frequently executed programs can now be
preloaded and cached at the IR’s.

Datq‘low Control-Until the first prototype was de-
signed, we did not recognize the need for dataflow con-
trol. Even though all IR’s in a home executed a compo-
nent due to the program loading and activation scheme, it
was not known until run-time which IR’s would actually
generate and send dataflow results. Each IR had to inform
an elected IR which IR’s were sent data, and the lists had
to be combined to find out which IR’s did not send or
receive anything. Null messages had to be sent to IR’s
that did not receive data. Later, the introduction of dy-
namic activation resulted in an added complication, in that
the number and identity of the sending IR’s is not known
until run-time. This led to the design of the three flavors
of dataflow control with different performance character-
istics.

PFAD and Components-The need for an intermediate
parallel language such as PFAD was not recognized until
the design of the prototype was begun. The development
of PFAD provided much insight into the parallel execu-
tion of FAD programs. However, the implementation
pointed out gaps in our semantics for the execution of a
component across multiple IR’s. For example, the first
prototype supported only one type of send (associative).
When considering the execution of a variety of transac-
tion types, we discovered the need for handling the send-
ing of “null” data (to some or all of the threads executing
the component) and encountered a number of cases in
which other types of sends (e.g., broadcast) are needed.
The Bubba design now includes a wide variety of sends
[27]. All PFAD programs run on the first prototype were
“compiled” by hand. This process taught us about the
techniques that would be required to compile FAD pro-
grams into a form that could be executed on Bubba.

Object Management-The prototype used three differ-
ent formats for objects (disk, memory, and message). The
need for conversion (and copying) of objects among the
different formats resulted in inefficiency and complexity
of the object management software. Also, heavy use of
object tables added both complexity and inefficiency to
the object management functions. As a result, the design

II

of object management in Bubba now emphasizes the uni-
form object format for transient, persistent, and dataflow
objects and the minimization of copy operations for ob-
jects [161.

Operating System-Recognizing that database func-
tions require special support not found in conventional
operating systems, KEV [51] was designed to provide
only a basic set of primitives, leaving as much control as
possible to the higher software layers. However, KEV was
later replaced by BOS, to include functions that had pre-
viously been implemented above the operating system
(e.g., buffer management and locking). This change was
motivated by two factors: 1) a desire to streamline the
software architecture and improve performance through a
closer integration of the database system and operating
system functions, and 2) the potential to exploit features
such as memory-mapped files and lightweight processes
(such as in Mach [l]) that are best provided in the OS.

Implementation-We learned a number of lessons about
the process of building a complex system. The impor-
tance of good source code control procedures in a large
development project was made evident by problems due
to the lack of such procedures in the early phases of de-
velopment. The importance of paying attention to “de-
tails, ’ ’ such as system bootstrapping and utilities, early
on in the project, was also learned the hard way. Bugs in
the (slow) C + + translator available to us at the time, the
lack of a good C+ + debugger, and our lack of fluency
in C + + programming caused us to revert to C in the next
prototyping phase.

Because of the hardware platform on which the system
was built and implementation shortcuts such as the use
of simulation software to emulate KEV functionality, the
prototype could not be used for meaningful performance
experimentation. In any case, this prototype was crucial
to providing a context in which important issues could be
examined in the detailed design of the software for Bubba.

IV. A MORE REALSTIC PROTOTYPE

A. Approach
At the end of the first prototyping phase, we were faced

with the choice of trying to modify the code of the first
prototype or starting from scratch. After much debate and
soul-searching we opted to “let go” and start the second
prototype from scratch. There were a number of reasons
for this decision.

l The desired software architecture and many funda-
mental algorithms had changed radically since the first
prototype so that it was not clear how much (if any) code
could be salvaged.

l We wanted to get away from the poor C+ + pro-
gramming tools we had, and instead use familiar C tools.

l The first prototype was coded mostly by part-time
students, many of whom were no longer with the project.

l The first prototype had robustness problems that were
not easily fixed.

In retrospect, the decision to start from scratch was a

12 IEEE TRANSACTIONS ON

good one. We were able to more cleanly implement the
new design, interfaces among modules were better de-
fined, and we were able to use techniques such as walk-
throughs and code reviews to improve quality and to give
the entire group a working knowledge of the major parts
of the system. As a result, the system was much more
robust than had we ported the earlier code to the new sys-
tem.

The main goal of the second prototyping effort was to
implement the most recent Bubba design, which incor-
porated the lessons learned from the first prototype, as
closely and realistically as possible. This was accom-
plished with the following exceptions, made for prag-
matic reasons.

l We recognized we were building an experimental
prototype and not a commercial product. Thus, some im-
portant Bubba features were not implemented, such as
node recovery, data placement reorganization, and col-
lection of statistics for the FAD optimizer. Also, the pro-
totype was not made “industrial strength” nor has it been
“tuned.”

l We implemented the system using mid-1980’s hard-
ware technology and cost (i.e., the Flex/32 multicompu-
ter), although Bubba was designed for 1990’s hardware
technology and cost. Thus, some Bubba features were not
implemented, such as safe RAM (due to lack of uninter-
ruptible power supply), IP’s (due to lack of nodes), and
full data and index caching (due to small node memory).
While these hardware technology and cost limits impact
prototype implementation and performance, they have not
resulted in basic design changes.

In order to construct the system in a reasonable amount
of time, we had four groups working in parallel: FAD
compiler, distributed execution, object management, and
BOS, There was frequent coordination among the groups.
A phased approach to building the system was used. Dur-
ing the first phase, BOS and the distributed execution
software were developed on the parallel machine, while
at the same time, the compiler and object management
software were developed on Sun workstations using
UNIX. During the second phase, the object management
software was ported to a single node of the parallel ma-
chine and tested in a centralized fashion (no parallelism).
During the final phase, we integrated the distributed ex-
ecution software with the object management so that we
could run transactions in parallel. This phased process was
quite successful, as it allowed the major development ef-
forts to proceed in parallel with minimal interference, and
then integrated and tested incrementally.

B. Hardware Platform
The current Bubba prototype is implemented on a 40-

node Flex/32 multicomputer, illustrated in Fig. 5. Each
node consists of a 16 MHz Motorola 68020 CPU, 68851
MMU and 68881 FPU, with 2 MB of on-board SRAM.
In addition, each node has a set of VME peripherals in-
cluding 4 MB of external DRAM, a 180 MB 5-l/4” CDC

(NOWLEDGE AND DATA ENGINEERING. VOL. 2. NO I. MARCH 1990

4MR 180
“RAM&d

Fig. 5. 40.node Flex/32 hardware platform

Wren III Winchester disk and a high-performance ESDI
disk controller. Two cabinets house the 40 nodes.

The per-node sizes of main memory and disk were much
smaller than what we expect in a real Bubba implemen-
tation. For that reason, we have had to relax some of the
Bubba memory management policies in the implementa-
tion. Specifically, these are the following.

l System data, cluster indexes, and frequently ac-
cessed persistent data may not be cached. Instead, they
are subject to regular LRU replacement. (This can be eas-
ily changed for experiments requiring caching.)

l The persistent portion of the virtual address space has
been limited to 256 MB (out of 4 GB total virtual address
space) per node, to keep the page tables smaller. (How-
ever, this is sufficient for the 180 MB disk.)

The Flex nodes do not communicate via a hypercube,
as we would prefer in Bubba. Instead the nodes share ac-
cess to 9 MB memory via a hierarchy of 32-bit-wide
buses. The bandwidth of the buses and memory in a cab-
inet is high enough so that there is not a significant bot-
t leneck even when all nodes are accessing the memory at
the same time. The system has been configured so nodes
can access the common memory in the other cabinet trans-
parently; references are automatically routed across a 32-
bit intercabinet bus (there is a bus in each direction). In
keeping with our shared-nothing message-passing archi-
tecture, the common memory is treated only as a “wire”
to hold messages-in-transit between nodes. The common
memory is partitioned so that each node has a dedicated
buffer pool for outgoing messages, managed exclusively
by that node without internode locks or critical sections
(hot spots). In this way, our message performance has
been made relatively independent of the number of nodes
sending and receiving messages simultaneously. Message
response times are fairly uniform between any pair of
nodes; we did not attempt to simulate the “multihop”
delays of a hypercube (although we could have).

Thirty-two of the 40 nodes are used to implement IR’s.
Rather than sacrifice separate nodes for IP’s, we chose
instead to run TC processes on IR’s so that we would have
as many IR’s as possible. In each cabinet, two nodes run
UNIX and are used for software development and exper-
iment control, and two nodes are unused so that their slots
can be used for the incoming and outgoing intercabinet
links.

BORAL et al.: PROTOTYPING BUBBA, PARALLEL DATABASE SYSTEM

C. FAD Compiler

I) Implementation: The FAD compiler [48] performs
static type checking and inference, followed by query op-
timization with respect to an architectural cost model, fol-
lowed by parallelization to form a PFAD program of com-
ponents and arcs, followed by translation to a load module
of compiled C code and data structures that describe the
components and arcs.

Objectives that guided the design of the compiler were:
modularity, to allow a number of difficult problems to be
addressed separately; and ease of module integration, to
allow rapid combination of individual solutions into a
working compiler. Modularity was achieved by an archi-
tecture consisting of six modules, each with a well-de-
fined role. Ease of integration was achieved by sequenc-
ing solutions as individual phases of compilation, and by
using a source-to-source language translation approach for
each phase. Because intermediate text files are always in
FAD (PFAD is simply FAD with components and send/
receive operations), visual inspection of module output
was possible and testing could be performed module by
module. An additional benefit of this approach was the
ability to bypass optimization and/or parallelization
phases to produce an early version of the compiler tar-
geted for the Sun workstation for demonstration and test-
ing.

The compiler architecture is depicted in Fig. 6. Each
crucial compilation issue is handled by a separate com-
piler phase: type checking by the Analyzer, optimization
by the Rewriter, parallelization by the Parallelizer, and
low-level code and load module generation by the Trans-
lator. The parser for each phase of the compiler is gen-
erated from a FAD attribute grammar [2]. The basic FAD
grammar remains the same for each phase (the FAD
grammar for the Translator is enhanced to include com-
ponent definitions and send/receive expressions).

The Schema Manager provides uniform access to
schema information, hiding implementation details. Three
levels of description are provided by the schema: concep-
tual, internal, and physical [29]. The conceptual schema
describes the conceptual data (objects and values) as-
sumed by the FAD program and is accessed by the ana-
lyzer. The internal schema describes how conceptual FAD
sets are mapped to internal FAD sets, and is accessed by
the optimizer. It shows direct relations [50] and inverted-
file relations (secondary indexes) but not declustering. The
physical schema describes the way the conceptual data are
actually implemented in Bubba and is accessed by the
Translator. The schema is generated by a separate com-
piler that processes data descriptions expressed in FAD
DDL.

2) Lessons Learned: While implementing the FAD
compiler, we learned several lessons, concerning the FAD
language as well as the compiler technology.

The FAD compiler automatically infers the types of data
objects and expressions in a program when unspecified by
the programmer, demonstrating a very effective way to

13

Conceptual FAD

use available schema information during compilation. Ex-
plicitly typed expressions are treated as a form of asser-
tional documentation that is checked by the compiler.
However, unification-based type inferencing, well under-
stood in conventional language theory, had to be extended
for the database environment of FAD. One example is
that a conceptual FAD record type does not specify an
ordering of attributes, yet corresponding physical types
do. While two conceptual record types with the same at-
tributes may unify, is is also necessary to guarantee that
they are ultimately mapped to the same physical type. The
FAD compiler uses dataflow analysis to guarantee that a
transient tuple that might be inserted in a persistent set is
created with the same physical type as that of the set ele-
ments, to avoid run-time type checking and conversions.

The common attribute grammar-based framework [45]
provided an excellent foundation for parsing in all of the
compilation phases, and was especially useful for orga-
nizing the unification-based type inference in the Ana-
lyzer and abstract program analysis in the Rewriter when
accumulating information necessary for optimization.
Since the attribute grammar framework best supports pro-
gram transformations that retain the same basic program
structure, it was only of limited use by the Parallelizer,
which must generate program transformations that are
quite different in structure from the original program.

In the first specification of FAD [9], every data item in
a program was an object, each with its own identity [30].
In the second specification of FAD [20], the notion of
“values” was introduced. Unlike objects, the notions of
identity, sharing, and updating do not apply to values, so
they can be implemented much more efficiently by the
compiler and DBMS. However, distinguishing between
objects and values may be of less general utility than we
originally thought. Also, it led to a number of complica-
tions in type inferencing. Next time, we would consider
supporting only atomic values in addition to atomic and
complex (updatable) objects.

Query optimization for a general purpose database pro-
gramming language like FAD is far more difficult than for
a relational query language. In FAD, action expressions

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 2. NO. I. MARCH 1990

can be constructed in an arbitrarily complex fashion. Fur-
thermore, FAD programs can deal with arbitrarily nested
objects. Our solution [49] combines abstract program
analysis (to recognize optimizable operat ions) and rela-
tional query optimization. The presence of declarative ac-
tion constructors (such as “filter”) in FAD made this ap-
proach possible.

Parallelizing general purpose FAD programs also turned
out to be much more difficult than decomposing distrib-
uted relational queries. The r ichness of the data model
(recursive data structures, disjuncts, and object identity),
language (recursion, conditionals, and assignment), and
model of execut ion (dataflow activation, associative rout-
ing, replication), and our emphasis on performance re-
quired new and enhanced dataflow analysis and program
transformation techniques [27]. The Parallelizer opti-
mizes parallelization of common “easy” programs, and
does a good job of handl ing less common “hard” pro-
grams.

Support for object sharing by multiple parents involves
complex issues that we did not resolve in Bubba. Even in
single-node systems, efficient solutions to the manage-
ment of object sharing do not yet exist. Allowing object
sharing in a shared-nothing system, where there is a par-
titioned storage space and object references can span
nodes, is even more difficult. W e decided to support the
notion of object sharing conceptual ly in FAD, but restrict
its use to transient objects (thereby avoiding the storage
management issues in persistent space) and only local
parents (thereby avoiding internode references).

The semantics of “null” in a general purpose database
programming language with strong static typing are com-
plex. The semantics we ultimately developed for FAD are
well founded, consistent, and useful.

Mapping FAD to compiled C was straightforward in
theory, but we ran into problems with the resulting legal
C expressions being too complex for some C compilers.

D. Distributed Execution

1) Implementation: The distributed execut ion subsys-
tem was redesigned for the prototype in order to incor-
porate the more efficient dynamic program loading, acti-
vation, and dataflow control protocols. Furthermore, the
underlying distributed process model provided by the op-
erating system was redesigned to support multiple con-
current threads per transaction process within an IR.

Transact ion programs, components, and arcs are
mapped onto the following BOS constructs for execution.

l For each instantiation of a transaction program, a
single separate clan is al located in each IR that is partic-
ipating. The clan provides the virtual address space for all
of the threads of that transaction in that IR.

l For each activated component, a separate thread ex-
ecutes the code for the component in the context provided
by the clan. In addition, other system threads are used to
control the execut ion of the transaction (such as commit
and dataflow control processing). The system threads also

execute in clans belonging to the transaction. A thread is
the smallest unit of schedul ing within a transaction.

l For each incoming dataflow arc for a component, a
separate message queue is al located by each component
thread.

In this way, transactions are implemented as parallel
processes distributed across the relevant IR’s, and facili-
tate intertransaction, intratransaction, and intracompo-
nent parallelism. Fig. 7 illustrates the mult i threaded pro-
cess structure:

l one transaction coordinator (TC) thread communi-
cates with the user, loads and starts the transaction, mon-
itors dataflow execution, and serves as the “master” in
the distributed two-phase commit protocol;

l executor threads execute PFAD components at an IR;
l zero or more dataflow control (DFC) threads coor-

dinate communicat ion between executor threads (Fig. 8
illustrates the dataflow control methods), and inform the
TC which nodes are participating in the transaction;

l one commit thread per participating IR commits the
transaction’s updates at the IR under the two-phase com-
mit protocol.

In case of errors or timeouts, the TC coordinates trans-
action abort and restart (if the error is nonfatal). To sup-
port recovery from a TC failure or lost commit message,
one or more log processes on designated nodes are kept
informed of a transaction’s progress. Upon failure, the
log processes are queried and transactions are recovered
according to a presumed abort protocol [34].

The TC, executor, and dataflow control threads at an
IP or IR call global directory, symbolic home directory,
and dataflow control functions at run-time to associatively
route or broadcast results to component threads in other
IR’s. The global directory and symbolic home directory
are cached in memory, since they are consulted often
(once for each tuple that is routed). The dataflow control
functions prepend a program id to any message that may
cause dynamic activation. When a message arrives at an
IR for a thread that does not yet exist, BOS will automat-
ically create it. If the program has not been preloaded and
cached in the IR’s (only done for “bread-and-butter” pro-
grams), the TC will send the program code to the IR’s
that are activated during the course of the dataflow exe-
cution.

2) Lessons Learned: Many of the lessons we learned
about distributed execut ion in Bubba came from an exten-
sive experiment to investigate the performance of the da-
taflow execut ion strategy upon the prototype [40]. In par-
ticular, we were concerned about possible negative effects
of parallelism on response time performance, including
delays due to asynchronous starting, synchronizing, com-
municating between and terminating a set of parallel
threads. W e were also concerned about the effect of con-
tention between concurrent threads from the same or other
transactions. W e measured the impact of these negative
effects using a metric we defined, called response time
“skew.”

At the time of that experiment, the object management

BORAL et 01.: PROTOTYPING BUBBA, PARALLEL DATABASE SYSTEM

EXE: Executor thread
CMT: Commit thread
DFC: Dataflow Control

Fig. 7. Process structure for distributed execution in Bubba.

“Point-to-Point (PP)”
Each sender sends

“Control Node (CN)”
A CN thread tells
each receiver how
many data messages
to expect.

“Mux-Demux (MD)”
An MD thread receives
all data mesqes
and redistributes them
to their destinations.

Fig. 8. Dataflow control methods

and operating system software was being redesigned,
prompted by the lessons of the first prototype. In lieu of
the actual object manager and OS, a simulator at each
node executed the estimated number of CPU instructions
and disk I/O’s we expected for that transaction. The dis-
tributed execution software was “real,” however.

The experiment looked at three different classes of par-
allel transactions in order-entry: simple update, large
scan, and large N-M join. The experiment was run on
configurations varying from 4 to 32 nodes. Detailed event
traces were captured and analyzed to determine the effect
on both throughput and response time.

The results showed that for the class of simple update
transactions, throughput scaled linearly and response time

15

is not strongly affected by increased parallelism. These
transactions had fixed degrees of parallelism. If these
types of transactions dominate the system workload, then
increasing the degree of declustering can help throughput
through intertransaction parallelism, without significant
response time penalties. For these workloads, more de-
clustering leads to better performance [15], [44].

For large scan transactions, the results showed response
time delays due to start and termination overhead is much
less troublesome than expected (at least for degree of de-
clustering 5 32). The major aim of declustering, namely
load balancing, seems to be more important to good sys-
tem performance than the relatively small increases in re-
sponse time due to the temporal skew caused by many
asynchronous threads in parallel IR’s.

For large N-M join transactions, the results showed that
performance degrades as declustering increases, which is
in agreement with our analytic model [15]. But the prob-
lem is the large number of messages required, not process
delays. The number of messages per transaction 0 (N*M >
may be reduced in any of three ways.

l The two relations can be nested, transforming the
large join into a large scan. However, this is only prac-
tical when the relations have a l-l or l-m relationship
and where this does not seriously degrade the perfor-
mance of other transactions in the workload. For n-m re-
lationships, the relations must be normalized to the extent
that data redundancy is eliminated.

l The two relations can both be declustered across the
same IR’s using the join key, either ahead of time or dy-
namically. Again, this may be impractical for n-m rela-
tionships.

l The degree of declustering, N or M can be reduced.
However, this may degrade the performance of other
transactions.

When these techniques cannot be used, large N-M joins
will require very efficient communications in a shared-
nothing system. Bubba is designed to have fast dedicated
message processors (not available in the prototype) and
an efficient communications protocol.

For large scans and large joins, methods for paralleliz-
ing broadcast messages (e.g., preloading, preactivation,
and commit messages) can parallelize the CPU message
work of the sending node, and thereby reduce start and
termination delays, without increasing the total message
work. For example, a scheme was proposed for Gamma
[22] to distribute message sequences in parallel down a
logical binary-tree imposed on the nodes [25], 1261. As
an alternative to associative routing, however, these tech-
niques can improve response time only at a large expense
in total message work, because each piece of data is
moved several times, and in extra filtering at the receiver.

It is important to limit the multiprogramming level
(MPL) at each IR and control the transaction mix. It ap-
pears that response time is “well-behaved” for reason-
able MPL (i.e., where thrashing is avoided), so that stan-
dard scheduling mechanisms should suffice. Since large
transactions can greatly affect other transaction response

16 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 2. NO. I. MARCH 1990

times, it would be worthwhile to distinguish and segre-
gate job classes (e.g., using shortest job first scheduling).

A lesson we have yet to learn is how response time
would be affected if Bubba’s “set-at-a-time” dataflow
control protocols were replaced by schemes that allow
more pipelining between connected components. On one
hand, performance might be expected to improve due to
the increased level of concurrency in a transaction. On the
other hand, pipelining may increase the variation in re-
sponse times due to increased levels of asynchronous ac-
tivity, protocol complexity, and competition for the pro-
cessor.

E. Object Management

I) Implementation: The object management software
of the first prototype was fairly traditional, in that it con-
tained separate layers for FAD object semantics, indexing
and record management, file management, and buffer
management. The notion of single-level store was a sig-
nificant “liberator” when redesigning more streamlined
object management in the second iteration [161.

The single-level store abstraction allows the same rep-
resentation to be used for an object whether it is persis-
tent, transient, disk-resident, or memory-resident. That
representation is known and easily handled by the com-
piler, allowing it to build complex constants at compile
time, and generate code to directly access objects. Virtual
memory pointers are used freely to refer to other objects.
Persistent objects are located in a virtual address space
that is shared among BOS processes, exists independently
of any particular process, and is mapped to disk.

Even with the single-level store, complex objects are
still organized into blocks so that objects that are likely
to be referenced together can be collocated and retrieved
in a single disk I/O upon an access fault. Objects are
stored either with or without a cluster index, depending
on size. Objects that are larger than a block are provided
with indexes which map the object’s subobjects (e.g., tu-
ples of a set) into blocks (see Fig. 9). Both B-tree and
hashed indexes are supported. Since blocks are large, one
index block can be used to index very large objects. For
example, assuming 16 kbyte blocks and 20 bytes per in-
dex entry, one index block can index about 10 Mbytes of
data. Assuming 64 kbyte blocks (which we expect in
future versions of Bubba), the number increases to about
200 Mbytes. Because of its greatly reduced size, a cluster
index can usually be cached. Within each block, a smaller
index provides access to objects within the block. This
allows any subobject of a large object to be accessed in
at most one I/O, because this lower level index is ac-
cessed in the same I/O as the data itself.

Garbage collection and clustering of updated persistent
objects into blocks are performed by a process called box-
ing. Boxing can be performed either at the end of a trans-
action during commit time, or in a background mode.

The use of a single-level store opened up the possibility
for MMU-assisted locking of data pages (also exploited

Fig. 9. A large object and its index

in the IBM 801 [12]). We distinguish between two types
of pages.

l Data pages are used to hold persistent user data and
are implicitly locked. When a memory location in a per-
sistent data page is read (written), the page is automati-
cally read (write) locked. Lock faults occur when a pro-
cess that accesses a persistent data page does not have the
proper lock (read or write) for the attempted access, and
are detected by the MMU using its read and write protec-
tion bits. When a lock fault is detected, a lock on the data
page is obtained if possible. Otherwise, the process re-
questing the lock is blocked until the lock becomes avail-
able. Upon write accesses, a private copy of the original
page is made and placed into a differential page-map table
for the updating process. This implementation of a ‘ ‘copy-
on-write” workspace was used to simplify transaction
aborts. If a transaction aborts (or terminates without com-
mitting), its locks are released and any differential pages
are discarded without affecting the persistent object space.
When a transaction commits, a special commit system call
to BOS is used to release all of the transaction’s locks and
move the process’ differential pages into the persistent
space.

l System pages are used to hold index or control data
and are not implicitly locked. Explicit semaphores are
used by the index manager to protect data on these pages.

Persistent virtual memory is allocated by BOS in units
of blocks. A block can begin with zero or more system
pages (specified to BOS when the block is allocated), with
the rest of the block composed of data pages (see Fig. 9).
By storing indexes and control information in system
pages, we are able to avoid contention problems that
would result from two-phase locking hot resources. The
distinction between system pages and data pages solves
one of the main problems in operating system support for
locking [41], [43].

Explicit nontwo-phase concurrency control is based on
user supplied semaphores. The programmer allocates
semaphore structures located in memory that is accessible
by all processes that may use it; usually semaphores are
collocated with the objects they control. Semaphores are
implemented efficiently by P() and V() macros which
run in user mode and only call BOS when it is necessary
to block or unblock a process. A classic problem with
using semaphores that are outside the operating system is
that the OS may time-slice a process (or block it for some

BORAL ef al.: PROTOTYPING BUBBA. PARALLEL DATABASE SYSTEM

other reason) while it holds a semaphore, tying up the
resource controlled by the semaphore. W e address this
problem by allowing processes that hold semaphores to
indicate to BOS how they should be scheduled.

It is commonly accepted that general-purpose operat ing
system policies often conflict with the atypical needs of
database processing [35], [41]. While BOS attempts to
implement virtual memory in a way that is useful to the
object manager, the object manager often needs to control
the paging policy for good performance. Thus, special
BOS calls are provided to

l fix pages in memory (during a process); mark blocks
as cached (across processes).

l explicitly obtain or release automatic locks.
l cause pages to be read from or f lushed to the disk or

discarded.
Fixed and cached pages are ignored by the page re-

placement policy. This is used to keep either temporari ly
or permanent ly hot pages (e.g., index pages used often
within a transaction or root index pages that are always
hot) in memory. When a group of pages needs to be
locked, read, or written, it can be done with one system
call rather than on a page by page basis, which is impor-
tant for full or partial scans.

The object manager directly supports associative access
to relations through cluster indexes. Inverted files (i.e.,
secondary relations) are implemented outside the object
manager as normal declustered relations. W e did not im-
plement inverted files locally for each IR’s segment of a
declustered relation since this has been shown to require
activation all of the IR’s containing that relation (e.g.,
Teradata [23]). The association between conceptual rela-
tions and inverted files is indicated in the schema; their
use by the compiler’s optimizer is transparent to the FAD
programmer. An inverted file of a relation R on attribute
A, say R-A, is a binary relation whose cluster attribute is
A and whose second attribute is one or a set of keys of R.
R-A is declustered in the usual way (not necessari ly over
the same IR’s as R), as indicated in the global directory
index. There is a local cluster index for R A within each -
of its IR’s. The FAD compiler generates a separate com-
ponent for each access to R-A. This approach introduces
communicat ion between access to R-A and R, but ac-
tually reduces total message and processor work involved
in startup and termination for selective transactions and
queries (which is expected from a secondary index).

2) Lessons Learned: W e have found that the single-
level store abstraction can greatly simplify and streamline
object management , and promises substantial perfor-
mance improvements. W e recognize that special-purpose
OS support is required, but our success in extending UNIX
to do it is encouraging (see Section IV-F).

After our initial experience, we are mixed in our as-
sessment of implicit locking. The advantages of this au-
tomatic locking mechanism are that 1) it uses standard
hardware to efficiently support the often-used function of
lock checking, and 2) programs need not be aware of
locking or page boundaries. The latter reason is especially

17

important for support ing the more general-purpose (com-
pared to SQL) programming environment of FAD. The
disadvantage is that the object manager (or higher levels)
has more knowledge about the semantics of operat ions
and, hence, can sometimes use more efficient nontwo-
phase locking. Our conclusions are that implicit locking
is not a good idea for high-throughput systems that cannot
tolerate the data contention involved in strict two-phase
locking, unless some persistent data can be exempt from
this automatic mechanism. However, implicit locking
would be quite beneficial for applications in which data
contention is not a bott leneck.

Copy-on-write workspaces simplify aborts by avoiding
the need for undo logs, but at the expense by making the
actual updates more costly. For example, copy-on-write
allocates and copies entire pages even when only a few
bytes on a page are updated. Since aborts are infrequent,
conventional update-in-place and recovery schemes may
lead to better overall performance. W e did not fully in-
vestigate the potential of copy-on-write for simplifying
recovery and logging, or for reducing data contention by
allowing readers who could tolerate slightly out-of-date
data to not have to wait on writers.

F. BOS
1) Implementation: The current version of BOS [131,

[14] was implemented by modifying the Flex/32 version
of AT&T UNIX System V Release 2.2. W e chose UNIX
as a base primarily for expediency. The following exten-
sions had to be made to UNIX to support the BOS func-
tionality used in distributed execut ion and object manage-
ment:

Memory Management
l Provide a shared persistent data region used to im-

plement the single-level store.
l Support the two page sizes for memory and disk al-

locations.
l Perform automatic two-phase locking upon page ac-

cess faults.
l Implement the copy-on-write differential-page pro-

cess workspace for updates to persistent data.
l Provide buffer management support, such as page

fixing and flushing.
l Support prefetching for full or partial database scans.
Process Management
l Implement mult i threaded processes.
l Provide a fast implementation of semaphores which

call the operat ing system only when blocking is neces-
sary.

l Support message-based task control that provides for
dynamic loading, activation, and termination of processes
and threads.

Messages
l Provide a message interface that includes: multicast-

ing, large numbers of (logical) message queues per thread;
short control messages embedded in message headers; and
mult ipage message bodies that are moved with MMU re-
mapping techniques rather than copying.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 2. NO. I. MARCH 1990

The implementation of the single-level store in BOS re-
quires the presence of an MMU that supports at least a
32-bit virtual address space, and small (5 12 byte) pages.
The 32-bit virtual address space limits the maximum size
of the persistent data space on a single node to less than
4 Gbytes. Currently, BOS supports only a single persis-
tent space. One way to overcome this 4 Gbyte restriction
is to provide multiple 4 Gbyte persistent spaces in the
context of the UNIX file system namespace, where only
one persistent space could be attached at a time. This is
similar to segment registers used in processors to extend
the address space. Currently, access to the persistent space
is unrestricted in the sense that there is no user-based or
process-based security. This could also be accomplished
by mapping the persistent space to user and group owned
UNIX files.

The current implementation of semaphores allows user
processes to communicate with the kernel via a shared
memory area. This requires a certain amount of trust in
the nonkemel code that might not be acceptable on a gen-
eral purpose operating system.

2) Lessons Learned: Basing BOS on UNIX was a good
decision. First, it gave us a relevant framework of pro-
cesses and virtual memory that we were able to extend to
fully support BOS features. Second, it provided us with
many standard tools and components that we did not have
to develop ourselves (e.g., bootstrap code, a file system,
crash analysis tools, etc.). For those tools that we had to
develop ourselves (e.g., a parallel BOS debugger-which
was an indispensable tool during the distributed software
development), we were able to use standard UNIX tools
(e.g., sdb) as a base.

The effort involved in modifying UNIX depended on
the BOS feature being implemented. The message and task
activation components were highly modular and easy to
add with only a few changes to the UNIX code. The sin-
gle-level store support in general was also surprisingly
modular. On the other hand, the original version of UNIX
supported 2 kbyte pages, and changing this to support
512 byte pages was a major effort. While not as bad, the
support for threads also required broad changes in UNIX
source code.

V. RECENT PERFORMANCE EXPERIMENTS

A. Scalability Experiments

Throughout the project, we used performance models
and partial system implementations in experiments to ex-
amine different ways of reducing the costs of parallelism.
Once the most recent prototype was built, we wanted to
see the overall performance scalability using the working
implementation.

A recent performance study of Tandem’s Nonstop SQL
Release 2 [24] shows the same types of performance scal-
ability that we want and expect for Bubba. We designed
a similar experiment to examine scalability in Bubba.
Taking into consideration that absolute performance could
be improved with tuning, the results continue to suggest

that we have been successful in our attempts to manage
and exploit parallelism.

1) Scalability Metrics: Three metrics defined in [24]
were adopted for our experiments to demonstrate the dif-
ferent forms of performance scalability in the Bubba pro-
totype.

l On-line transaction processing (OLTP) throughput
scale-up measures throughput of small transactions as the
number of IR’s and the database size are increased. The
performance goal is to increase transaction throughput in
proportion to the relative increase in system size, while
maintaining the same transaction response times.
Throughput scale-up is obtained primarily by increasing
intertransaction parallelism, since each transaction has lit-
tle inherent parallelism.

l Batch scale-up measures response times of “batch
programs” (in the terminology of [24], e.g., large deci-
sion-support queries) as the number of IR’s and the da-
tabase size are increased. The performance goal is to
maintain the same query response times by increasing the
system size by the same proportion as the increase in da-
tabase size. Batch scale-up is obtained by increasing in-
tracomponent parallelism so that the amount of work per
node is kept constant.

l Batch speedup measures improvements of large query
response times as more IR’s are added to execute the
query. The performance goal is to reduce the query re-
sponse times by the same proportion as the increase in
system size. Batch speedup is obtained by increasing in-
tracomponent parallelism so that the amount of work per
node is reduced.

2) Workload, Database, and System Conjiguration: A
subset of the order-entry workload was used as the basis
for the scalability experiments. We chose the Order-
Shipped transaction as the “OLTP” representative, and
Suggested-Order as the “batch” representative. Usually,
Order-Shipped accesses a variable number of records from
three different relations. For the experiment, we modified
Order-Shipped to update exactly six tuples, all of which
are accessed through primary (foreign) keys. Suggested-
Order does a full scan of a relation and performs two
arithmetic computations on each tuple. The programs were
written in FAD and optimized and parallelized by the FAD
compiler.

For the OLTP and batch scale-up experiments, the
amount of data per node was kept constant so that the total
database size would be proportional to the number of
nodes. For the batch speedup experiment, the total data-
base size was fixed and redistributed over an increasing
number of nodes. Data values were synthesized in such a
way that the declustering of tuples across IR’s was nearly
uniform. All relations were fully declustered across all
IR’s.

We measured the performance of configurations rang-
ing in size from a single node to eight nodes. Each IR
disk has a database partition large enough to hold over
100 MB of data. For expediency, we only generated the
fraction of the order-entry database used by the two

BORAL ef a/.: PROTOTYPING BUBBA. PARALLEL DATABASE SYSTEM

transactions (which included the smallest five of eight re-
lations). In the scale-up experiments, each IR holds 16
MB of the database, or 128 MB for 8 IR’s. In the speedup
experiments, a single 32 MB relation was distributed over
the IR’s.

W e planned on running the experiments on 32 nodes
but we discovered a bug in the Flex firmware that causes
the interconnection hardware to fail when running UNIX
(BOS) nodes without console terminals. This was a sur-
prise: our earlier experiments [40] had not exposed the
problem because UNIX was not used, and later, all of our
testing of BOS happened to be on nodes with terminals.
As of this writing, we have not been able to solve the
problem and we are thus limited to eight nodes with con-
soles for these experiments. While the small number of
nodes is unsatisfying, the preliminary results demonstrate
the scalability trends we expected.

3) OLTP Throughput Scale-up: To measure through-
put scale-up, we ran workloads consisting of order-
shipped transactions against prototype configurations of
increasing size. A driver program was set up to maintain
a specif ied degree of mult iprogramming (i.e., a specif ied
number of active transactions) in the system. The degree
of mult iprogramming was increased until maximum
throughput was reached, to the point where adding more
transactions only lengthened response times without in-
creasing throughput. Fig. 10 plots transaction through-
puts for the different configurations, in which a cap of 2
s was maintained on average response time.

Fig. 10 shows that throughput scales-up in proport ion
to the number of IR’s. The slight downturn in the curve
from 1 to 4 IR’s most likely shows the increasing over-
head of parallelism: as parallelism is increased, so are the
numbers of clans, threads, messages, etc. (see Section
IV-D). However, OLTP transactions have a limited de-
gree of parallelism; Order-Shipped has an inherent degree
of parallelism of 6. At that point, IR’s can cont inue to be
added without increasing the overhead of each Order-
Shipped transaction. The added IR’s then only provide
more throughput capacity, as is suggested by the upturn
in the curve from 4 to 8 IR’s. For that reason, we expect
the upturn to cont inue for large configurations.

4) Batch Scale-up: To measure batch scale-up, we ran
workloads consisting of single Suggested-Order scan
queries against prototype configurations of increasing
size. Fig. 11 plots query response times for each config-
uration size. Fig. 11 shows that response times are about
the same for each configuration, even though the database
increases in size.

The jump in response time between one to two IR’s was
expected in Fig. 11. Although the query had been paral-
lelized, when it is run on one IR all the components ex-
ecute in the same clan, and large intermediate results are
sent between components via local message sends (which
are implemented using page remapping) instead of remote
sends (which copy data pages). W e included the single IR
results simply as a point of reference.

As the number of IR’s increased beyond two IR’s, the

and

4 6 8

Number of IRS
Relative Database Size

19

87
6

TPS 41
3:

Fig. 10. Throughput scale-up of order-entry OLTP workload

lo number of nodes)

25'

Response time

10 (

51

OC-~

Number of IRS
and Relative Ihtabwe Si%

Fig. 11. Batch scale-up of order-entry decision-support workload.

response time decreases slightly. This is because the da-
tabase values were generated in such a way that the query
would always generate the same sized (and rather large)
result. This was done with the intention of maintaining a
fixed response time for the final part of the query which
receives and prints the result, and cannot be parallelized.
The consequence, however, is that the cost of building
the result tuples during the scan is spread over more IR’s,
resulting in a speedup of that part of the query. The effect
of this speedup is expected to diminish as the number of
IR’s is increased.

5) Batch Speedup: To measure batch speedup, we ran
workloads consisting of single Suggested-Order scan
queries against a fixed size database spread over an in-
creasing number of IR’s. Fig. 12 plots query response
times for each configuration size. The speedup curve in
Fig. 13 plots the relative improvements in the response
times and shows that the improvements are proport ional
to the size of the system. W e are somewhat surprised by
the superl inear increase in speedup between four and eight
nodes; it may be due to reduced paging in the IR’s be-
cause of less data per IR.

The curve in Fig. 12 shows the diminishing returns of
“linear speedup.” That is, at some point, doubl ing the
system size in order to halve query response time becomes
cost-ineffective. That point is determined by the size of

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 2. NO. I. MARCH 1990

Elapsed time

Fig. 12. Response times of order entry decision-support workload

12-

lo-
Speed-up 8-

1

Number of IRS

Fig. 13. Batch speedup of order-entry decision-support workload.

the original query and the response time and cost require-
ments of the application.

B. Mixed Workload Experiment
Bubba was designed to support on-l ine processing of a

large database which can be continuously updated. In a
second small experiment, we examined the prototype’s
efficiency in execut ing a mix of concurrent OLTP and de-
cision-support transactions. W e used the same database
and workload as for the OLTP and batch scale-up exper-
iments descr ibed in Section V-A. The Order-Shipped
OLTP transactions do most of their update work on the
same item-inventory relation that the Suggested-Order de-
cision-support transactions scan, giving us the data con-
tention we desired in the workload. Suggested-Order scans
the item-inventory relation using a nontwo-phase locking
option (similar to “browse access”), in order to avoid
locking the relation fragments and blocking Order-
Shipped transactions for extended periods of time. In this
first prototype, this option was implemented by releasing
read locks that were acquired for a data block as soon as
the next block is scanned.

The mix consisted of multiple Order-Shipped transac-
tions run concurrently with a cont inuous serial stream of
Suggested-Order queries (i.e., there was only one Sug-
gested-order in progress at a time). The number of con-
current Order-Shipped transactions was increased until
the Order-Shipped throughput reached a maximum, while

to number of nodes)

TPS
“i

OL-
0

Number of IRS
and Relative Database Size

Fig. 14. Throughput scale-up of OLTP transactions in mix

maintaining a 5 s cap on the average Order-Shipped re-
sponse time. The 2 s response time cap used in the earlier
no-mix order-shipped experiments could not be used with
the mixed workload, because of the impact of the Sug-
gested-order load. A Suggested-Order query is both I/O
and CPU intensive: each IR execut ing the query accesses
about 8000 data pages and performs two large computa-
tions on each of about 1000 selected tuples. This added
load has a significant effect on the response time of the
relatively small Order-Shipped transactions, due to larger
mult iprogramming interference and larger “skew” in the
start and stop times of a set of threads [40]. Both types of
transactions were run using the same starting priorities
and schedul ing policies; it might have helped to give Or-
der-shipped transactions higher priority (this is not yet
possible in the prototype). Adjusting the size of the sched-
uler’s time slice also would have helped, since Suggested-
Order tends to use most or all of each time slice it is
granted. (A rather large l/2 s time slice had been used
for this experiment.)

Fig. 14 shows that throughput for Order-Shipped OLTP
transactions in the mix again scales up in proport ion to
the number of IR’s and the database size. The slope of
the throughput curve is somewhat lower than the no-mix
throughput curve because a significant fraction of the sys-
tem resources are used to execute the concurrent Sug-
gested-order workload. The total work for the Suggested-
Order workload scales with the size of the system and the
database, so that the Suggested-Order “overhead” per IR
remains constant for any configuration. Thus, as in the
no-mix case, the throughput curve is expected to increase
linearly for larger configurations, albeit at a lower rate.

Fig. 15 shows that Suggested-Order “batch” response
times in the mix increase in proport ion to the system and
database size, instead of remaining approximately con-
stant as in the no-mix case. This is because Suggested-
Order queries were run serially without contention for
system resources by other transactions or queries. In the
mixed case, each Suggested-Order query had to contend
with multiple Order-Shipped transactions, and the number
of concurrent Order-Shipped transactions in the system
increased in proport ion to system size.

BORAL er al.: PROTOTYPING BUBBA. PARALLEL DATABASE SYSTEM

?I- (Database size proportional
- to number of nodes)

::; I:1

Response time

1:: /

2oI -
lo-

O*‘.--T-
4 6 8

Number of IRS
and Relative Database Sire

Fig. 15. Batch scale-up of decision-support transactions in mix

VI. CONCLUSIONS

The final Bubba prototype design documentat ion and
software was packaged and distributed to our sharehold-
ers in April, and updated in October 1989. The design
documentat ion comprised over 1200 pages of text. There
are over 60 000 lines of C code for the FAD compiler and
database system software, and approximately 38 000 lines
of C code in BOS (of which 9000 were added or changed
from UNIX).

W e consider these to be the most significant technical
and procedural lessons learned during the Bubba project:

Technical Lessons:
l Shared-nothing is a good idea, but has limita-

tions. For high-end systems using SQL (requiring >400
TPS), it appears to be the only alternative. For large sys-
tems (200-400 TPS), it is much more cost-effective than
mainframes. For small to medium systems (< 200 TPS),
there are many alternatives with similar cost-perfor-
mance; however, shared-nothing is the only architecture
that can scale throughout the entire range. As we dis-
cussed earlier, large joins may have trouble scaling well
in shared-nothing systems because of the 0(N *M) num-
ber of messages needed to redistribute the joined relations
(in general each of N nodes routes tuples to M joining
nodes), especially as N and M become large-the degree
of impact will depend on the relative cost of communi-
cations versus other join processing. In spite of scaling
limitations, overall performance for large joins is likely
to be better in shared-nothing than other architectures.

l DataJlow seems better than remote procedure call
(RPC) for a shared-nothing architecture. A dataflow ex-
ecution strategy usually reduces the amount of data that
must be communicated and allows more parallelism. Even
when nonblocking RPC is used, a single node is often a
response-t ime bott leneck, caused by either sending re-
quests to or receiving results from many nodes. When
multiple parallel operat ions are involved, RPC can cause
data to unnecessari ly pass back through a single node,
whereas dataflow allows the distributed result of one par-
allel operat ion to be sent in parallel directly to the second
distributed operation. Furthermore, the RPC execut ion
model is synchronous, usually precluding execut ion of
multiple program threads in parallel. The RPC-style da-

21

taflow is efficient in some situations, however; in fact,
one of our three dataflow control methods (Mux-Demux)
has simliar performance characteristics. In a distributed
(esp. heterogeneous) DBMS environment, however, RPC
seems to have the advantage of autonomy and simplicity.
Only the single RPC node needs a global directory, and
sophisticated dataflow control protocols would not need
to be standardized.

l More compilation and less run-time interpretation
seems to be a good idea. Database people tend to want
to do things at run-time, because of their typically strong
systems and weak compiler background. W e found that
many things were better done in the compiler, improving
performance because of the leverage in compil ing once
and running many times and because of reduced lock-
holding time. At various times throughout the project,
however, it was difficult for some database and compiler
people to communicate effectively.

l The uniform object management concept (including
single-level store and uniform formats) did simplify the
design. However, in our early view of single-level store,
it was bundled with automatic locking and workspaces
(which have quest ionable value for many applications),
together providing simplicity and transparency for gen-
eral-purpose programming. Later, we realized that these
were quite separate. Single-level store and optional au-
tomatic locking have been considered for use in a more
general-purpose standard systems platform, using C and
UNIX as a base [17].

l Many systems take the approach of building a node
that is itself fault tolerant. In Bubba, we were able to base
our recovery mechanisms on the assumption that an entire
node is a f ield-replaceable unit. That is, if any part of a
node has a hard failure, then the whole node is assumed
bad and its data are copied from other nodes to the on-
line spare that replaces it. This scheme becomes less prac-
tical if 1) the cost of a node is much larger than the cost
of the component that failed, or 2) the database per node
is so large that its copy time increases the window of vul-
nerability for the second copy to the point that availability
becomes unacceptable. Our approach seems quite reason-
able for smaller nodes (e.g., tens of MIPS and a few
disks). Its main advantage is simplicity of design and hu-
man operations, both of which are crucial to reliability
and availability.

Procedural Lessons:
l The iterative design-for-performance approach was

critical. Unlike most engineering disciplines, perfor-
mance model ing is not closely integrated into software
engineering; instead, it is general ly regarded as a spe-
cialized field on its own. Several such model ing special-
ists were included early in the Bubba project. A consid-
erable amount of time was spent on cross learning between
model ing and database people. The model ing people
strongly encouraged using a gedanken workload and set-
ting specific performance goals. These gave us something
concrete to resolve tradeoffs that otherwise might have
left us f loundering. Through progressively detailed mod-

22 IEEE TRANSACTIONS r 1N KNOWLEDGE AND DATA ENGINEERING. VOL. 2. NO. I. MARCH 1990

eling, many design concepts were either verified so that
they became accepted by the group, or were found inad-
equate early enough to be corrected.

l Although good software engineering practice (e.g.,
design and code walkthroughs, source code version man-
agement and periodic massive documentation) are ac-
cepted by many, it is difficult to make happen in a re-
search environment. It consumes large resources in both
people and time. Nevertheless, it is a must for prototyping
and everyone has to simply “bite the bullet” and make
the economic and psychological commitment. We found
it was crucial for a project of our size.

Boettcher, and L. Crider capably crafted the voluminous
design documentation. D. Frank and J. Haritsa contrib-
uted to the design as summer research students. A. Bud-
inszky, J. Crandell, T. Jagodits, and K. Soheili imple-
mented much of the first prototype. We thank MCC
management (in particular E. Lowenthal), our support
staff and shareholders for creating the environment in
which this work was done. The authors thank the referees
and R. Brice for their help in improving the presentation
in this paper.

REFERENCES

l We are glad we did a first prototype. It provided
much insight into how to structure the IR software archi-
tecture and made clear to everyone the importance of
practicing good software engineering. We are equally glad
we threw it away, having learned from our mistakes, al-
though it was difficult for most of us to “let go” of it.

l The idea of a distributed system implementation with
single-node simulation was very useful. We learned much
about the overall performance of Bubba much earlier than
had we waited for implementation of the single-node soft-
ware. If the performance results of our experiments had
been negative, it would have provided a point at which to
either redesign or terminate the project. It also facilitated
a phased development of the full prototype implementa-
tion, and early development of instrumentation and data
analysis software.

[l] M. Accetta, R. Baron, W. Bolosky, D. Ciolub, R. Rashid, A. Tev-
anian, and M. Young, “Mach: A new kernel foundation for UNIX
development,” in Proc. Summer USENIX Conf , July 1986.

[2] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-
niques, and Tools. Reading, MA: Addison-Wesley, 1986.

]3] W. Alexander and G. Copeland, “Process and dataflow control in
distributed data-intensive systems,” in Proc. 1988 ACM SlGMOD
Con$ Munagrme~tr Data. Chicago, IL, May 1988.

[4] W. Alexander and G. Copeland, “Comparison of dataflow control
techniques in distributed data-intensive systems,” in Proc. 1988 ACM
SIGMETRICS ConjY Measurement Modeling Comput. Syst., Santa Fe,
NM, May 1988.

[5] W. Alexander, T. Keller, and E. Boughter, “A workload character-
ization pipeline for models of parallel systems,” in Proc. 1987 ACM
SIGMETRICS Conf:, May 1987.

[6] W. Alexander and D. Kim, “Dynamic vs. static routing in hyper-
cubes,” MCC Tech. Rep. ACA-ST-146-88, Apr. 1988.

[7] Anon ef al.. “A measure of transaction processing power.” Dntcr-
mation, vol. 31, no. 7, Apr. 1985.

[8] M. Atkinson and 0. Buneman, “Types and persistence in database
programming languages,” ACM Comput. Surveys, vol. 19, no. 2,

l In retrospect, a good commerically-available hard-
ware platform for prototyping Bubba was hard to
find. We had many problems with the Flex system. The
development environment was inadequate and we were
plagued with many software and hardware bugs. How-
ever, the Flex had the hardware configurability that we
needed and was the best choice at the time the decision
had to be made.

June 1987.
[9] F. Bancilhon, T. Briggs, S. Khoshafian, and P. Valduriez, “FAD, A

powerful and simple database language,” in Proc. Con$ Very Larw Y
bata Bases, Brighton, England, 1987.

[IO] H. Boral, “Parallelism in Bubba.” in Proc. Int. Symp. Databases in
Parallel Di.stributed Svst.. Austin, TX, Dec. 1988.

[1 I] E. Boughter, W. Alexander, and T. Keller, “A tool for performance-
driven design of oarallel systems,” in Proc. 4th Int. Conf. Modelinv

l Our project goals were far too ambitious and cov-
ered far too muchfinctionality. This was partially due to
our own ambition, and partially due to Bubba being part
of the larger ADBS project. It would probably have been
better to limit the project to investigating large-scale par-
allelization of SQL at first. This could have been done
more completely and sooner.

Techniques-Too/s’Comput..Prrf~orm. Eval., Palma, Spain,.Sept. 1988.
[I21 A. Chang and M. Mergen, “801 Storage: Architecture and program-

ming,” ACM Trans. Comput. Syst.. vol. 6. no. 1, Feb. 1988.
(131 L. Clay, G. Copeland, and M. Franklin, “Operating system support

for an advanced database system,” MCC Tech. Rep. ACA-ST-140-
89, Mar. 1989.

[I41 -, “UNIX extensions for high-performance transaction process-
ing.” in Proc. Workshop UNIX Transaction Processing, USENIX,
Pittsburgh. PA, May 1989.

[15] G. Copeland, W. Alexander, E. Boughter, and T. Keller, “Data
placement in Bubba, ” in Proc. 1988 ACM SIGMOD Conf., Chicago,
IL, May 1988.

ACKNOWLEDGMENT
[161 G. Copeland, M. Franklin, and G. Weikum, “Uniform object man-

agement, ” in Proc. Int. Conj Extending Database Tech.. Venice,
Mar. 1990.

Over the last five years the Bubba project has had many
important contributors, beyond those listed as authors.
Much of the final prototype was designed and imple-
mented by J. Bowen, T. Briggs, M. Cochinwala, N. No-
wotny, G. Weikum, J. Criollo, S. Krishnamurthi, Y.
Hung, and B. Kerola. T. Keller, E. Boughter, C. Buck-
alew, P. Jenq, B. Twichell, C.-R. Young, R. Brice, and
H. Schwetman provided the critical performance anal-
yses, simulations, measurements, and advice that guided
the Bubba design process. S. Khoshafian, F. Bancilhon,
R. Krishnamurthy, S. Redfield, and K. Wilkinson deserve
special recognition for their lasting contributions to Bub-
ba’s design during its formative years. M. Holbrook, B.

1171 G. Copeland, S. Danforth, M. Franklin, M. Smith, and L. Clay,
“Cworld: Extending the C environment for transaction processing,”
MCC Tech. Memo-Cworld Memo 5, May 1989.

[I81 G. Copeland, T. Keller, R. Krishnamurthy, and M. Smith, “The case
for safe RAM.” in Proc. 15th Cot~f. Very Large Data Base.>, Am
sterdam, Aug. 1989.

(191 G. Copeland and T. Keller, “A comparison of high-availability me-
dia recovery techniques, ” in Proc. 1989 ACM SIGMOD Conf , Port-
land, May 1989.

[20] S. Danforth. S. Khoshafian, and P. Valdurier, “FAD. A database
programming language.” MCC Tech. Rep. DB-151-85, Rev. 3. Jan.
1989; IEEE Trans. KnoHdrdge Dora Eng., to be published.

(211 D. Dewitt and R. Gerber, “Multiprocessor hash-based join algo-
rithms,” :n Proc. 11th Con$ Very Large Data Bases, Stockholm.
Sweden. Aug. 1985.

(221 D. Dewitt, R. Gerber. G. Graefe, M. Heytens. K. Kumar. and M.
Muralikrishna. “GAMMA-A high performance dataflow database

BORAL ef ul.: PROTOTYPING BUBBA. PARALLEL DATABASE SYSTEM

machine, ” in Proc. 12th Conf. Very Lurge Data Buses. Tokyo, Ja-
pan, Aug. 1986.

(231 D. Dewitt, H. Boral. and M. Smith, “A single-user performance
evaluation of the Teradata database machine.” in Proc. 2nd ht.
Workshop High Prrformancr Trmsuction Svst., Asilomar. CA, Sept.
1987.

1241 S. Englert, J. Gray, T. Kocher, and P. Shah, “A benchmark of Non-
Stop SQL Release 2 demonstrat ing near-linear speedup and scaleup
on large databases.” Tandem Tech. Rep. 89.4, Part .27469, May
1989.

1251 R. Gerber. “Dataflow query processing usin g multiprocessor hash-
partit ioned algorithms,” Ph.D. dissertation. Comput. Sci. Tech. Rep.
672, Univ. of Wisconsin-Madison, Oct. 1986.

[26] R. Gerber and D. Dewitt, “The impact of hardware and software
alternatives on the performance of the Gamma database machme,”
Comput. Sci. Tech. Rep. 708, Univ. of Wisconsin-Madison, July
1987.

1271 B. Hart. S. Danforth. and P. Valduriez, “Parallelizing FAD, A da-
tabase programming language,” in Proc. Int. Symp. Databases in
Parallel Distributed Syst., Austin, TX, Dec. 1988.

128) B. P. Jenq, B. Twichell. and T. Keller, “Locking performance in a
shared nothing parallel database machine,” in Proc. 5th Int. Conf
Dater Eng., Los Angeles, CA, Feb. 1989; also IEEE Trurrs. Knm~+
edge Data Eng., vol. 1, no. 4, Dec. 1989.

[29] S. Khoshafian and T. Briggs, “Schema design and mapping strategies

(301

I311

~321

[331

I341

1351

I361

[371

[381

[391

I401

[411

~421

1431

[441

[451

[461

r471

1481

[491

for persistent object models.” Inform. Soft\rwre Techrwl. , Dec.
1988.
S. Khoshafian and G. Copeland, “Object identity,” in Proc. Ist Int.
Workshop Object Oriented Programwzing Syst. , Lu~t~ucrges. A@.,
Portland. Oct. 1986.
S. Khoshafian and P. Valduricz, “Parallel execution strategies for
declustered databases,” in Proc. 5th Int. Workshop Datctbase Ma-
chines, Karuizawa, Japan, Oct. 1987.
-, “A parallel container model for data intensive applications,” in
Proc. 6th Int. Workshop Database Machines, Deauvil le, France, June
1989.
M. Livny. S. Khoshafian. and H. Boral, “Multi-disk management
algorithms,” in Proc. 1987 ACM SIGMETRICS Conf., May 1987.
C. Mohan, B. Lindsay, and R. Obermarck, “Transaction manage-
ment in the R* distributed database management system,” ACM
Trans. Dutubase Syst., vol. I I, no. 4, Dec. 1986.
E. Moss, “Getting the operating system out of the way,” Datubusr
Eng., Sept. 1986.
S. Naqvi and S. Tsur, “A logic language for data and knowledge
bases,” MCC Tech. Rep. ACA-ST-176-88, Aug. 1988.
D. Ries and R. Epstein, “Evaluation of distribution criteria for dis-
tributed database systems,” UCBiERL Tech. Rep. M78122, Univ. ot
California, Berkeley, May 1978.
H. Schwetman, “Using CSIM to model complex systems,“ in Proc.
1988 Winter Simulation Conf., San Diego, CA, Dec. 1988.
K. Sevcik, “Data base system performance prediction using an ana-
lytical model,” in Proc. 7th Int. Conf. Very Lrtrge Data Bases.
France, Sept. 1981.
M. Smith, W. Alexander, H. Boral, G. Copeland, T. Keller, H.
Schwetman, and C.-R. Young, “An experiment on response time
scalability in Bubba,” in Proc. 6th Int. Workshop Database Ma-
chines, Deauvil le, France, June 1989.
M. Stonebraker, “Virtual memory transactton management ,” ACM
Oper. Syst. Rev.. vol. 18, no. 2, Apr. 1984.
- “The case for shared nothing,” Database Eng.. vol. 9, no. I,
1988.
M. Stonebraker. D. DuBourdieux. and W. Edwards, “Problems in
supporting data base transactions in an operating systems transaction
manager,” ACM Oppr. Swt. Rei’., vol. 19. no. I, Jan. 1985.
The Tandem Performance Group, “A benchmark of Nonstop SQL on
the Debit Credit transaction,” in Proc. 1988 ACM SIGMOD Cortf.,
Chicago, IL, June 1988.
M. Tiemann, “ICC: An incremental compiler compiler based on at-
tribute evaluation,” MCC Tech. Rep. PP-412-86. Dec. 1986.
S. Tsur and C. Zaniolo, “Logic data language (LDL),” in Proc. 12th
Int. Conf. Very Large Data Bases, Kyoto, Japan, Aug. 1986.
P. Valduriez, “Join indices,” ACM Trans. Databose Swt.. vol. 12.
no. 2, June 1987.
P. Valduriez, S. Danforth, B. Hart, T. Briggs. and M. Cochinwala.
“Compil ing FAD, A database programming language,” in Proc. Int.
Workshop Database Programming Languages, Portland, June 1989.
P. Valduriez and S. Danforth, “Query pt o imization in database pro-

23

gramming languages,” in Proc. ht. CortJ Deductive ObjrwOri-
rnted Dutrrbusrs, Kyoto. Japan, Dec. 1989.

[SO] P. Valduriez. S. Khoshafian. and G. Copeland. “Storage models for
complex objects,” in Proc. 12th Int. Conf. Very Large Data Bases.
Kyoto. Japan. Aug. 1986.

1511 K. Wtlktnson and H. Boral. “KEV-A kernel for Bubba,” in Proc.
5th Int. Workshop Dattrbctse Muchines, Karuizawa, Japan, Oct. 1987.

Haran Boral received the B.Sc. degree in com-
puter science from CCNY in 1977 and the Ph.D.
degree, also in computer science, from the Uni-
versity of Wisconsin-Madison in 1981.

In 1984, after a couple of brief academic ap-
pointments, he joined the Microelectronics and
Computer Technology Corporation (MCC), Aus-
tin, TX, as a member of the Bubba project. After
a short period as a technical contributor, he as-
sumed management responsibilities for the proj-
ect. He also initiated research activities in optical

computing and neural networks at MCC. He is now blissfully unemployed.

Wil l iam Alexander received the B.A. degree
from Rice University, Houston, TX, and the M.A.
and Ph.D. degrees from The University of Texas
at Austin in computer sciences.

He is currently a Senior Member of the Tech-
nical Staff in the Advanced Computer Technology
Program at Microelectronics and Computer Tech-
nology Corporation, Austin, TX. His research in-
terests include performance measurement and
model ing and distributed systems.

Dr. Alexander is a member of the Association
for Comput ing Machinery

Larry Clay (M’83) received the B.S. degree in
mathematics, the B.A. degree in computer sci-
ence, and the M.A. degree in computer science
from The University of Texas at Austin.

He currently works for Tandem Computers,
Austin, TX. He was a member of the Technical
Staff at MCC for three years, working on the
Bubba project. His research interests include op-
erating systems and performance analysis.

Mr. Clay is a member of the Association for
Comput ing Machinery.

George Copeland (S‘66-M’74) received the B.S.
degree from Christian Brothers College, Mem-
phis, TN, in 1969, and the M.E. and Ph.D. de-
grees from the University of Florida, Gainesville.
in 1970 and 1974, all in electrical engineering.

He has worked for NASA. Bank of America,
and Tektronix, and was a founder of Servio Logic
Corporation. AT MCC, he served as chief archi-
tect of the Bubba project. He currently works for
IBM, Austin, TX. His major areas of interest are
scalable and highly-available database and trans-

action-processing systems, and persistent object-oriented systems.
Dr. Copeland is a member of the Association for Comput ing Machinery.

Scott Danforth received the Ph.D. degree in
computer science from the University of North
Carolina, Chapel Hill. in 1983.

He has been a member of the Technical Staff
of the Advanced Computer Technology Program
of MCC since February 1984. At UNC, he as-
sisted Gyula Mago in the design of a cellular mul-
tiprocessor tailored for direct execution of func-
tional languages. His interest areas include
alternative programming paradigms, their associ-
ated logics, compilers, and parallel execution
models.

24 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 1. NO. I, MARCH 1990

Michael Franklin received the B.S. degree in
computer and information xience from the Unt-
vjersity of Mawlchusetts, Amherst. in 1983. and
the M.S.E. degree in software engineertng from
the Wang Institute of Graduate Studtes in 1986.

He is currently a Ph.D. degree student in the
Department of Computer Sciences at the Untver-
sit)’ of Wisconsin-Madison. and is a Research As-
sistant on the EXODUS database project. From
1986 to 1989 he was a member of the Bubba proj-
ect at MCC. His research interests include objcct-

Marc Smith received the B.S and M.S. degrees
m computer sctcnce from the Untversity of Mtn.
neaota, Mmneapolis.

From 1980 to 1984. he was a rescarcher at the
Honeywell Computer Science Ccntcr. Minncapo-
lis. MN. In 1984. he joined the MCC Database
Program in Austm. TX as a member of the Bubba
project He currently works for IBM. Austin, TX.
His research interests include parallel database

I systems, transaction processing, recovery tech-
niqucs. and performance analysis. He IS a member

oriented systems. persistent programming languages. and parallel database of the Association for Computing Machinery.
systems.

Brian Hart received degrees in mathematics and
computer sciences from the UnivJersity of Texas,
Austin.

He IS currently a research engineer at BULL in
France where he works on a parallel database sya-
tem pro,ject. He has been active in the computer
industry since 1975, and recently worked at MCC
in the Bubba project for three years designing and
tmplementing the FAD parallclirer and several
other modules.

Patrick Valduriez received the Ph.D. degree tn
computer \cicnce from the Univsersity of Paris in
1981.

He is currently a Director of Research at IN-
RIA. Rocquencourt. France. where he heads a
group of scientists working on an advanced data-
base system project. Previously. he spent five
years at MCC in the Bubba project where he
headed the FAD compiler team. He has authored
or coauthored over 40 technical papers and scvw
era1 books on various aspects of database systems.

