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Abslrucl-Since 1984, the goal of the Buhba project at MCC has been 
to design a scalable, high-performance and highly available database 
system that will provide significant cost/performance advantages over 
conventional mainframes in the 1990’s. The design process has been 
an iterative one, cycling through design, modeling, and prototyping in 
progressive detail. The current Bubba prototype runs on a commercial 
40-node multicomputer and includes a parallelizing compiler, distrib- 
uted transaction management, object management, and a customized 
version of UNIX. This paper describes the current prototype and dis- 
cusses of the major design decisions that went into its construction. The 
lessons learned from this prototype and its predecessors are presented. 

Index Terms-Complex object management, database operating sys- 
tem, database programming language, database system performance, 
database system prototype, dataflow execution, parallel database sys- 
tem. 

I. INTRODUCTION 

B UBBA is a highly parallel computer system for data- 
intensive applications, which has been designed and 

prototyped at MCC. The basis of the Bubba design is a 
scalable shared-nothing architecture which can scale up 
to thousands of nodes. Data are declustered across the 
nodes (i.e., horizontally partitioned [33], [37] via hashing 
or range partitioning) and operations are executed at those 
nodes containing relevant data. In this way, parallelism 
can be exploited within individual transactions as well as 
among multiple concurrent transactions to improve 
throughput and response times for data-intensive appli- 
cations. 

Much of the Bubba design and implementation effort 
has gone into developing the technology necessary to ef- 
ficiently manage and exploit parallelism. This effort can 
be divided into four separate areas: 

Data Placement-Bubba was designed for “data-inten- 
sive” applications, where the data are too large and ac- 
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cessed too frequently to be shipped between nodes for 
processing. Instead, operations are executed at the nodes 
which contain the data. As a consequence, the placement 
and declustering of data across the nodes of the system 
directly determines the load across the system. Proper data 
placement is crucial to Bubba’s performance, and must be 
periodically adapted to changes in workload access pat- 
terns. 

Automatic Parallelization-An important requirement 
for Bubba was to allow transaction programs to be written 
using a centralized execution model (i.e., as if all of the 
data were stored on a single node). The Bubba compiler 
automatically decomposes monolithic transaction pro- 
grams into multithreaded parallel programs. 

Datujow Control-In most dataflow machines, each 
dataflow operation executes on a single hardware unit. In 
Bubba, each dataflow operation may execute in parallel 
on possibly many nodes. The nodes that participate are 
determined by the data required to perform the operation. 
When data are sent collectively from one operation to an- 
other, datajow control is needed to tell each receiving 
node the identities of the sending nodes and the number 
of messages to expect. The challenge in efficient dataflow 
control is to identify the sending nodes and inform the 
receiving nodes while keeping overhead to a minimum. 

Data Recovery Techniques-Bubba supports applica- 
tions that require high availability. However, as the num- 
ber of nodes is increased, node failures will be more fre- 
quent. We have developed a number of techniques to 
allow the system to continue processing in the presence 
of node failures and to quickly bring substitute nodes back 
on-line after a failure. 

While the main thrust of the project has been parallel- 
ism, the Bubba design includes novel approaches to the 
following important areas of database systems: 

Database Programming Languages-In the early 
stages, Bubba was part of a larger project called ADBS 
(Advanced Database System) whose intent was to marry 
a logic-programming language called LDL 1361, [46] with 
a high-performance parallel implementation. An inter- 
mediate language called FAD [9], [20] was designed. 
Later, the larger project divided into two separate proj- 
ects: an LDL project with emphasis on compiling logic 
programs in LDL, and the Bubba project with emphasis 
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on parallelizing FAD. FAD includes a  significant exten- 
sion of relational functionality in both its data model ing 
and general-purpose programming capability. The main 
intent of improved data model ing was to allow expensive 
joins to be  avoided using arbitrarily nested structures. The 
main intent of improved general-purpose programming 
was to allow more of an  application to be  compiled and 
executed directly in Bubba than is currently possible in 
conventional (e.g., embedded SQL) systems, thereby 
avoiding excessive data movement  between the program- 
ming- language and database systems. 

Object Management-The concept of a  single-level 
store was fully exploited. A single-level store allows all 
data to be  uniformly represented in a  large virtual address 
space, regardless of whether it is transient versus persis- 
tent or whether it lives in memory versus disk. The intent 
was to improve performance and simplicity by avoiding 
data translation between different representations, to in- 
crease the amount  of compile-time versus run-time sup- 
port, and  to have a  single kind of buffer manager.  Storage 
management  techniques were developed to allow objects 
to be  arbitrarily structured or sized. 

Operat ing Systems Support-The intent of BOS (Bubba 
Operat ing System) was to have better operat ing system 
support  for several of the object management  functions, 
including single-level store, and  MMU-assisted locking 
and workspace management .  In addition, hooks are pro- 
vided that allow the database system code to control 
scheduling, paging, and  locking policies. 

Many aspects of Bubba have been descr ibed elsewhere 
[31-PI, [91-1111, [131-[161, [181-WI, PW331,  [401, 
[47]-[5 11. Because of the aggressive nature of the project, 
we decided at the beginning that we would need quanti- 
fied performance goals for a  specific workload and a  de- 
sign process driven by those goals. In this paper,  we con- 
centrate on  the process of design, modeling, and  
prototyping the Bubba system. 

Section II presents a  brief overview of the Bubba sys- 
tem goals and  design. Section III describes the early 
phases of the project including model ing and an  initial 
prototype. Section IV describes the current 40-node pro- 
totype. Section V presents some initial results of speedup 
and scale-up experiments performed on  the prototype. 
Section VI summarizes the more important lessons we 
learned. 

II. BUBBA DESIGN OVERVIEW 
A. Design Goals 

The overall goal of the Bubba project has been to design 
a  system for current and  future data-intensive applications 
that has a  significant cost-performance improvement over 
conventional mainframe-based database systems in the 
1990’s timeframe. While significant improvement for 
conventional transaction processing workloads (e.g., De- 
bit-credit [7]) is desired, the most dramatic improve- 
ments are to be  in the support  of “knowledge-based” 
transactions, which access and analyze large amounts of 
data. 

5  

In addit ion to the goal of good cost-performance, we 
had these goals. 

l The system must have modularly-scalable perfor- 
mance.  That is, it can be  continuously expanded in 
throughput (as well as storage capacity) up  to the “high- 
end” by adding more hardware modules. 

l The system must have more functionality than rela- 
tional systems. This functionality includes an  improved 
data model ing capability to handle complex objects in an  
object-oriented style, and  a  general-purpose programming 
capability to allow more flexibility in deciding whether to 
implement a  function in Bubba versus a  host system. 

l The system must have high reliability and  availabil- 
ity. Reliability means that the system does not make un- 
recoverable mistakes in spite of component  failures. 
Availability means that the system cont inues to work with 
adequate performance in spite of component  failures. Our 
goal is to be  at least as good as conventional systems using 
both mirroring and checkpoint-and-log recovery tech- 
niques. 
B. Bubba Hardware Architecture 

Bubba is a  shared-nothing multiprocessor, i.e., the pro- 
cessors do  not share memory or disks [42]. W e  chose this 
architecture primarily because it is the only architecture 
that can scale up  to the performance levels dictated by our 
goals, and  secondari ly because it provides better reliabil- 
ity and  availability by isolating faults. 

This hardware organization is illustrated in Fig. 1. 
Bubba contains three types of nodes:  interface processors 
(IP’s), intelligent repositories (IR’s), and  checkpoint-and- 
log ZR’s (CIR’s). These nodes are connected via a  scala- 
ble message-passing interconnect, such as a  hypercube. 
The IP’s provide communicat ion with external host ma- 
chines and coordinate execut ion of user requests. The IR’s 
collectively store the database and perform most of the 
work in execut ing transaction programs. The CIR’s main- 
tain database checkpoints and  update logs for data recov- 
ery from IR failure. The majority of the nodes in a  Bubba 
system are IR’s. An IR minimally consists of a  processor 
( p  ), a  large amount  of main memory (m), and  a  disk 
(d ). The large memory improves performance by allow- 
ing heavily accessed persistent data (including cluster in- 
dexes),  transient data, system tables, and  programs to be  
cached in memory. Although IR’s are shown to consist of 
a  single processor and  a  single disk, they could in fact 
have a  number  of these. 

The shared-nothing architecture of Bubba allows each 
IR to function in many ways as an  independent  central ized 
database system. (This feature was exploited when build- 
ing the prototype systems.) Each IR contains fragments 
of database relations, determined by hash or range parti- 
tioning. Each IR applies program operat ions to its data- 
base fragments. 

C. FAD Language 
The current Bubba interface is the FAD language [20]. 

FAD significantly extends relational database functional- 
ity by providing 
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Fig. 1. Bubba hardware organization. 

l complex objects, consisting of sets, tuples, and  at- 
oms, which can be  nested to an  arbitrary level 

l the notion of object identity which allows objects to 
be  referentially shared (i.e., objects can be  graph-struc- 
tured) 

l data manipulation functions that are oriented to ac- 
cessing nested sets and  tuples 

l control primitives, such as while-do and if-then- 
else, to support  general  purpose programming. 

FAD treats transient and  persistent data uniformly. 
Transient data are visible only to the transaction that cre- 
ates it and  live only for the lifetime of that transaction. 
Persistent data are visible to multiple transactions and ex- 
ist beyond the life of any single transaction. A FAD ob- 
ject becomes persistent if it is reachable from (i.e., nested 
within) a  special persistent root tuple called db. The root 
db  tuple is a  FAD tuple whose attributes are the basesets 
(also referred to as base relations) of the database. 

By uniformity in FAD, we mean that persistence is or- 
thogonal to type (i.e., an  object of any type may become 
persistent) and  that FAD operat ions can be  appl ied to ob- 
jects regardless of whether they are persistent or not [8]. 
Atomicity , concurrency control, and  recovery issues are, 
for the most part, h idden from the FAD programmer. 

Although data are declustered across some or all of the 
IR’s in the system, FAD presents single-site semantics to 
the FAD programmer (i.e., the database appears to be  
centralized). The FAD compiler performs the mapping 
between the single-site semantics of FAD and the multi- 
node,  shared-nothing model  supported by Bubba. 

D. Distributed Execution Model  
The distributed execut ion model  of Bubba is based on  

dataflow concepts instead of remote-procedure calls, be- 
cause dataflow allows a  much higher degree of parallel- 
ism. 

The FAD compiler translates a  FAD program to PFAD 
(Parallel FAD), a  language which is an  extension of FAD 
and in which decisions concerning distributed execut ion 
on  the declustered shared-nothing architecture of Bubba 
are explicitly expressed. PFAD uses the notion of pro- 
gram components which communicate via messages on  
datajlow arcs [27], [31], [32]. The purpose of a  compo- 
nent in PFAD is to group PFAD actions that require ac- 
cess to the same data. The PFAD program indicates log- 
ically where each component  will execute on  Bubba, in 
terms of the data it will use (e.g., “execute component  1  
on  baseset  db.S”). The binding to physical IR’s is per- 
formed at run-time, determined by the current decluster- 
ing and the data objects that are selected. 

This parallel execut ion model  allows three types of par- 
allelism to be  exploited: 

l intertransaction parallelism-multiple transaction 
programs can execute concurrently. 

l intratransaction parallelism-PFAD components of 
a  single transaction may execute concurrently (restricted 
only by dataflow dependencies).  

l intracomponent parallelism-a single component  
may execute concurrently on  multiple IR’s. 

Fig. 2  illustrates the distributed execut ion of an  exam- 
ple query transaction. The physical schema consists of 
three basesets and  is similar to the familiar supplier-parts 
schema, except that it exploits the nested capabilit ies of 
FAD and includes inverted files. The query, called 
“CityParts,” finds the description of parts suppl ied by 
any supplier in a  specific city (in this case ‘ ‘Austin”), The 
PFAD query contains 

1) a  select on  the inverted-file baseset  
db.Suppliers-Scity to get the S#‘s for “Austin” 

2) a  join of this result with baseset  db.Suppliers to get 
the Item#‘s 

3) a  join of this result with baseset  db.Items to get the 
tuples that form the final result. 

Each of these three operat ions corresponds to a  com- 
ponent  whose home is the set of IR’s containing one of 
the component’s operand basesets. If there is more than 
one operand baseset,  as in the join components,  the FAD 
optimizer chooses the home such that the minimum 
amount  of data are shipped between IR’s. 

The data placement of the three relations (as shown in 
the figure) is known in the global directory, which is rep- 
licated in all IR’s. The global directory also knows how 
the tuples of each relation are declustered across each 
home (by hash or range partit ioning on  key values). When  
given a  key value of a  tuple, the global directory returns 
the identity of the IR which stores the tuple. 

The transaction execut ion steps are as follows. 
1) The execut ion begins by creating a  transaction co- 

ordinator (TC) to coordinate the transaction, which re- 
sides in the IP that received the execut ion request from 
the user. The TC determines from the global directory 
that IRO contains the tuple of db.Suppliers-Scity that has 
“Austin” as a  key, and  sends a  message to IRO to begin 
the dataflow execution. 

2) Component  1  (the select) has only one  thread (a 
lightweight process in Bubba) because it executes in only 
one  IR. Component  1  executes the select and  saves the 
S#‘s. It then determines from the global directory that IR2 
and IR4 contain the tuples of db.Suppliers which have the 
join values as keys, and  sends a  message to each of these 
two IR’s. Each message to an  IR contains only the Com- 
ponent  1  S#‘s that can join with the corresponding tuples 
of db.Suppliers in that IR. 

3) Component  2  (the first join) has two threads because 
it executes in two IR’s. Each thread of Component  2  ex- 
ecutes the partial join and  saves the Item#‘s. It then de- 
termines from the global directory that IRO, IR3, and  IR4 
contain the tuples of Items which have the join values as 
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example schema: (cluster index keys are underlined) 

db ~SuDDllers-Sclty (E&Ly, SI ()I), (an inverted tile) 

TC 

ill 

Fig. 2. Execution of an example query transaction 

keys, and sends a message to each of these three IR’s. 
Each message to an IR contains only the Component 2 
Item#‘s that can join with the corresponding tuples of 
db.Items in that IR. 

4) Component 3 (the second join) has three threads be- 
cause it executes in three IR’s. Each thread of Component 
3 executes the partial join, saves the tuples of db.Items, 
and sends that as final results to the TC. 

5) The TC sends a commit message to all involved 
nodes (telling the nodes to free up clan resources and 
locks) and then relays the final result to the user. 

Note that the example contains only foreign-key joins, 
which are most efficiently performed in the baseset homes 
shown in the figure. Joins over nonkey attributes can be 
performed efficiently in parallel by first redistributing the 
two operand basesets across a symbolic home of arbitrary 
IR’s using the join-attribute values for partitioning, and 
then performing a local join at each IR (similar to tech- 
niques described in [21], [23], [24]). The number of IR’s 
in a symbolic home is chosen by the FAD optimizer at 
compile-time; the actual IR’s are chosen (arbitrarily) at 
run-time and represented in a transaction-specific sym- 
bolic home directory. The symbolic home directory maps 
tuples onto a symbolic home’s IR’s via hashing. 

E. Run-Time Support 
The Bubba run-time support for execution of transac- 

tions can be divided into three main subsystems: 
Distributed Execution-manages the execution of trans- 

actions across multiple nodes. 
Object Management-implements the semantics and 

storage management for FAD complex objects. 
Bubba Operating System (BOS)-A customized oper- 

ating system that provides specialized database functions. 
I) Distributed Execution: The distributed execution 

software manages the loading, activation, execution, and 
termination of transaction programs in Bubba’s distrib- 
uted shared-nothing environment. Transaction programs 

I 

can be dynamically loaded and activated at run-time, or 
preloaded and preactivated in anticipation of execution. 
Each has its advantages under different conditions [3], [4]. 
The goal of dynamic loading and activation is to avoid the 
unnecessary overhead of messages, startup, and termina- 
tion of components on IR’s which do not contain data rel- 
evant to the operation, and therefore do no useful work. 
A component is dynamically loaded or activated on an IR 
at the time that the input data for the component arrive at 
the IR. The goal of preloading and preactivation is to 
avoid run-time delays. Combinations of the dynamic or 
anticipatory techniques are chosen to optimize the exe- 
cution of a program. 

Threads of components communicate using send and 
receive operations. A receive operation blocks until mes- 
sages have been received from all of the IR’s executing 
components that send data messages to the receiving com- 
ponent. Determining when all messages have been re- 
ceived is complicated by the fact that the identities of the 
sending IR’s are often determined at run-time by associ- 
ative routing, i.e., using the value of a data object to de- 
termine its appropriate destination by consulting the global 
directory or symbolic home directory. As mentioned in 
Section I, the process of coordinating sends and receives 
is referred to as dataflow control. Bubba uses three data- 
flow control methods, each of which performs best under 
different circumstances. These dataflow control methods 
are described in [3] and [4], and are illustrated in Section 
IV-D. 

2) Object Management: The object management soft- 
ware provides efficient allocation, access, modification, 
and garbage collection of both persistent and transient 
FAD objects. The goals of the object management soft- 
ware are to support the object model of FAD, and to min- 
imize disk I/O and data conversions by exploiting the 
novel features of BOS. For example, the object manage- 
ment software implements FAD’s uniform treatment of 
persistent and transient data by using identical data struc- 
tures within persistent and transient virtual address spaces 
provided by BOS. 

The object management software supports cluster in- 
dexes for associative access on sets, tuples, and large at- 
oms. Concurrency control for indexes is implemented 
using nontwo-phase locking techniques (i.e., sema- 
phores); for data, it is implemented using implicit locking 
provided by BOS. Boxing (garbage collection and clus- 
tering) of persistent objects is performed to achieve high 
access locality. In Bubba, simple boxing is performed at 
the end of every transaction that updates the persistent 
space. Additional background boxing (for optimized clus- 
tering) can be performed on objects whenever an IR would 
otherwise be idle. 

3) Bubba Operating System: BOS is a tailored oper- 
ating system, which provides specialized features for sup- 
porting distributed execution and object management. 
Some of these features are the following. 

l Single-Level Store-BOS provides the single-level 
storage abstraction in which the entire persistent space of 
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an IR is mapped into the virtual address space of each 
process executing a transaction in the IR. 

l Locking and Workspace Management-BOS uses 
conventional virtual memory management hardware to 
provide implicit page locking and transaction work- 
spaces. 

l Two Page Sizes-BOS provides support for small 
memory pages and large disk blocks. A small memory 
page size (e.g., 5 12 bytes ) avoids poor memory utiliza- 
tion, complex and time-consuming object locking, and 
time-consuming page copying. A large disk block size 
(e.g., a disk track) avoids poor disk arm utilization, large 
system tables, and large cluster indexes. Most conven- 
tional systems try to compromise by choosing a single 
medium-sized page ( e. g . , 4K bytes), but instead suffer 
all of the above problems to varying degrees. 

l Lightweight Process Threads-BOS provides multi- 
ple lightweight threads of execution within a process, 
which allows PFAD components to be dynamically acti- 
vated and executed without excessive overhead. 

l Communication Primitives-BOS provides send and 
receive primitives that are used to implement the dataflow 
semantics of PFAD programs. All messages are imple- 
mented by unacknowledged datagrams, for efficiency; ac- 
knowledgments can be programmed explicitly when nec- 
essary. 

While BOS is not a distributed operating system (i.e., 
it does not provide distribution transparency), it provides 
the support required to implement distributed processes in 
Bubba. 

III. EARLY MODELS AND PROTOTYPING 
A. Iterative Performance-Driven Design Process 

Given our ambitious performance goals, we adopted an 
iterative design process incorporating both modeling and 
prototyping feedback, in which the design of Bubba 
evolved over several years. Performance predictions from 
models as well as measurements from prototypes helped 
us choose between design alternatives, or at least under- 
stand the tradeoffs among the alternatives if the choice is 
workload-dependent. In a few circumstances, the anal- 
yses caused us to revise previous design decisions. 

It should be emphasized that we did not rely on either 
modeling or prototyping exclusively. The prototypes pro- 
vide “real” measurements, but only for small system 
configurations. We recognized the need to develop 
models, parameterized using prototype measurements, to 
demonstrate system performance in very large configura- 
tions. 

The earliest simplest models were developed as a quick 
means of “disaster avoidance.” The system design was 
characterized at a high level in terms of basic resources 
such as CPU’s, disks, memory, and interconnect. Perfor- 
mance predictions were made using ballpark estimates for 
resource rates of service and capacities, in the style of 
[39]. The goal was to expose critical performance prob- 
lems with the overall architecture, even with best-case as- 

sumptions about the system resources and workload. In 
one case, a simple model dramatically showed the impor- 
tance of data placement to good large-scale performance. 

As the design progressed, more detailed models were 
developed to examine specific parts of the system design, 
such as the interconnect, dataflow control protocols, con- 
currency control, and recovery. These models were some- 
times tailored to the specific experiment, using analytic 
modeling, simulation, or a combination of both. 

A “full” simulation of Bubba which models the final 
system design was constructed in order to more accurately 
predict the scalability of Bubba’s performance over the 
entire range of configuration sizes (up to 1024 nodes). 
However, for various nontechnical reasons, the model was 
Put “on hold” for some time, and as of this writing is 
still being tested. 

The prototyping effort was also iterative. A first pro- 
totype was intended to help us flesh out an appropriate 
system software design and identify important perfor- 
mance issues, with subsequent prototypes to provide use- 
ful measurements. The first prototype and the lessons we 
learned from it are discussed later in this section. 

B. The Order-Entry Workload 
To drive our performance analyses, we developed a ge- 

danken, yet realistic, characterization of an order-entry 
system application, enhanced with decision-support (or 
“knowledge-based”) programs. This workload was con- 
sidered representative of those that might run on Bubba. 
Different experiment workloads are composed by speci- 
fying a desired mix of five order-entry transactions: New- 
Order, Order-Shipped, Payment, Suggested-Order, and 
Store-Layout. The order-entry transactions and their 
workload characterizations are further described in [5]. 
The current order-entry physical database consists of eight 
basesets containing information on items, customers, or- 
ders, etc. The five transactions are summarized as fol- 
lows. 

l New-Order records a customer’s order for an average 
of ten different items after the customer’s new outstanding 
balance is checked against the customer’s credit limit. 

l Order-Shipped records the shipping date for an order 
and generates an invoice for the customer. 

l Payment records the payment date for an order and 
adjusts associated customer and salesperson sales totals. 
Payment is most similar to the Debit-Credit transaction 
[7], although Payment requires somewhat more work and 
has less potential parallelism due to dataflow dependen- 
cies. 

l Suggested-Order infers the number of items to order 
from suppliers, to keep a warehouse sufficiently stocked. 

l Store-Layout assists a customer (e.g., a store) in con- 
figuring the layout of items on the shelves in the store in 
an attempt to maximize customer profit. 

For each transaction type in the current order-entry 
workload, Fig. 3 illustrates its relative frequency in our 
most often used mix, and its performance-dominant op- 
eration. The conventional transactions contain update op- 
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Transaction 

Yew-Or&x 
Order-Shqped 
Payment 

Fraction hminant 
In Mix Operation 

Slart+Tcrmination Message 
Overhead Overhead 

0.332 \implt: upddtr WI) O(1) 
0.332 simple update O(1) O(1) 
0.332 hImpIe update O(1) O(1) 

SUgge\t&OrdCr 0.001 Lqe SCil” Wh’) O(N) 
Store-Layout 0 on3 hrge N-M ,c,,n O(N) O(N*M) 

Fig. 3. Order-entry workload characterization. 

erations involving a small number of tuples. The two de- 
cision-support programs, Suggested-Order and Store- 
Layout, are read-only queries, and contain a large scan 
and a large N-M join, where N and M refer to the number 
of nodes containing the two joined relations. 

As part of the workload characterization, each of the 
order-entry transactions were coded in FAD and parallel- 
ized with each transaction represented by a dataflow 
graph. Each node in a dataflow graph represents a FAD 
operation (e.g., selection, join, insert, etc). Arcs between 
nodes represent transmission of intermediate results be- 
tween operations and, therefore, may constrain the start 
time of an operation. 

The five transactions in the order-entry suite are rea- 
sonably diverse, using different FAD operations and ex- 
hibiting different degrees of intratransaction and intra- 
component parallelism. This diversity provided us with a 
wide range of test cases for experiments. 

C. Analyses of Design Alternatives 
Here, we summarize the results of several model-based 

analyses that influenced key parts of the Bubba design. 
Many of the simulations were done using a process-ori- 
ented simulation package, CSIM [38]. 

Data Placement-In a series of data placement experi- 
ments [15], an analytic model called FIRM [ 1 I] was used 
to predict the throughput performance of the order-entry 
workload running on a 1024-IR Bubba configuration. 
Using this model, we developed the data placement al- 
gorithm that assigns each relation to an appropriate num- 
ber of IR’s (i.e., the relation’s home), in a way that bal- 
ances the load for all the relations as evenly as possible 
across all the IR’s. The model demonstrated the effect a 
particular data placement algorithm had on performance. 
One of our very first results showed how poor data place- 
ment can drastically affect performance due to poor load 
balancing. Using feedback from the model, the data 
placement algorithm was repeatedly refined to better use 
information about the “heat” (i.e., frequency of access) 
and size of each relation. The throughput performance 
achieved using the final algorithm described in [ 151 was 
more than two orders of magnitude better than earlier al- 
gorithms. 

Process and Dataflow Control-In [3] and [4], program 
loading, activation and dataflow execution strategies were 
proposed for Bubba and analyzed. Cost formulas were de- 
veloped to quantify the tradeoffs of preloading and dy- 
namically loading program code, and show when it is 
more cost effective to cache a program in memory or store 
it on disk for reuse versus reloading the program over the 

interconnect. Finally, two approximate analytic models 
and a simulation model were used to evaluate the perfor- 
mance of three different dataflow control protocols in 
terms of throughput, response time, and number of pack- 
ets sent. Each of the dataflow protocols differs in the num- 
ber of messages sent and the number of times data must 
be copied before it reaches its destination. Using the 
models, we developed an algorithm that is used by the 
FAD compiler’s optimizer to choose the most efficient 
protocol for each dataflow arc using selectivity and size 
information. 

Interconnect-Early in the design of Bubba, we had 
considered the use of an “intelligent switch,” which 
would provide hardware assistance for data and program 
routing, program control (e.g., if-then-else, while-do), 
concurrency control and data merging operations. After 
much analysis, it was evident that making the switch in- 
telligent in these ways would not be cost-effective. There- 
fore, Bubba now only relies on a more conventional mes- 
sage-passing interconnect. While the Bubba design is not 
tied to any particular topology, our analyses show that a 
hypercube would provide ample performance which 
scales nicely as the system size grows, would provide fault 
tolerance, and can be easily packaged even for large con- 
figurations, all using hardware technology that is easily 
available today. We found that the same data declustering 
mechanism used to load balance the IR’s also did an ad- 
equate job of load balancing the interconnect, so that hot 
spot problems often encountered in multistage intercon- 
nects were avoided. In another study [6], several hyper- 
cube routing algorithms were simulated, and their perfor- 
mance was compared in the presence of hot spots and 
faults. 

Schema Design-Several order-entry schemas were de- 
signed. We found that performance could be significantly 
improved by nesting objects to avoid joins. One signifi- 
cant example of this was the Suggested-Order transaction, 
which could be transformed from a time-consuming large 
join into a much faster large scan. Several other examples 
included eliminating smaller joins. Interestingly, there 
was little performance advantage in the order-entry work- 
load for the object sharing capabilities of FAD among 
persistent objects. However, we note that when creating 
a local transient object from a persistent one, direct object 
references can often be used to avoid copying the (per- 
haps large) persistent object. 

Distributed Two-Phase Locking-A series of simula- 
tion experiments were performed to study two-phase 
locking performance in shared-nothing parallel machines 
like Bubba, ranging in size from 4 to 256 nodes [28]. An 
order-entry workload was used. The results showed that 
system throughput as limited by lock conflicts approaches 
the asymptotic conflict-free system throughput as the sys- 
tem size increases, boding well for larger system config- 
urations. The results also demonstrated how performance 
of timeout-based deadlock resolution schemes can some- 
times be highly sensitive to the choice of timeout values. 
The hottest relations rates in this study happened to be 
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small, yielding higher conflict rates and making the 
timeout period more critical. In turn, we have considered 
the use of a separate global deadlock detector. 

Safe RAM-In [18], we examined how safe RAM (i.e., 
nonvolatile and protected) can be implemented with con- 
ventional hardware technology and used effectively in up- 
date-intensive applications. A transaction can write its log 
and/or updated data pages to safe RAM to commit. In this 
way, a response time improvement can always be realized 
when safe RAM is added to a system, or throughput can 
be improved to the extent that the system has had to limit 
disk utilization to achieve adequate response times. Safe 
RAM also allows group commit to be more fully ex- 
ploited without hurting response time, even when log files 
are heavily parallelized. A cost-performance model quan- 
tifies when the use of safe RAM is cost-effective. 

High-Availability Recovery-In [ 191, two recovery 
techniques are examined and compared: mirroring and in- 
terleaved declustering. For higher availability, either of 
these techniques could be used in Bubba in conjunction 
with a checkpoint-and-log technique using CIR’s, each of 
which provides recovery from a full IR failure. To avoid 
having to make periodic checkpoint copies from the IR’s, 
the CIR’s apply logs to previous checkpoints to obtain 
new checkpoints. Interleaved declustering provides nearly 
the same data availability as mirroring, while providing 
significantly better cost performance. Spare on-line nodes 
can be used to reduce the time to restore a node and to 
reduce human operator involvement. 

D. The First Prototype 
1) Description: By the spring of 1986, progress had 

been made on a number of important aspects of the de- 
sign. The overall hardware architecture of the system was 
defined, an initial design of the FAD language had been 
proposed, and decisions on the query execution model and 
transaction management had been made. There was how- 
ever no clear picture of the software architecture of the 
system as a whole. Thus, the definition of this architec- 
ture, incorporating many of the basic techniques that had 
been proposed for Bubba, was the goal of the first proto- 
type system. 

The system was designed by identifying modules for 
important system functions, such as the FAD compiler, 
FAD abstract machine code interpreter, transaction 
loader, synchronization node (for concurrency control), 
associative routing manager, FAD object manager, file 
and index manager, buffer manager, workspace and re- 
covery manager, and so on. The functionality for each of 
these modules was sketched at a fairly high level, and 
then external modules interfaces were defined. Each 
member of the group was given responsibility for the de- 
tailed design of one or two modules, which were specified 
using textual descriptions and an informal pseudocode. 

Out of convenience, the prototype software was ini- 
tially developed on a VAX 11/780 running BSD 4.3 
UNIX. The FAD compiler and interpreter were devel- 
oped using C, LEX, and YACC. The database system 

code was written in C + + , mainly to assess the utility of 
this new object-oriented language in a large system proj- 
ect. A multitasking environment was provided by a spe- 
cialized database kernel, called KEV [51]. The KEV in- 
terface was designed to be comprehensive yet simple, so 
that it could be easily implemented on a variety of hard- 
ware platforms, for system portability. For this first 
implementation, KEV’s multitasking functionality was 
emulated within separate UNIX processes using the CSIM 
process-oriented simulation package, developed at MCC 
[38]. Many UNIX processes could be used to represent 
virtual IR’s. 

To better test and demonstrate parallel execution, the 
prototype software was later ported to a network of Sun 
workstations connected by Ethernet. The software ran on 
diskless workstations; a shared disk server contained the 
database files corresponding to each virtual IR. In this 
network environment, a single virtual IR process was run 
on each of three diskless workstations; a fourth worksta- 
tion ran user interface (“console”) processes for the three 
IR’s. The configuration is shown in Fig. 4. 

The prototype eventually consisted of approximately 
30 000 lines of C + + . It was able to run multiple order- 
entry transactions concurrently on three IR’s. The system 
was built as a “thin vertical slice” of the Bubba system. 
That is, the basic parts of all of the major components of 
the system were implemented but a fair amount of func- 
tionality was left out. This allowed all layers of the sys- 
tem to be examined without incurring the time and ex- 
pense of a complete implementation of the software. 

2) Lessons Learned: A number of important lessons 
were learned from the construction of the first prototype. 

Distributed Execution-The prototype contained the 
first complete, but simple, design of the distributed exe- 
cution facility of Bubba, including associative routing, a 
dataflow control method, and transaction management. 
This initial attempt at distributed execution gave us our 
first exposure to the costs of parallelism (processes, mes- 
sages, and delays), and showed us that a single strategy 
used for program loading, program activation, and data- 
flow control would not be efficient for all cases. It also 
prompted us to be a little more frugal with processes in 
the next design. For example, program loading and trans- 
action commit coordination functions, which had been 
performed by separate tasks called transaction loader (TL) 
and synchronization node (SN), were combined into one 
process which is now the transaction coordinator (TC). 

Program Loading and Activation-Program loading and 
activation in the prototype were done by always sending 
and executing a component’s code at every IR in the home 
of an operand relation. While this scheme is comprehen- 
sive, it frequently yields unnecessary costs for component 
startup, messages and processing. For example, a “rifle- 
shot” query in which a single tuple is selected will result 
in one IR in the home finding the tuple, while the other 
IR’s find nothing. We extended the design to allow for 
dynamic loading and activation, so that components are 
executed only on the IR’s that we know will perform use- 
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Fig. 4. The first prototype. 

ful work. Also, frequently executed programs can now be 
preloaded and cached at the IR’s. 

Datq‘low Control-Until the first prototype was de- 
signed, we did not recognize the need for dataflow con- 
trol. Even though all IR’s in a home executed a compo- 
nent due to the program loading and activation scheme, it 
was not known until run-time which IR’s would actually 
generate and send dataflow results. Each IR had to inform 
an elected IR which IR’s were sent data, and the lists had 
to be combined to find out which IR’s did not send or 
receive anything. Null messages had to be sent to IR’s 
that did not receive data. Later, the introduction of dy- 
namic activation resulted in an added complication, in that 
the number and identity of the sending IR’s is not known 
until run-time. This led to the design of the three flavors 
of dataflow control with different performance character- 
istics. 

PFAD and Components-The need for an intermediate 
parallel language such as PFAD was not recognized until 
the design of the prototype was begun. The development 
of PFAD provided much insight into the parallel execu- 
tion of FAD programs. However, the implementation 
pointed out gaps in our semantics for the execution of a 
component across multiple IR’s. For example, the first 
prototype supported only one type of send (associative). 
When considering the execution of a variety of transac- 
tion types, we discovered the need for handling the send- 
ing of “null” data (to some or all of the threads executing 
the component) and encountered a number of cases in 
which other types of sends (e.g., broadcast) are needed. 
The Bubba design now includes a wide variety of sends 
[27]. All PFAD programs run on the first prototype were 
“compiled” by hand. This process taught us about the 
techniques that would be required to compile FAD pro- 
grams into a form that could be executed on Bubba. 

Object Management-The prototype used three differ- 
ent formats for objects (disk, memory, and message). The 
need for conversion (and copying) of objects among the 
different formats resulted in inefficiency and complexity 
of the object management software. Also, heavy use of 
object tables added both complexity and inefficiency to 
the object management functions. As a result, the design 
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of object management in Bubba now emphasizes the uni- 
form object format for transient, persistent, and dataflow 
objects and the minimization of copy operations for ob- 
jects [ 161. 

Operating System-Recognizing that database func- 
tions require special support not found in conventional 
operating systems, KEV [51] was designed to provide 
only a basic set of primitives, leaving as much control as 
possible to the higher software layers. However, KEV was 
later replaced by BOS, to include functions that had pre- 
viously been implemented above the operating system 
(e.g., buffer management and locking). This change was 
motivated by two factors: 1) a desire to streamline the 
software architecture and improve performance through a 
closer integration of the database system and operating 
system functions, and 2) the potential to exploit features 
such as memory-mapped files and lightweight processes 
(such as in Mach [l]) that are best provided in the OS. 

Implementation-We learned a number of lessons about 
the process of building a complex system. The impor- 
tance of good source code control procedures in a large 
development project was made evident by problems due 
to the lack of such procedures in the early phases of de- 
velopment. The importance of paying attention to “de- 
tails, ’ ’ such as system bootstrapping and utilities, early 
on in the project, was also learned the hard way. Bugs in 
the (slow) C + + translator available to us at the time, the 
lack of a good C+ + debugger, and our lack of fluency 
in C + + programming caused us to revert to C in the next 
prototyping phase. 

Because of the hardware platform on which the system 
was built and implementation shortcuts such as the use 
of simulation software to emulate KEV functionality, the 
prototype could not be used for meaningful performance 
experimentation. In any case, this prototype was crucial 
to providing a context in which important issues could be 
examined in the detailed design of the software for Bubba. 

IV. A MORE REALSTIC PROTOTYPE 

A. Approach 
At the end of the first prototyping phase, we were faced 

with the choice of trying to modify the code of the first 
prototype or starting from scratch. After much debate and 
soul-searching we opted to “let go” and start the second 
prototype from scratch. There were a number of reasons 
for this decision. 

l The desired software architecture and many funda- 
mental algorithms had changed radically since the first 
prototype so that it was not clear how much (if any) code 
could be salvaged. 

l We wanted to get away from the poor C+ + pro- 
gramming tools we had, and instead use familiar C tools. 

l The first prototype was coded mostly by part-time 
students, many of whom were no longer with the project. 

l The first prototype had robustness problems that were 
not easily fixed. 

In retrospect, the decision to start from scratch was a 
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good one. We were able to more cleanly implement the 
new design, interfaces among modules were better de- 
fined, and we were able to use techniques such as walk- 
throughs and code reviews to improve quality and to give 
the entire group a working knowledge of the major parts 
of the system. As a result, the system was much more 
robust than had we ported the earlier code to the new sys- 
tem. 

The main goal of the second prototyping effort was to 
implement the most recent Bubba design, which incor- 
porated the lessons learned from the first prototype, as 
closely and realistically as possible. This was accom- 
plished with the following exceptions, made for prag- 
matic reasons. 

l We recognized we were building an experimental 
prototype and not a commercial product. Thus, some im- 
portant Bubba features were not implemented, such as 
node recovery, data placement reorganization, and col- 
lection of statistics for the FAD optimizer. Also, the pro- 
totype was not made “industrial strength” nor has it been 
“tuned.” 

l We implemented the system using mid-1980’s hard- 
ware technology and cost (i.e., the Flex/32 multicompu- 
ter), although Bubba was designed for 1990’s hardware 
technology and cost. Thus, some Bubba features were not 
implemented, such as safe RAM (due to lack of uninter- 
ruptible power supply), IP’s (due to lack of nodes), and 
full data and index caching (due to small node memory). 
While these hardware technology and cost limits impact 
prototype implementation and performance, they have not 
resulted in basic design changes. 

In order to construct the system in a reasonable amount 
of time, we had four groups working in parallel: FAD 
compiler, distributed execution, object management, and 
BOS, There was frequent coordination among the groups. 
A phased approach to building the system was used. Dur- 
ing the first phase, BOS and the distributed execution 
software were developed on the parallel machine, while 
at the same time, the compiler and object management 
software were developed on Sun workstations using 
UNIX. During the second phase, the object management 
software was ported to a single node of the parallel ma- 
chine and tested in a centralized fashion (no parallelism). 
During the final phase, we integrated the distributed ex- 
ecution software with the object management so that we 
could run transactions in parallel. This phased process was 
quite successful, as it allowed the major development ef- 
forts to proceed in parallel with minimal interference, and 
then integrated and tested incrementally. 

B. Hardware Platform 
The current Bubba prototype is implemented on a 40- 

node Flex/32 multicomputer, illustrated in Fig. 5. Each 
node consists of a 16 MHz Motorola 68020 CPU, 68851 
MMU and 68881 FPU, with 2 MB of on-board SRAM. 
In addition, each node has a set of VME peripherals in- 
cluding 4 MB of external DRAM, a 180 MB 5-l/4” CDC 
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Fig. 5. 40.node Flex/32 hardware platform 

Wren III Winchester disk and a high-performance ESDI 
disk controller. Two cabinets house the 40 nodes. 

The per-node sizes of main memory and disk were much 
smaller than what we expect in a real Bubba implemen- 
tation. For that reason, we have had to relax some of the 
Bubba memory management policies in the implementa- 
tion. Specifically, these are the following. 

l System data, cluster indexes, and frequently ac- 
cessed persistent data may not be cached. Instead, they 
are subject to regular LRU replacement. (This can be eas- 
ily changed for experiments requiring caching.) 

l The persistent portion of the virtual address space has 
been limited to 256 MB (out of 4 GB total virtual address 
space) per node, to keep the page tables smaller. (How- 
ever, this is sufficient for the 180 MB disk.) 

The Flex nodes do not communicate via a hypercube, 
as we would prefer in Bubba. Instead the nodes share ac- 
cess to 9 MB memory via a hierarchy of 32-bit-wide 
buses. The bandwidth of the buses and memory in a cab- 
inet is high enough so that there is not a significant bot- 
t leneck even when all nodes are accessing the memory at 
the same time. The system has been configured so nodes 
can access the common memory in the other cabinet trans- 
parently; references are automatically routed across a 32- 
bit intercabinet bus (there is a bus in each direction). In 
keeping with our shared-nothing message-passing archi- 
tecture, the common memory is treated only as a “wire” 
to hold messages-in-transit between nodes. The common 
memory is partitioned so that each node has a dedicated 
buffer pool for outgoing messages, managed exclusively 
by that node without internode locks or critical sections 
(hot spots). In this way, our message performance has 
been made relatively independent of the number of nodes 
sending and receiving messages simultaneously. Message 
response times are fairly uniform between any pair of 
nodes; we did not attempt to simulate the “multihop” 
delays of a hypercube (although we could have). 

Thirty-two of the 40 nodes are used to implement IR’s. 
Rather than sacrifice separate nodes for IP’s, we chose 
instead to run TC processes on IR’s so that we would have 
as many IR’s as possible. In each cabinet, two nodes run 
UNIX and are used for software development and exper- 
iment control, and two nodes are unused so that their slots 
can be used for the incoming and outgoing intercabinet 
links. 
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C. FAD Compiler 

I) Implementation: The FAD compiler [48] performs 
static type checking and inference, followed by query op- 
timization with respect to an architectural cost model, fol- 
lowed by parallelization to form a PFAD program of com- 
ponents and arcs, followed by translation to a load module 
of compiled C code and data structures that describe the 
components and arcs. 

Objectives that guided the design of the compiler were: 
modularity, to allow a number of difficult problems to be 
addressed separately; and ease of module integration, to 
allow rapid combination of individual solutions into a 
working compiler. Modularity was achieved by an archi- 
tecture consisting of six modules, each with a well-de- 
fined role. Ease of integration was achieved by sequenc- 
ing solutions as individual phases of compilation, and by 
using a source-to-source language translation approach for 
each phase. Because intermediate text files are always in 
FAD (PFAD is simply FAD with components and send/ 
receive operations), visual inspection of module output 
was possible and testing could be performed module by 
module. An additional benefit of this approach was the 
ability to bypass optimization and/or parallelization 
phases to produce an early version of the compiler tar- 
geted for the Sun workstation for demonstration and test- 
ing. 

The compiler architecture is depicted in Fig. 6. Each 
crucial compilation issue is handled by a separate com- 
piler phase: type checking by the Analyzer, optimization 
by the Rewriter, parallelization by the Parallelizer, and 
low-level code and load module generation by the Trans- 
lator. The parser for each phase of the compiler is gen- 
erated from a FAD attribute grammar [2]. The basic FAD 
grammar remains the same for each phase (the FAD 
grammar for the Translator is enhanced to include com- 
ponent definitions and send/receive expressions). 

The Schema Manager provides uniform access to 
schema information, hiding implementation details. Three 
levels of description are provided by the schema: concep- 
tual, internal, and physical [29]. The conceptual schema 
describes the conceptual data (objects and values) as- 
sumed by the FAD program and is accessed by the ana- 
lyzer. The internal schema describes how conceptual FAD 
sets are mapped to internal FAD sets, and is accessed by 
the optimizer. It shows direct relations [50] and inverted- 
file relations (secondary indexes) but not declustering. The 
physical schema describes the way the conceptual data are 
actually implemented in Bubba and is accessed by the 
Translator. The schema is generated by a separate com- 
piler that processes data descriptions expressed in FAD 
DDL. 

2) Lessons Learned: While implementing the FAD 
compiler, we learned several lessons, concerning the FAD 
language as well as the compiler technology. 

The FAD compiler automatically infers the types of data 
objects and expressions in a program when unspecified by 
the programmer, demonstrating a very effective way to 
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use available schema information during compilation. Ex- 
plicitly typed expressions are treated as a form of asser- 
tional documentation that is checked by the compiler. 
However, unification-based type inferencing, well under- 
stood in conventional language theory, had to be extended 
for the database environment of FAD. One example is 
that a conceptual FAD record type does not specify an 
ordering of attributes, yet corresponding physical types 
do. While two conceptual record types with the same at- 
tributes may unify, is is also necessary to guarantee that 
they are ultimately mapped to the same physical type. The 
FAD compiler uses dataflow analysis to guarantee that a 
transient tuple that might be inserted in a persistent set is 
created with the same physical type as that of the set ele- 
ments, to avoid run-time type checking and conversions. 

The common attribute grammar-based framework [45] 
provided an excellent foundation for parsing in all of the 
compilation phases, and was especially useful for orga- 
nizing the unification-based type inference in the Ana- 
lyzer and abstract program analysis in the Rewriter when 
accumulating information necessary for optimization. 
Since the attribute grammar framework best supports pro- 
gram transformations that retain the same basic program 
structure, it was only of limited use by the Parallelizer, 
which must generate program transformations that are 
quite different in structure from the original program. 

In the first specification of FAD [9], every data item in 
a program was an object, each with its own identity [30]. 
In the second specification of FAD [20], the notion of 
“values” was introduced. Unlike objects, the notions of 
identity, sharing, and updating do not apply to values, so 
they can be implemented much more efficiently by the 
compiler and DBMS. However, distinguishing between 
objects and values may be of less general utility than we 
originally thought. Also, it led to a number of complica- 
tions in type inferencing. Next time, we would consider 
supporting only atomic values in addition to atomic and 
complex (updatable) objects. 

Query optimization for a general purpose database pro- 
gramming language like FAD is far more difficult than for 
a relational query language. In FAD, action expressions 
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can be  constructed in an  arbitrarily complex fashion. Fur- 
thermore, FAD programs can deal with arbitrarily nested 
objects. Our solution [49] combines abstract program 
analysis (to recognize optimizable operat ions) and  rela- 
tional query optimization. The presence of declarative ac- 
tion constructors (such as “filter”) in FAD made this ap- 
proach possible. 

Parallelizing general  purpose FAD programs also turned 
out to be  much more difficult than decomposing distrib- 
uted relational queries. The r ichness of the data model  
(recursive data structures, disjuncts, and  object identity), 
language (recursion, conditionals, and  assignment), and  
model  of execut ion (dataflow activation, associative rout- 
ing, replication), and  our emphasis on  performance re- 
quired new and enhanced dataflow analysis and  program 
transformation techniques [27]. The Parallelizer opti- 
mizes parallelization of common “easy” programs, and  
does a  good job of handl ing less common “hard” pro- 
grams. 

Support  for object sharing by multiple parents involves 
complex issues that we did not resolve in Bubba. Even in 
single-node systems, efficient solutions to the manage-  
ment of object sharing do  not yet exist. Allowing object 
sharing in a  shared-nothing system, where there is a  par- 
titioned storage space and object references can span 
nodes,  is even more difficult. W e  decided to support  the 
notion of object sharing conceptual ly in FAD, but restrict 
its use to transient objects (thereby avoiding the storage 
management  issues in persistent space) and  only local 
parents (thereby avoiding internode references). 

The semantics of “null” in a  general  purpose database 
programming language with strong static typing are com- 
plex. The semantics we ultimately developed for FAD are 
well founded, consistent, and  useful. 

Mapping FAD to compiled C was straightforward in 
theory, but we ran into problems with the resulting legal 
C expressions being too complex for some C compilers. 

D. Distributed Execution 

1) Implementation: The distributed execut ion subsys- 
tem was redesigned for the prototype in order to incor- 
porate the more efficient dynamic program loading, acti- 
vation, and  dataflow control protocols. Furthermore, the 
underlying distributed process model  provided by the op- 
erating system was redesigned to support  multiple con- 
current threads per transaction process within an  IR. 

Transact ion programs, components,  and  arcs are 
mapped onto the following BOS constructs for execution. 

l For each instantiation of a  transaction program, a  
single separate clan is al located in each IR that is partic- 
ipating. The clan provides the virtual address space for all 
of the threads of that transaction in that IR. 

l For each activated component,  a  separate thread ex- 
ecutes the code for the component  in the context provided 
by the clan. In addition, other system threads are used to 
control the execut ion of the transaction (such as commit 
and  dataflow control processing). The system threads also 

execute in clans belonging to the transaction. A thread is 
the smallest unit of schedul ing within a  transaction. 

l For each incoming dataflow arc for a  component,  a  
separate message queue is al located by each component  
thread. 

In this way, transactions are implemented as parallel 
processes distributed across the relevant IR’s, and  facili- 
tate intertransaction, intratransaction, and  intracompo- 
nent parallelism. Fig. 7  illustrates the mult i threaded pro- 
cess structure: 

l one transaction coordinator (TC) thread communi-  
cates with the user, loads and starts the transaction, mon- 
itors dataflow execution, and  serves as the “master” in 
the distributed two-phase commit protocol; 

l executor threads execute PFAD components at an  IR; 
l zero or more dataflow control (DFC) threads coor- 

dinate communicat ion between executor threads (Fig. 8  
illustrates the dataflow control methods), and  inform the 
TC which nodes are participating in the transaction; 

l one commit thread per participating IR commits the 
transaction’s updates at the IR under  the two-phase com- 
mit protocol. 

In case of errors or timeouts, the TC coordinates trans- 
action abort and  restart (if the error is nonfatal). To sup- 
port recovery from a  TC failure or lost commit message,  
one  or more log processes on  designated nodes are kept 
informed of a  transaction’s progress. Upon failure, the 
log processes are queried and transactions are recovered 
according to a  presumed abort protocol [34]. 

The TC, executor, and  dataflow control threads at an  
IP or IR call global directory, symbolic home directory, 
and  dataflow control functions at run-time to associatively 
route or broadcast results to component  threads in other 
IR’s. The global directory and  symbolic home directory 
are cached in memory, since they are consulted often 
(once for each tuple that is routed). The dataflow control 
functions prepend a  program id to any message that may 
cause dynamic activation. When  a  message arrives at an  
IR for a  thread that does not yet exist, BOS will automat- 
ically create it. If the program has not been preloaded and 
cached in the IR’s (only done for “bread-and-butter” pro- 
grams), the TC will send the program code to the IR’s 
that are activated during the course of the dataflow exe- 
cution. 

2) Lessons Learned:  Many of the lessons we learned 
about  distributed execut ion in Bubba came from an  exten- 
sive experiment to investigate the performance of the da- 
taflow execut ion strategy upon the prototype [40]. In par- 
ticular, we were concerned about  possible negative effects 
of parallelism on  response time performance, including 
delays due to asynchronous starting, synchronizing, com- 
municating between and terminating a  set of parallel 
threads. W e  were also concerned about  the effect of con- 
tention between concurrent threads from the same or other 
transactions. W e  measured the impact of these negative 
effects using a  metric we defined, called response time 
“skew.” 

At the time of that experiment, the object management  
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EXE: Executor thread 
CMT: Commit thread 
DFC: Dataflow Control 

Fig. 7. Process structure for distributed execution in Bubba. 

“Point-to-Point (PP)” 
Each sender sends 

“Control Node (CN)” 
A CN thread tells 
each receiver how 
many data messages 
to expect. 

“Mux-Demux (MD)” 
An MD thread receives 
all data mesqes 
and redistributes them 
to their destinations. 

Fig. 8. Dataflow control methods 

and operating system software was being redesigned, 
prompted by the lessons of the first prototype. In lieu of 
the actual object manager and OS, a simulator at each 
node executed the estimated number of CPU instructions 
and disk I/O’s we expected for that transaction. The dis- 
tributed execution software was “real,” however. 

The experiment looked at three different classes of par- 
allel transactions in order-entry: simple update, large 
scan, and large N-M join. The experiment was run on 
configurations varying from 4 to 32 nodes. Detailed event 
traces were captured and analyzed to determine the effect 
on both throughput and response time. 

The results showed that for the class of simple update 
transactions, throughput scaled linearly and response time 
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is not strongly affected by increased parallelism. These 
transactions had fixed degrees of parallelism. If these 
types of transactions dominate the system workload, then 
increasing the degree of declustering can help throughput 
through intertransaction parallelism, without significant 
response time penalties. For these workloads, more de- 
clustering leads to better performance [15], [44]. 

For large scan transactions, the results showed response 
time delays due to start and termination overhead is much 
less troublesome than expected (at least for degree of de- 
clustering 5 32). The major aim of declustering, namely 
load balancing, seems to be more important to good sys- 
tem performance than the relatively small increases in re- 
sponse time due to the temporal skew caused by many 
asynchronous threads in parallel IR’s. 

For large N-M join transactions, the results showed that 
performance degrades as declustering increases, which is 
in agreement with our analytic model [15]. But the prob- 
lem is the large number of messages required, not process 
delays. The number of messages per transaction 0 (N*M > 
may be reduced in any of three ways. 

l The two relations can be nested, transforming the 
large join into a large scan. However, this is only prac- 
tical when the relations have a l-l or l-m relationship 
and where this does not seriously degrade the perfor- 
mance of other transactions in the workload. For n-m re- 
lationships, the relations must be normalized to the extent 
that data redundancy is eliminated. 

l The two relations can both be declustered across the 
same IR’s using the join key, either ahead of time or dy- 
namically. Again, this may be impractical for n-m rela- 
tionships. 

l The degree of declustering, N or M can be reduced. 
However, this may degrade the performance of other 
transactions. 

When these techniques cannot be used, large N-M joins 
will require very efficient communications in a shared- 
nothing system. Bubba is designed to have fast dedicated 
message processors (not available in the prototype) and 
an efficient communications protocol. 

For large scans and large joins, methods for paralleliz- 
ing broadcast messages (e.g., preloading, preactivation, 
and commit messages) can parallelize the CPU message 
work of the sending node, and thereby reduce start and 
termination delays, without increasing the total message 
work. For example, a scheme was proposed for Gamma 
[22] to distribute message sequences in parallel down a 
logical binary-tree imposed on the nodes [25], 1261. As 
an alternative to associative routing, however, these tech- 
niques can improve response time only at a large expense 
in total message work, because each piece of data is 
moved several times, and in extra filtering at the receiver. 

It is important to limit the multiprogramming level 
(MPL) at each IR and control the transaction mix. It ap- 
pears that response time is “well-behaved” for reason- 
able MPL (i.e., where thrashing is avoided), so that stan- 
dard scheduling mechanisms should suffice. Since large 
transactions can greatly affect other transaction response 
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times, it would be worthwhile to distinguish and segre- 
gate job classes (e.g., using shortest job first scheduling). 

A lesson we have yet to learn is how response time 
would be affected if Bubba’s “set-at-a-time” dataflow 
control protocols were replaced by schemes that allow 
more pipelining between connected components. On one 
hand, performance might be expected to improve due to 
the increased level of concurrency in a transaction. On the 
other hand, pipelining may increase the variation in re- 
sponse times due to increased levels of asynchronous ac- 
tivity, protocol complexity, and competition for the pro- 
cessor. 

E. Object Management 

I) Implementation: The object management software 
of the first prototype was fairly traditional, in that it con- 
tained separate layers for FAD object semantics, indexing 
and record management, file management, and buffer 
management. The notion of single-level store was a sig- 
nificant “liberator” when redesigning more streamlined 
object management in the second iteration [ 161. 

The single-level store abstraction allows the same rep- 
resentation to be used for an object whether it is persis- 
tent, transient, disk-resident, or memory-resident. That 
representation is known and easily handled by the com- 
piler, allowing it to build complex constants at compile 
time, and generate code to directly access objects. Virtual 
memory pointers are used freely to refer to other objects. 
Persistent objects are located in a virtual address space 
that is shared among BOS processes, exists independently 
of any particular process, and is mapped to disk. 

Even with the single-level store, complex objects are 
still organized into blocks so that objects that are likely 
to be referenced together can be collocated and retrieved 
in a single disk I/O upon an access fault. Objects are 
stored either with or without a cluster index, depending 
on size. Objects that are larger than a block are provided 
with indexes which map the object’s subobjects (e.g., tu- 
ples of a set) into blocks (see Fig. 9). Both B-tree and 
hashed indexes are supported. Since blocks are large, one 
index block can be used to index very large objects. For 
example, assuming 16 kbyte blocks and 20 bytes per in- 
dex entry, one index block can index about 10 Mbytes of 
data. Assuming 64 kbyte blocks (which we expect in 
future versions of Bubba), the number increases to about 
200 Mbytes. Because of its greatly reduced size, a cluster 
index can usually be cached. Within each block, a smaller 
index provides access to objects within the block. This 
allows any subobject of a large object to be accessed in 
at most one I/O, because this lower level index is ac- 
cessed in the same I/O as the data itself. 

Garbage collection and clustering of updated persistent 
objects into blocks are performed by a process called box- 
ing. Boxing can be performed either at the end of a trans- 
action during commit time, or in a background mode. 

The use of a single-level store opened up the possibility 
for MMU-assisted locking of data pages (also exploited 

Fig. 9. A large object and its index 

in the IBM 801 [12]). We distinguish between two types 
of pages. 

l Data pages are used to hold persistent user data and 
are implicitly locked. When a memory location in a per- 
sistent data page is read (written), the page is automati- 
cally read (write) locked. Lock faults occur when a pro- 
cess that accesses a persistent data page does not have the 
proper lock (read or write) for the attempted access, and 
are detected by the MMU using its read and write protec- 
tion bits. When a lock fault is detected, a lock on the data 
page is obtained if possible. Otherwise, the process re- 
questing the lock is blocked until the lock becomes avail- 
able. Upon write accesses, a private copy of the original 
page is made and placed into a differential page-map table 
for the updating process. This implementation of a ‘ ‘copy- 
on-write” workspace was used to simplify transaction 
aborts. If a transaction aborts (or terminates without com- 
mitting), its locks are released and any differential pages 
are discarded without affecting the persistent object space. 
When a transaction commits, a special commit system call 
to BOS is used to release all of the transaction’s locks and 
move the process’ differential pages into the persistent 
space. 

l System pages are used to hold index or control data 
and are not implicitly locked. Explicit semaphores are 
used by the index manager to protect data on these pages. 

Persistent virtual memory is allocated by BOS in units 
of blocks. A block can begin with zero or more system 
pages (specified to BOS when the block is allocated), with 
the rest of the block composed of data pages (see Fig. 9). 
By storing indexes and control information in system 
pages, we are able to avoid contention problems that 
would result from two-phase locking hot resources. The 
distinction between system pages and data pages solves 
one of the main problems in operating system support for 
locking [41], [43]. 

Explicit nontwo-phase concurrency control is based on 
user supplied semaphores. The programmer allocates 
semaphore structures located in memory that is accessible 
by all processes that may use it; usually semaphores are 
collocated with the objects they control. Semaphores are 
implemented efficiently by P( ) and V( ) macros which 
run in user mode and only call BOS when it is necessary 
to block or unblock a process. A classic problem with 
using semaphores that are outside the operating system is 
that the OS may time-slice a process (or block it for some 
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other reason) while it holds a  semaphore,  tying up  the 
resource controlled by the semaphore.  W e  address this 
problem by allowing processes that hold semaphores to 
indicate to BOS how they should be  scheduled. 

It is commonly accepted that general-purpose operat ing 
system policies often conflict with the atypical needs of 
database processing [35], [41]. While BOS attempts to 
implement virtual memory in a  way that is useful to the 
object manager,  the object manager  often needs to control 
the paging policy for good performance. Thus, special 
BOS calls are provided to 

l fix pages in memory (during a  process); mark blocks 
as cached (across processes).  

l explicitly obtain or release automatic locks. 
l cause pages to be  read from or f lushed to the disk or 

discarded. 
Fixed and cached pages are ignored by the page re- 

placement policy. This is used to keep either temporari ly 
or permanent ly hot pages (e.g., index pages used often 
within a  transaction or root index pages that are always 
hot) in memory. When  a  group of pages needs to be  
locked, read, or written, it can be  done with one  system 
call rather than on  a  page by page basis, which is impor- 
tant for full or partial scans. 

The object manager  directly supports associative access 
to relations through cluster indexes. Inverted files (i.e., 
secondary relations) are implemented outside the object 
manager  as normal declustered relations. W e  did not im- 
plement inverted files locally for each IR’s segment  of a  
declustered relation since this has been shown to require 
activation all of the IR’s containing that relation (e.g., 
Teradata [23]). The association between conceptual  rela- 
tions and inverted files is indicated in the schema; their 
use by the compiler’s optimizer is transparent to the FAD 
programmer. An inverted file of a  relation R on  attribute 
A, say R-A, is a  binary relation whose cluster attribute is 
A and whose second attribute is one  or a  set of keys of R. 
R-A is declustered in the usual way (not necessari ly over 
the same IR’s as R), as indicated in the global directory 
index. There is a  local cluster index for R A within each - 
of its IR’s. The FAD compiler generates a  separate com- 
ponent  for each access to R-A. This approach introduces 
communicat ion between access to R-A and R, but ac- 
tually reduces total message and processor work involved 
in startup and termination for selective transactions and 
queries (which is expected from a  secondary index). 

2) Lessons Learned:  W e  have found that the single- 
level store abstraction can greatly simplify and  streamline 
object management ,  and  promises substantial perfor- 
mance improvements. W e  recognize that special-purpose 
OS support  is required, but our success in extending UNIX 
to do  it is encouraging (see Section IV-F). 

After our initial experience, we are mixed in our as- 
sessment of implicit locking. The advantages of this au- 
tomatic locking mechanism are that 1) it uses standard 
hardware to efficiently support  the often-used function of 
lock checking, and  2) programs need not be  aware of 
locking or page boundaries. The latter reason is especially 
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important for support ing the more general-purpose (com- 
pared to SQL) programming environment of FAD. The 
disadvantage is that the object manager  (or higher levels) 
has more knowledge about  the semantics of operat ions 
and, hence,  can sometimes use more efficient nontwo- 
phase locking. Our conclusions are that implicit locking 
is not a  good idea for high-throughput systems that cannot  
tolerate the data contention involved in strict two-phase 
locking, unless some persistent data can be  exempt from 
this automatic mechanism. However,  implicit locking 
would be  quite beneficial for applications in which data 
contention is not a  bott leneck. 

Copy-on-write workspaces simplify aborts by avoiding 
the need for undo logs, but at the expense by making the 
actual updates more costly. For example, copy-on-write 
allocates and copies entire pages even when only a  few 
bytes on  a  page are updated. Since aborts are infrequent, 
conventional update-in-place and recovery schemes may 
lead to better overall performance. W e  did not fully in- 
vestigate the potential of copy-on-write for simplifying 
recovery and  logging, or for reducing data contention by 
allowing readers who could tolerate slightly out-of-date 
data to not have to wait on  writers. 

F. BOS 
1) Implementation: The current version of BOS [ 131, 

[14] was implemented by modifying the Flex/32 version 
of AT&T UNIX System V Release 2.2. W e  chose UNIX 
as a  base primarily for expediency. The following exten- 
sions had to be  made to UNIX to support  the BOS func- 
tionality used in distributed execut ion and object manage-  
ment: 

Memory Management  
l Provide a  shared persistent data region used to im- 

plement the single-level store. 
l Support  the two page sizes for memory and disk al- 

locations. 
l Perform automatic two-phase locking upon page ac- 

cess faults. 
l Implement the copy-on-write differential-page pro- 

cess workspace for updates to persistent data. 
l Provide buffer management  support,  such as page 

fixing and flushing. 
l Support  prefetching for full or partial database scans. 
Process Management  
l Implement mult i threaded processes. 
l Provide a  fast implementation of semaphores which 

call the operat ing system only when blocking is neces- 
sary. 

l Support  message-based task control that provides for 
dynamic loading, activation, and  termination of processes 
and threads. 

Messages 
l Provide a  message interface that includes: multicast- 

ing, large numbers of (logical) message queues per thread; 
short control messages embedded in message headers;  and  
mult ipage message bodies that are moved with MMU re- 
mapping techniques rather than copying. 
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The implementation of the single-level store in BOS re- 
quires the presence of an MMU that supports at least a 
32-bit virtual address space, and small ( 5 12 byte) pages. 
The 32-bit virtual address space limits the maximum size 
of the persistent data space on a single node to less than 
4 Gbytes. Currently, BOS supports only a single persis- 
tent space. One way to overcome this 4 Gbyte restriction 
is to provide multiple 4 Gbyte persistent spaces in the 
context of the UNIX file system namespace, where only 
one persistent space could be attached at a time. This is 
similar to segment registers used in processors to extend 
the address space. Currently, access to the persistent space 
is unrestricted in the sense that there is no user-based or 
process-based security. This could also be accomplished 
by mapping the persistent space to user and group owned 
UNIX files. 

The current implementation of semaphores allows user 
processes to communicate with the kernel via a shared 
memory area. This requires a certain amount of trust in 
the nonkemel code that might not be acceptable on a gen- 
eral purpose operating system. 

2) Lessons Learned: Basing BOS on UNIX was a good 
decision. First, it gave us a relevant framework of pro- 
cesses and virtual memory that we were able to extend to 
fully support BOS features. Second, it provided us with 
many standard tools and components that we did not have 
to develop ourselves (e.g., bootstrap code, a file system, 
crash analysis tools, etc.). For those tools that we had to 
develop ourselves (e.g., a parallel BOS debugger-which 
was an indispensable tool during the distributed software 
development), we were able to use standard UNIX tools 
(e.g., sdb) as a base. 

The effort involved in modifying UNIX depended on 
the BOS feature being implemented. The message and task 
activation components were highly modular and easy to 
add with only a few changes to the UNIX code. The sin- 
gle-level store support in general was also surprisingly 
modular. On the other hand, the original version of UNIX 
supported 2 kbyte pages, and changing this to support 
512 byte pages was a major effort. While not as bad, the 
support for threads also required broad changes in UNIX 
source code. 

V. RECENT PERFORMANCE EXPERIMENTS 

A. Scalability Experiments 

Throughout the project, we used performance models 
and partial system implementations in experiments to ex- 
amine different ways of reducing the costs of parallelism. 
Once the most recent prototype was built, we wanted to 
see the overall performance scalability using the working 
implementation. 

A recent performance study of Tandem’s Nonstop SQL 
Release 2 [24] shows the same types of performance scal- 
ability that we want and expect for Bubba. We designed 
a similar experiment to examine scalability in Bubba. 
Taking into consideration that absolute performance could 
be improved with tuning, the results continue to suggest 

that we have been successful in our attempts to manage 
and exploit parallelism. 

1) Scalability Metrics: Three metrics defined in [24] 
were adopted for our experiments to demonstrate the dif- 
ferent forms of performance scalability in the Bubba pro- 
totype. 

l On-line transaction processing (OLTP) throughput 
scale-up measures throughput of small transactions as the 
number of IR’s and the database size are increased. The 
performance goal is to increase transaction throughput in 
proportion to the relative increase in system size, while 
maintaining the same transaction response times. 
Throughput scale-up is obtained primarily by increasing 
intertransaction parallelism, since each transaction has lit- 
tle inherent parallelism. 

l Batch scale-up measures response times of “batch 
programs” (in the terminology of [24], e.g., large deci- 
sion-support queries) as the number of IR’s and the da- 
tabase size are increased. The performance goal is to 
maintain the same query response times by increasing the 
system size by the same proportion as the increase in da- 
tabase size. Batch scale-up is obtained by increasing in- 
tracomponent parallelism so that the amount of work per 
node is kept constant. 

l Batch speedup measures improvements of large query 
response times as more IR’s are added to execute the 
query. The performance goal is to reduce the query re- 
sponse times by the same proportion as the increase in 
system size. Batch speedup is obtained by increasing in- 
tracomponent parallelism so that the amount of work per 
node is reduced. 

2) Workload, Database, and System Conjiguration: A 
subset of the order-entry workload was used as the basis 
for the scalability experiments. We chose the Order- 
Shipped transaction as the “OLTP” representative, and 
Suggested-Order as the “batch” representative. Usually, 
Order-Shipped accesses a variable number of records from 
three different relations. For the experiment, we modified 
Order-Shipped to update exactly six tuples, all of which 
are accessed through primary (foreign) keys. Suggested- 
Order does a full scan of a relation and performs two 
arithmetic computations on each tuple. The programs were 
written in FAD and optimized and parallelized by the FAD 
compiler. 

For the OLTP and batch scale-up experiments, the 
amount of data per node was kept constant so that the total 
database size would be proportional to the number of 
nodes. For the batch speedup experiment, the total data- 
base size was fixed and redistributed over an increasing 
number of nodes. Data values were synthesized in such a 
way that the declustering of tuples across IR’s was nearly 
uniform. All relations were fully declustered across all 
IR’s. 

We measured the performance of configurations rang- 
ing in size from a single node to eight nodes. Each IR 
disk has a database partition large enough to hold over 
100 MB of data. For expediency, we only generated the 
fraction of the order-entry database used by the two 
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transactions (which included the smallest five of eight re- 
lations). In the scale-up experiments, each IR holds 16  
MB of the database, or 128  MB for 8  IR’s. In the speedup 
experiments, a  single 32  MB relation was distributed over 
the IR’s. 

W e  planned on  running the experiments on  32  nodes 
but we discovered a  bug  in the Flex firmware that causes 
the interconnection hardware to fail when running UNIX 
(BOS) nodes without console terminals. This was a  sur- 
prise: our earlier experiments [40] had  not exposed the 
problem because UNIX was not used, and  later, all of our 
testing of BOS happened to be  on  nodes with terminals. 
As of this writing, we have not been able to solve the 
problem and we are thus limited to eight nodes with con- 
soles for these experiments. While the small number  of 
nodes is unsatisfying, the preliminary results demonstrate 
the scalability trends we expected. 

3) OLTP Throughput  Scale-up: To measure through- 
put scale-up, we ran workloads consisting of order- 
shipped transactions against prototype configurations of 
increasing size. A driver program was set up  to maintain 
a  specif ied degree of mult iprogramming (i.e., a  specif ied 
number  of active transactions) in the system. The degree 
of mult iprogramming was increased until maximum 
throughput was reached, to the point where adding more 
transactions only lengthened response times without in- 
creasing throughput. Fig. 10  plots transaction through- 
puts for the different configurations, in which a  cap of 2  
s was maintained on  average response time. 

Fig. 10  shows that throughput scales-up in proport ion 
to the number  of IR’s. The slight downturn in the curve 
from 1  to 4  IR’s most likely shows the increasing over- 
head of parallelism: as parallelism is increased, so are the 
numbers of clans, threads, messages,  etc. (see Section 
IV-D). However,  OLTP transactions have a  limited de- 
gree of parallelism; Order-Shipped has an  inherent degree 
of parallelism of 6. At that point, IR’s can cont inue to be  
added without increasing the overhead of each Order- 
Shipped transaction. The added IR’s then only provide 
more throughput capacity, as is suggested by the upturn 
in the curve from 4  to 8  IR’s. For that reason, we expect 
the upturn to cont inue for large configurations. 

4) Batch Scale-up: To measure batch scale-up, we ran 
workloads consisting of single Suggested-Order scan 
queries against prototype configurations of increasing 
size. Fig. 11  plots query response times for each config- 
uration size. Fig. 11  shows that response times are about  
the same for each configuration, even though the database 
increases in size. 

The jump in response time between one to two IR’s was 
expected in Fig. 11. Although the query had  been paral- 
lelized, when it is run on  one IR all the components ex- 
ecute in the same clan, and  large intermediate results are 
sent between components via local message sends (which 
are implemented using page remapping) instead of remote 
sends (which copy data pages).  W e  included the single IR 
results simply as a  point of reference. 

As the number  of IR’s increased beyond two IR’s, the 
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Fig. 11. Batch scale-up of order-entry decision-support workload. 

response time decreases slightly. This is because the da- 
tabase values were generated in such a  way that the query 
would always generate the same sized (and rather large) 
result. This was done with the intention of maintaining a  
fixed response time for the final part of the query which 
receives and prints the result, and  cannot  be  parallelized. 
The consequence,  however,  is that the cost of building 
the result tuples during the scan is spread over more IR’s, 
resulting in a  speedup of that part of the query. The effect 
of this speedup is expected to diminish as the number  of 
IR’s is increased. 

5) Batch Speedup:  To measure batch speedup,  we ran 
workloads consisting of single Suggested-Order scan 
queries against a  fixed size database spread over an  in- 
creasing number  of IR’s. Fig. 12  plots query response 
times for each configuration size. The speedup curve in 
Fig. 13  plots the relative improvements in the response 
times and shows that the improvements are proport ional 
to the size of the system. W e  are somewhat  surprised by 
the superl inear increase in speedup between four and  eight 
nodes;  it may be  due to reduced paging in the IR’s be- 
cause of less data per IR. 

The curve in Fig. 12  shows the diminishing returns of 
“linear speedup.” That is, at some point, doubl ing the 
system size in order to halve query response time becomes 
cost-ineffective. That point is determined by the size of 
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Fig. 13. Batch speedup of order-entry decision-support workload. 

the original query and  the response time and cost require- 
ments of the application. 

B. Mixed Workload Experiment 
Bubba was designed to support  on-l ine processing of a  

large database which can be  continuously updated. In a  
second small experiment, we examined the prototype’s 
efficiency in execut ing a  mix of concurrent OLTP and de- 
cision-support transactions. W e  used the same database 
and workload as for the OLTP and batch scale-up exper- 
iments descr ibed in Section V-A. The Order-Shipped 
OLTP transactions do  most of their update work on  the 
same item-inventory relation that the Suggested-Order de- 
cision-support transactions scan, giving us the data con- 
tention we desired in the workload. Suggested-Order scans 
the item-inventory relation using a  nontwo-phase locking 
option (similar to “browse access”), in order to avoid 
locking the relation fragments and  blocking Order- 
Shipped transactions for extended periods of time. In this 
first prototype, this option was implemented by releasing 
read locks that were acquired for a  data block as soon as 
the next block is scanned.  

The mix consisted of multiple Order-Shipped transac- 
tions run concurrently with a  cont inuous serial stream of 
Suggested-Order queries (i.e., there was only one  Sug- 
gested-order in progress at a  time). The number  of con- 
current Order-Shipped transactions was increased until 
the Order-Shipped throughput reached a  maximum, while 
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Fig. 14. Throughput scale-up of OLTP transactions in mix 

maintaining a  5  s cap on  the average Order-Shipped re- 
sponse time. The 2  s response time cap used in the earlier 
no-mix order-shipped experiments could not be  used with 
the mixed workload, because of the impact of the Sug- 
gested-order load. A Suggested-Order query is both I/O 
and CPU intensive: each IR execut ing the query accesses 
about  8000 data pages and performs two large computa- 
tions on  each of about  1000 selected tuples. This added 
load has a  significant effect on  the response time of the 
relatively small Order-Shipped transactions, due  to larger 
mult iprogramming interference and larger “skew” in the 
start and  stop times of a  set of threads [40]. Both types of 
transactions were run using the same starting priorities 
and  schedul ing policies; it might have helped to give Or- 
der-shipped transactions higher priority (this is not yet 
possible in the prototype). Adjusting the size of the sched- 
uler’s time slice also would have helped, since Suggested- 
Order tends to use most or all of each time slice it is 
granted. (A rather large l/2 s time slice had  been used 
for this experiment.) 

Fig. 14  shows that throughput for Order-Shipped OLTP 
transactions in the mix again scales up  in proport ion to 
the number  of IR’s and the database size. The slope of 
the throughput curve is somewhat  lower than the no-mix 
throughput curve because a  significant fraction of the sys- 
tem resources are used to execute the concurrent Sug- 
gested-order workload. The total work for the Suggested- 
Order workload scales with the size of the system and the 
database, so that the Suggested-Order “overhead” per IR 
remains constant for any configuration. Thus, as in the 
no-mix case, the throughput curve is expected to increase 
linearly for larger configurations, albeit at a  lower rate. 

Fig. 15  shows that Suggested-Order “batch” response 
times in the mix increase in proport ion to the system and 
database size, instead of remaining approximately con- 
stant as in the no-mix case. This is because Suggested- 
Order queries were run serially without contention for 
system resources by other transactions or queries. In the 
mixed case, each Suggested-Order query had  to contend 
with multiple Order-Shipped transactions, and  the number  
of concurrent Order-Shipped transactions in the system 
increased in proport ion to system size. 
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VI. CONCLUSIONS 

The final Bubba prototype design documentat ion and 
software was packaged and distributed to our sharehold- 
ers in April, and  updated in October 1989.  The design 
documentat ion comprised over 1200 pages of text. There 
are over 60  000 lines of C code for the FAD compiler and  
database system software, and  approximately 38  000 lines 
of C code in BOS (of which 9000 were added or changed 
from UNIX). 

W e  consider these to be  the most significant technical 
and  procedural  lessons learned during the Bubba project: 

Technical Lessons:  
l Shared-nothing is a  good idea, but has limita- 

tions. For high-end systems using SQL (requiring >400 
TPS), it appears to be  the only alternative. For large sys- 
tems (200-400 TPS ), it is much more cost-effective than 
mainframes. For small to medium systems ( < 200  TPS), 
there are many alternatives with similar cost-perfor- 
mance;  however,  shared-nothing is the only architecture 
that can scale throughout the entire range. As we dis- 
cussed earlier, large joins may have trouble scaling well 
in shared-nothing systems because of the 0( N *M) num- 
ber of messages needed to redistribute the joined relations 
(in general  each of N nodes routes tuples to M joining 
nodes),  especially as N and M become large-the degree 
of impact will depend on  the relative cost of communi-  
cations versus other join processing. In spite of scaling 
limitations, overall performance for large joins is likely 
to be  better in shared-nothing than other architectures. 

l DataJlow seems better than remote procedure call 
(RPC) for a  shared-nothing architecture. A dataflow ex- 
ecution strategy usually reduces the amount  of data that 
must be  communicated and allows more parallelism. Even 
when nonblocking RPC is used, a  single node is often a  
response-t ime bott leneck, caused by either sending re- 
quests to or receiving results from many nodes.  When  
multiple parallel operat ions are involved, RPC can cause 
data to unnecessari ly pass back through a  single node,  
whereas dataflow allows the distributed result of one  par- 
allel operat ion to be  sent in parallel directly to the second 
distributed operation. Furthermore, the RPC execut ion 
model  is synchronous,  usually precluding execut ion of 
multiple program threads in parallel. The RPC-style da- 
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taflow is efficient in some situations, however;  in fact, 
one  of our three dataflow control methods (Mux-Demux) 
has simliar performance characteristics. In a  distributed 
(esp. heterogeneous) DBMS environment, however,  RPC 
seems to have the advantage of autonomy and simplicity. 
Only the single RPC node needs a  global directory, and  
sophisticated dataflow control protocols would not need 
to be  standardized. 

l More compilation and less run-time interpretation 
seems to be  a  good idea. Database people tend to want 
to do  things at run-time, because of their typically strong 
systems and weak compiler background.  W e  found that 
many things were better done in the compiler, improving 
performance because of the leverage in compil ing once 
and running many times and because of reduced lock- 
holding time. At various times throughout the project, 
however,  it was difficult for some database and compiler 
people to communicate effectively. 

l The uniform object management  concept (including 
single-level store and  uniform formats) did simplify the 
design. However,  in our early view of single-level store, 
it was bundled with automatic locking and workspaces 
(which have quest ionable value for many applications), 
together providing simplicity and  transparency for gen-  
eral-purpose programming. Later, we realized that these 
were quite separate. Single-level store and  optional au- 
tomatic locking have been considered for use in a  more 
general-purpose standard systems platform, using C and 
UNIX as a  base [17]. 

l Many systems take the approach of building a  node 
that is itself fault tolerant. In Bubba, we were able to base 
our recovery mechanisms on  the assumption that an  entire 
node is a  f ield-replaceable unit. That is, if any part of a  
node has a  hard failure, then the whole node is assumed 
bad and its data are copied from other nodes to the on- 
line spare that replaces it. This scheme becomes less prac- 
tical if 1) the cost of a  node is much larger than the cost 
of the component  that failed, or 2) the database per node 
is so large that its copy time increases the window of vul- 
nerability for the second copy to the point that availability 
becomes unacceptable. Our approach seems quite reason- 
able for smaller nodes (e.g., tens of MIPS and a  few 
disks). Its main advantage is simplicity of design and hu- 
man operations, both of which are crucial to reliability 
and  availability. 

Procedural Lessons:  
l The iterative design-for-performance approach was 

critical. Unlike most engineering disciplines, perfor- 
mance model ing is not closely integrated into software 
engineering; instead, it is general ly regarded as a  spe- 
cialized field on  its own. Several such model ing special- 
ists were included early in the Bubba project. A consid- 
erable amount  of time was spent on  cross learning between 
model ing and database people. The model ing people 
strongly encouraged using a  gedanken workload and set- 
ting specific performance goals. These gave us something 
concrete to resolve tradeoffs that otherwise might have 
left us f loundering. Through progressively detailed mod- 
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eling, many design concepts were either verified so that 
they became accepted by the group, or were found inad- 
equate early enough to be corrected. 

l Although good software engineering practice (e.g., 
design and code walkthroughs, source code version man- 
agement and periodic massive documentation) are ac- 
cepted by many, it is difficult to make happen in a re- 
search environment. It consumes large resources in both 
people and time. Nevertheless, it is a must for prototyping 
and everyone has to simply “bite the bullet” and make 
the economic and psychological commitment. We found 
it was crucial for a project of our size. 

Boettcher, and L. Crider capably crafted the voluminous 
design documentation. D. Frank and J. Haritsa contrib- 
uted to the design as summer research students. A. Bud- 
inszky, J. Crandell, T. Jagodits, and K. Soheili imple- 
mented much of the first prototype. We thank MCC 
management (in particular E. Lowenthal), our support 
staff and shareholders for creating the environment in 
which this work was done. The authors thank the referees 
and R. Brice for their help in improving the presentation 
in this paper. 
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