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ABSTRACT

The ubiquity of mobile devices and the popularity of location-based-
services have generated, for the first time, rich datasets of people’s
location information at a very high fidelity. These location datasets
can be used to study people’s behavior - for example, social stud-
ies have shown that people, who are seen together frequently at
the same place and at the same time, are most probably socially
related. In this paper, we are interested in inferring these social
connections by analyzing people’s location information, which is
useful in a variety of application domains from sales and marketing
to intelligence analysis. In particular, we propose an entropy-based
model (EBM) that not only infers social connections but also esti-
mates the strength of social connections by analyzing people’s co-
occurrences in space and time. We examine two independent ways:
diversity and weighted frequency, through which co-occurrences
contribute to social strength. In addition, we take the character-
istics of each location into consideration in order to compensate
for cases where only limited location information is available. We
conducted extensive sets of experiments with real-world datasets
including both people’s location data and their social connections,
where we used the latter as the ground-truth to verify the results of
applying our approach to the former. We show that our approach
outperforms the competitors.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Data mining, Spatial databases
and GIS; H.3.3 [Information Search and Retrieval]: Retrieval
models

Keywords

Social network; social strength; spatiotemporal; geospatial; spatial;
data mining; social computing

1. INTRODUCTION

In the past, finding a person’s location involved some detective
work by following the person clandestinely. However, these days
given all the online trails we leave behind, people’s locations can
be tracked at a very high resolution effortlessly. The location data
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can be inferred implicitly, for example from one’s credit-card trans-
actions or activities on mobile devices (through cell-phone tow-
ers, GPS, or WiFi hotspots). It can also be released explicitly,
for example when someone distributes geo-tagged contents (e.g.,
tweets, uploads photos on Instagram, Flickr or Facebook), interacts
with location-based-services online (e.g., Foursquare check-ins),
or through a mobile app (e.g., Highlight, Glancee). Such a col-
lection of people’s locations over time (aka spatiotemporal data)
is a rich source of information for studying various social behav-
iors. In particular, the one behavior we are interested in this paper
is whether social relationships among people can be inferred from
such a collection. The intuition is that if two people have been to
the same places at the same time (aka co-occurrences), there is a
good chance that they are socially related. The ultimate goal is to
derive the social-network of people and the social strength from
their real-world location data as opposed to (or in addition to) their
online activities.

The applications for such a physically inferred social network
are plenty - it not only subsumes all the applications of online so-
cial networks such as marketing applications (e.g., target advertis-
ing, recommendation engines such as friendship suggestions), so-
cial studies (e.g., identifying influential people) and cultural studies
(e.g., to examine the spreading patterns of new ideas, practices and
rumors), but also has its own unique applications. For example, the
network can be used to identify the new (or unknown) members of
a criminal gang or a terrorist cell or it can be used in epidemiology
to study the spread of diseases through human contacts.

However, the problem of inferring social connections from peo-
ple’s spatiotemporal data is particularly challenging for many rea-
sons. First, it is not clear which attributes of co-occurrences should
be measured to infer social connection. For example, if the number
of co-occurrences of two people, called frequency, is only consid-
ered, then one may arrive at a wrong conclusion about their social
relationship. To illustrate, suppose two people study at the same
library around the same time every day, which results in high fre-
quencies, but they may not even know each other. This erroneous
conclusion can be attributed to the fact that the library is a popu-
lar location and the observation that two people only co-occur at
the library is not a strong indication of social connection. On the
other hand, a few co-occurrences in a small private place are per-
haps a better indication of friendship. Or alternatively, several co-
occurrences at different popular places (e.g., cofteehouses, restau-
rants) may also be a better indication of friendships. Second, we
are interested in inferring more information about social connec-
tions such as how close of a relationship two people have (aka so-
cial strength). Third, there may be a lot of missing data, as people’s
location data may be sparse. Fourth, the spatiotemporal data is of-
ten extremely large, in the order of gigabytes, which could render



the inference algorithms inefficient, taking too much time and/or
resources to perform.

Our work is motivated by the following pioneering studies. First,
Eagle et al. [9] showed there is a correlation between people’s co-
occurrences and their social connections by reporting on a study
they conducted on a number of students and faculty members from
a research institute. Following this observation, Crandall et al. [6]
developed a probabilistic model to estimate the probability of two
people being friends given their co-occurrences in space and time.
Cranshaw et al. [7], on the other hand, introduced various features
of co-occurrences and then utilized machine learning techniques to
classify pairs of users as friends or not. Distinguished from these
approaches is the work done by Li et al. [12], who represented each
user’s visit pattern as a trajectory, and friendship between two users
is determined as the similarity between their trajectories. Lastly, in
previous work [15], we studied this problem by introducing two
properties, commitment and compatibility, that any social distance
measure should follow to correctly infer social connections. While
these studies showed the validity, importance and feasibility of in-
ferring social connections from co-occurrences, they either made
many simplifying assumptions (see Section 6 ) or failed to address
some of the subtle questions about social connections. This paper is
built on these studies by addressing the following questions: 1) in-
ferring the strength of social connections from co-occurrences, 2)
avoiding overestimation or underestimation of social connections
by taking into account various features of co-occurrences and 3)
focusing on the efficiency of the algorithms.

A naive approach to estimate the social strength is to simply
count the number of unique locations two people co-occurred as
their social strength. However, this measure would consider dif-
ferent locations equally important as it ignores the number of co-
occurrences at each location. To address this problem, one could
sum up the number of co-occurrences of two people across differ-
ent locations as a measure of their social strength. The problem
with this approach is that it may overestimate coincidences. For
example, 10 random encounters at a crowded coffee shop (called
coincidences) are considered 10 times more important than 1 inter-
active meeting at a private office.

To remedy for these shortcomings, we propose an Entropy-Based
Model, named EBM, which successfully infers social strengths
from spatiotemporal data with high accuracy. With EBM, we first
use the Shannon entropy to measure the diversity of co-occurrences,

which, for each pair of people, uses the number of their co-occurrences

at each location to derive a relative co-occurrence measure, and use
only diversity as social strength. This measure may give higher
importance to outliers (i.e., local frequency), and thus may still
overestimate the social strength due to coincidences. Hence, we
generalize Shannon by using the Renyi entropy that can look at the
global pattern of co-occurrences per user pair and has the flexibil-
ity of giving more or less weight to outliers by varying the order of
diversity q. However, Renyi is still blind to the characteristic of a
location (e.g., whether the location is a crowded public coffeehouse
vs. a private office). Therefore, we incorporate weighted frequency,
which utilizes location entropy to weigh each co-occurrence differ-
ently depending on the characteristics (crowdedness) of the loca-
tion, thus it captures minor co-occurrences that can be a significant
indication of a social connection. A summary list of our contribu-
tions is provided below.
e EBM quantifies the strength of each social connection by con-
sidering how diverse the distribution of the co-occurrences is in
the context of locations (aka diversity).

e EBM avoids overestimation by discounting coincidences, utiliz-
ing diversity’s order - an important property of diversity.
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e EBM compensates for the data sparseness by taking into account
the local characteristics of locations (e.g., location popularity).

o We evaluated EBM using a large real-world dataset collected by
a location-based social network called Gowalla. We 1) use only
the Gowalla’s location data to infer users’ social connections,
and 2) use the Gowalla’s social-network as the ground truth.

e Our evaluation shows that EBM’s predicted social strength is
consistent with ground truth. 88% of social strengths are cor-
rectly predicted by our model.

o As for inferring friendships, by using the the diversity, we achieve
a precision of 96.5%, but the recall was low due to the data
sparseness. However, after incorporating location entropy into
EBM, we improve the recall by a factor of 1.8.

e Our EBM’s algorithm is parallelizable, thus can be implemented
using the MapReduce framework in order to be efficient for mas-
sive data, which is critical in any online applications.

e Finally, we experimentally compared our model to the previous
studies, including GEOSO [15], probabilistic model [6], the fea-
ture model [7] and the trajectory model [12], and the results show
that EBM outperforms them in both efficiency and accuracy.

The rest of this paper is organized as follow: In Section 2, we for-
mally define the problem and discuss the preliminaries necessary
to construct the model. In Section 3 we explain the EBM model
and how it answers the questions raised by the paper. Section 4 de-
scribes the optimization of the algorithm to deal with large datasets.
We describe the experiment in Section 5, related work in Section 6,
and make the conclusion of the paper in Section 7.

2. PROBLEM DEFINITION

In this section we will give the formal definition of the problem
and introduce the notations and preliminaries that are used later to
formulate the EBM model.

2.1 The Problem

As a user checks in at a location, the following information will
typically be recorded and sent to the server: User’s ID - u; User’s
location - [, which consists of latitude and longitude’s values and a
unique ID that represents a specific place such as a shopping center,
a theater, a living house, etc; the time of the check-in - ¢. Therefore
users’ check-ins can be represented as a set of user-location-time
triplets < w, [, t >, each of which states that User u visited location
[ at time t. We give the formal definitions of the problem as follow:

DEFINITION: Social strength is a quantitative measure that
tells how socially close two people are.

DEFINITION: Given a set of users U = (u1, u2, ..., uar), a set
of locations L = (l1,l2...,In) and a set of check-ins in the forms
of user-location-time triplets < w, [, t >, the problem is to infer the
social strength for each pair of users.

Note: The only time-related input to the problem is the check-
in’s time. Another possible input that can greatly influence social
strength is the amount of time two users stayed together at a place,
often referred to as length of stay. However, most location-based
social networks nowadays, such as Facebook, Foursquare, Yelp,
etc., neither record the length of stay nor provide such services. In
fact, users check in at places, but never check out. Therefore, we
design our model to capture such reality by limiting the input to
only User IDs, locations and check-in times. Desirably, the length
of stay can be a consideration in our future work once such infor-
mation becomes readily available.
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Figure 1: A quadtree storing areas of different levels of popu-
larity, and the visits of Users 1,2 and 3

2.2 Preliminaries

2.2.1 Representation of Location

One popular way of storing visited locations is to use a grid to
uniformly partition the space into disjoint cells of equal size [6, 15],
where each cell represents only one place, so that any two people,
who check in within the same cell at the same time, are considered
to have a co-occurrence. However, a uniform grid is inflexible and
inefficient due to the two following reasons: 1) In a crowded area
such as a downtown, a place, which represents the location of a
co-occurrence, say a shopping center, is often much smaller com-
pared to a place in a sparse mountainous region, say a national park.
Hence, the method of partitioning the space into equal cells is not
applicable here. 2) Reducing the size of all the cells to fit small
places in crowded areas would result in much waste of storage re-
sources and look-up time in sparse areas, meanwhile, increasing
the cells’ size to fit to large places in sparse regions would result in
misinterpreting the co-occurrences in crowded areas.

Therefore, to efficiently store spatial data, we use quadtree [17].
Fig. 1 shows a quadtree, where each quadrant, called cell, has a
unique ID, numbered from 1 to 10. Three users are shown as cir-
cles, diamonds and squares uniquely identified with user IDs 1, 2
and 3. The arrows show that a user checked in at the cell at time
t;. The darker, the denser the area. Geo-points inside a cell share
the same cell ID, which is used along with time to determine co-
occurrences. For example, looking at cell 1, we say Users 1 and 2
co-occurred at cell 1 at time 2.

For simple presentation, we set the capacity of each cell of the
quadtree to 1 so that each cell can cover a maximum of one place
(in the experiment, the capacity is more than 1). The construction
of the tree can be done by recursively dividing an area into four
equal quadrants until each quadrant holds only one place.

2.2.2  Visit Vector

The visit history of a user is represented by a visit vector, which
shows the cell IDs and the check-in time. For example, the visit
vector for User 1 in Fig. 1is V4 = (< t2 >, < t3,t6 >,...), which
states that User 1 visited cell 1 at time to; visited cell 2 at time t3
and tg, etc. The general format of the visit vector of User ¢ is:

V= (< t171, ‘..,t17~;1 >, < 75]»{,1,151\/[,27 .--7t1\l,iM >) (1)

where M is the number of leaves in the quadtree.
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2.2.3 Co-occurrence Vector

If two users checked in at the same location within a time-interval
T, then we say that they have a co-occurrence. 7 is an application-
dependent parameter and can be set experimentally. Correspond-
ingly, a co-occurrence vector between User 7 and User j represents
all the co-occurrences of Users ¢ and j is:

2

where c;;; is the number of co-occurrences between Users ¢ and j
at location [, which is referred to as local frequency, which will be
used throughout this paper.

For example, given the visit vectors of User 1 and User 2:

Vi = (< t2 >, < ts,t6 >, < ts, t10, t11,t12,t13 >, < t14a >, <
ti6 >,0,0,0,0,0)

Vo = (< ti,te >, < t3,ta,ts,t7 >, < tg,tg >, < tia,t15 >, <
tie >, < ti7 >,0,0,0, 0)

we see that the two users have one co-occurrence at location 1 at
time t2, one co-occurrence at location 2 at time t3, etc, therefore
the co-occurrence vector between User 1 and User 2 is:

C12=(1,1,1,1,1,0,0,0,0,0)

Cij = (Cij,1,Cij,25 -, Cij, M)

Usually, a user can only visit a limited number of locations,
which makes the visit vector and the co-occurrence vector sparse
(containing many zeroes). Therefore, we will introduce an alterna-
tive data structure and storage for optimization in Section 4. For
now, we use this format to simplify the presentation.

3. THE EBM MODEL

The goal of this section is to devise a model, named Entropy-
based Model (EBM), to quantify social strength between two users
from their co-occurrence vectors. The overview diagram of EBM is
shown in Fig. 2. In Section 3.1, we start by utilizing the diversity of
the co-occurrence vectors as the main contributing factor to social
strength. Consequently, we use the Shanon entropy to measure the
diversity of co-occurrences (see Section 3.2), but we observe that
this measure may overestimate the strength of social connections
due to the impact of coincidences, which are the case when people
happen to co-occur by chance, but do not interact with each other,
especially in crowded places such as downtown and shopping cen-
ters. Hence, we generalize Shanon entropy to the Renyi entropy
(see Section 3.3), which gives us the flexibility of controlling how
much coincidences can contribute to diversity via a parameter g,
called the order of diversity. Finally, to compensate for the prob-
lem of data sparseness, we incorporate weighted frequency, which
in turn uses location entropy, into our model in Section 3.6 to in-
crease the impact of co-occurrences at uncrowded places even at
low frequencies to the strength of social connections. The resulting
social strength is the ultimate measure that describes how close two
people are based on the history of their spatiotemporal information.

| Shannon Entropy | | Location Entropy |

¥ ¥

| Renyi Entropy |

v v

| Social Strength |

| Weighted Frequency

Figure 2: Diagram of EBM - Social strength is formulated via
Renyi Entropy and Weighted Frequency



3.1 Diversity in Co-occurrences

The concept of diversity has long been used in Physics, Eco-
nomics, Ecology, Information Theory, etc, as a quantitative mea-
sure to characterize the richness of a system [10, 11, 19]. Specit-
ically, in Ecology, diversity is used to measure how diverse an
ecosystem is; in the simplest case, it equals the number of different
species in an ensemble. In Statistical Thermodynamics, diversity is
the number of micro-states, in which a system can be [18].

Consider the co-occurrence vectors for each user pair in Fig. 1,

Cy2=(1,1,1,1,1,0,0,0,0,0)
Ca =(1,2,1,1,0,0,0,0,0,0)
C3 = (0,0,4,0,0,0,0,0,0,0)

we see that User 1 and User 2 have 5 co-occurrences, so do User
2 and User 3. However, in the former case the co-occurrences are
spread over 5 different locations, while in the latter case the co-
occurrences happened in 4 different locations. Even simpler is the
case of User 1 and User 3, for which all co-occurrences happened
in one location - cell 3. We say that C'12 is more diverse than Coas,
and Cb3 is more diverse than C3.

Intuitively, people, who are socially connected, tend to visit var-
ious places together [5, 6, 7, 9, 15]. This intuition is captured by
our model as how diverse their co-occurrences are. Applying the
general definition of diversity in [20], we formally define diversity
in our model:

DEFINITION: Diversity is a measure that quantifies how many
effective locations the co-occurrences between two people repre-
sent, given the mean proportional abundance of the actual locations.

3.2 Formulation of Diversity through
Shannon Entropy

In this section, we use Shannon entropy, then we will extend
EBM to a more generic one, called Renyi entropy, in Section 3.3.

First, we define the notations and quantities that will be used to
construct EBM. rfz =< 1,4,l,t > is a co-occurrence of User ¢

and User j at location [ and at time ¢. Rﬁj =, rﬁ:j- is the set of

co-occurrences of User ¢ and User j, which happened at location

l. R;j; is the set of all co-occurrences of User ¢ and User j at all

locations: R;; = |, Réyj =U: ré:;

The probability that a randomly picked co-occurrence from the
set R;; happened at location [ is:

b R

YRyl

If we randomly pick a co-occurrence from the set R;; and define its
location as a random variable, then the uncertainty associated with
this random variable is defined by the Shannon entropy for User ¢
and User j as follow (the upper index S denotes Shannon):

=-2n

Formulation of diversity: There exists a distinction between en-
tropy and diversity, in which entropy often acts as the index of di-
versity. For illustration in the former research [11], Jost et al com-
pared the roles of entropy and diversity as the radius and the volume
of a sphere, respectively, where radius is used to calculate volume;
and showed their relationship:

D = exp(H)

3

jlog P C)

&)

where D is diversity, which indicates how diverse an ensemble is.
Following this strategy, we construct the EBM model, where D
shows how diverse the co-occurrences of two users are in terms of
locations. The diversity of the co-occurrences of User ¢ and User
J, which is defined in Equation 5, becomes:
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D]—exp(H )-exp( Z ; log P, ) 6)

Since we already defined the co-occurrence vector in Equation (2),
we can rewrite the expression of diversity D;; in terms of the co-
occurrence vector as follow:

D;j =exp | — Z

l,cij,170

Cij,l

fij

Cij,l lo

fij

(M

where fi; = Y, ¢i;,1 is the total number of co-occurrences of User
¢ and User j, named frequency. Note the difference between fre-
quency fi; and local frequency c;j,i; the frequency of two users is
the sum of all their local frequencies. From Equations (5), (6) and
(7), we have observations:

o The higher the number of co-occurrence locations, the higher the
uncertainty given by the Shannon entropy, and consequently the
higher the diversity.

e If the number of co-occurrence locations is fixed, the diversity
and the Shannon entropy reach their maximums when all the
probabilities in Equations (5) and (6) are equal to each other.

To demonstrate the observations, let us consider the example of a
group of three users in Fig. 1. The co-occurrence vectors, Shannon
Entropy, Diversity value, the diverse information, the likelihood of
coincidences and the probability of being friends for each pair of
users are summarized in Table 1.

From Table 1, we see that C'12 has the highest value of diversity
due to the spread of co-occurrences over more locations, or in other
words, C12 is the most diverse, followed by Cas, then followed by
C13, which is the least diverse as all the co-occurrences happened at
only one place - cell 3. For C'2, the numbers of all co-occurrences
are equal to each other (in the first five cells), which produces the
maximum value of Shannon entropy, and consequently, the max-
imum value of diversity among the three co-occurrence vectors,
together with the highest number of co-locations (i.e., 5), which
makes it the most diverse, therefore, suggesting a high probability
of User 1 and User 2 being friends. Furthermore, the value of di-
versity D12 coincides with the number of co-occurrence locations,
which is the reason why diversity is often referred to as the effec-
tive number of states (in Statistical Mechanics [18]) or effective
number of species (in Ecology [11]).

In addition, we see that the diversity of Ca3 (3.789) is less than
the number of co-occurrence locations (i.e., 4), which is due to
the fact that it has two co-occurrences at one place - cell 2 (less
diverse), as compared to the case of C2, where all co-occurrences
are uniformly spread over five different cells (more diverse).

We also observe an interesting point where all four co-occurrences
of User 1 and User 3 happened at a popular place - cell 3, which
has been visited by all three users and has the highest number of
co-occurrences in total. This fact implies the high likelihood of co-
incidences between User 1 and User 3, for example, they might just
happen to be at a crowded public place (such as a shopping center
or a library) at the same time. Therefore, even four co-occurrences
in such a crowded place might still say very little about a possible
social connection. We have the following observation:

Observation: A high number of co-occurrences at only one place
might be an indicator of a friendship if the place is unpopular and
uncrowded, but they might suggest the likelihood of coincidences
in popular and crowded places. Shannon Entropy and its corre-
sponding diversity, however, would treat multiple co-occurrences
as coincidences independent of where took place. Also, Shannon
Entropy does not allow us to adjust the impact of this type of co-
occurrences on the diversity. Therefore, it is necessary to examine



Table 1: Example of Diversities

Co-occurrence Vector Shannon Entropy | D;; Value | Diversity | Likelihood of Coincidences | Prob. of a Friendship
C2=(1,1,1,1,1,0,0,0,0,0) 1.609 5.000 High Low High
Css = (1,2,1,1,0,0,0,0,0,0) 1.332 3.789 Medium Medium Medium
Ci13 =(0,0,4,0,0,0,0,0,0,0) 0.000 1.000 Low High Low

these issues to avoid any false predictions that coincidences might
cause. We will address this in Sections 3.4 and 3.5.

3.3 Renyi Entropy-based Diversity

As we discussed in Section 3.2, even though the Shannon En-
tropy (and its corresponding diversity) can capture the likelihood
of a social connection between two people, it cannot distinguish
the cases when coincidences might or might not happen and does
not allow us to adjust the impact of coincidences. Rennyi entropy
and its corresponding diversity, on the other hand, will give us the
utility to control how much coincidences can contribute to diversity.
In fact, Shannon entropy is just a special case of Renyi entropy.

Consider the general case of entropy - Renyi entropy, given as:

Hj = < log ) (Pff)q> /(g —1) ®

where g > 0 is the order of diversity. The diversity given by Equa-
tion 5 becomes (The upper index R denotes Renyi):

Dy = exp(H) = exp K— log ) (Pf]-)q> /g~ 1)]
l
. 1/(1-q) 1/(1-q)
= [exp <logz (Pil]-) ):| =
!

1/(1—q)
- <<%Ll>q
leij,17#0 Fis

Equation (10) expresses the diversity in terms of a co-occurrence
vector. The elegance of using the Renyi entropy in our problem lies
inside the parameter g, called the order of diversity, which indicates
its sensitivity to the local frequency c;;,; [16]. Specifically:

> (Pz‘lj)q

l

&)

10)

e When g > 1 the Renyi entropy Hi]} , and consequently the diver-
sity D;;, more favorably considers the high values of c;;;, which
are the more popular events. In other words, the higher the local
frequency c;;,;, the more weight it gets from the diversity or the
more impact the local frequency can make on diversity.

e When g < 1, in opposite, the diversity tends to give more weight
to the local frequencies with low-values c;;,;.

e When ¢ = 0, the diversity is completely insensitive to c;;,; and
gives the pure number of co-occurrence locations.

e Case ¢ = 1: The Renyi entropy favors local frequencies c;;,; in
opposite ways when g < 1 versus when ¢ > 1, therefore ¢ = 11is
the pass-through point where Renyi entropy and its diversity stop
all of their biased favors and weight the local frequencies c;;,; by
their own values, which is what Shannon entropy captures. This
suggests a meeting point of the two entropies. Indeed, even
though Equations (8), (9) and (10) are undefined at ¢ = 1, their
limits exist when ¢ — 1 (see the proof below) and become the
Shannon entropy and the diversity defined in Section 3.2 .

Proof of Renyi Entropy’s Limit: At ¢ = 1 Equation (8) is un-
defined at its form f(¢)/g(q) = 0/0, where f(q) = —log ), (Pilj)q
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and g(¢) = 1 — g. Therefore, we use I’Hopital’s rule to find its
limit, whichislimg—1 f(q)/9(q) = limg—1 f'(q)/9'(q). f'(a) =
(=1/ 3, (PL)) x 3,(P};)log P}y, and ¢'(q) = —1 (assum-
ing natural logarithm for simplicity). Plug in the value ¢ = 1 in the
equation f'(q)/g'(q), we get:

limg1 f(9)/9(a) = f'(0)/9'(@)]e=1 = 3=, Pilj log Pilj- The last
formula is nothing but Shannon entropy, thus the limit existence of
Renyi entropy is proved. This also leads to the limit of diversity
as D = exp(H), and at ¢ = 1 Equations (9) and (10) become
Equations (6) and (7), respectively.

We see that the impact of the local frequency on the diversity is
not always necessarily determined by just its own value c;;,;, but
also by the value of parameter ¢q. This moves us one step closer to
solving the problem of coincidences, which we are going to discuss
in Section 3.4.

3.4 Coincidences

Coincidences occur when two people happen to be at the same
places at the same time but never or rarely get a chance to see and
communicate with each other, thus less possibility of being friends.
This happens often in popular and crowded places where coinci-
dences are frequent, such as cafeteria, public libraries, etc.

Consider the following example: assume there are 5 cells and
consider two user pairs (a,b) and (c,d) with co-occurrence vectors:
Caw = (10,1,0,0,9) , Ccq = (2,3,2,2,3), respectively. We
also assume that cells 1 and 5 are highly crowded places, cell 2 is
medium-crowded, while cell 3 and 4 are non-crowded, based on the
number of visits. Intuitively, this example suggests that c and d are
far more socially connected than a and b as the co-occurrences of
a and b are likely coincidences; the co-occurrence at cell 2 would
be the only one that is medium-significant for friendship of a and
b, while ¢ and d would have 7 of such or even more significant
co-occurrences from cells 2, 3 and 4. First, obviously, using the
total number of co-occurrences would give a wrong suggestion that
(a,b) are socially closer to each other than (c,d). Second, using the
number of co-occurrence locations (/V L) for social strength would
give us a relative value N Ly /N Leq = 3/5, which still indicates
a recognizable level of connection of (a,b) compared to (c,d), but a
fair measure would reasonably want that level to be low.

Now let’s see how diversities of Shannon and Renyi entropies
address the challenge in the example above. We set the value of ¢
(order of diversity) to 0.5, less than 1, which, according to the dis-
cussion in Section 3.3, will limit the impact of coincidences. The
relative value for Shannon entropy of two user pairs is H>, /H S =
0.86/1.59 = 0.54, relative Shannon’s diversity is be/Dfd =
2.35/4.90 = 0.48, relative Renyi entropy is H} / H, = 3.20/5.63
= 0.56, relative Renyi’s diversity is DX /DR, = 24.60/279.67 =
0.09. First, the Renyi’s diversity shows a relatively high level of
social connection of (¢, d)) compared to (a, b) (D /D = 0.09),
which we would expect intuitively. Second, compared to Renyi’s
diversity, Shannon’s diversity does not limit the impact of coinci-
dences, consequently, the social strength of (a,b) is still high com-
pared to that of (c,d) (D3, /Dcsd = 0.48). Third, using entropy
(either Shannon or Renyi) instead of diversity as a metric of social
strength still results in a relatively high level of connection of (a,b)



compared to (c,d). Therefore, this example confirms our discussion
in Section 3.2 that Entropy can only act as the index of diversity,
but should not be used as a direct metric for social connection.

We see that coincidences often produce high local frequencies
cij,1, which, if misjudged, can be overestimated. However, Renyi
entropy and its diversity give us the ability to control the impact
of coincidences on diversity through ¢, which is sensitive to the
values of local frequencies. g is one of the optimization parameters
and will be determined experimentally in Section 5.4.1.

Towards this end, we have focused on eliminating the impact
of coincidences at crowded places. However, we have not yet an-
swered the following two questions: 1) What characterizes crowded
and non-crowded places, or even further, the level of crowdedness?
2) What can be used to determine the likelihood of coincidences
in co-occurrences, even when local frequencies are low, and op-
positely, the likelihood of non-coincidences when frequencies are
low or high? We are going to answer these questions in Section 3.5
utilizing Location Entropy and Weighted Frequency.

3.5 Location Entropy

Location entropy is a crucial part in weighted frequency. It was
first introduced in [7] to describe the popularity of a location. Let
I be a location, V., = {< u,l,t >: Vt} be a set of check-ins at
location ! of User uw and V; = {< u,l,¢ >: Vt,Vu} be a set of all
check-ins at location [ of all users. The probability that a randomly
picked check-in from V; belongs to User w is Py, = |Vi,u|/|Vi]-
If we define this event as a random variable, then its uncertainty is
given by the Shannon entropy as follow:

H =— Z Py, log Py,
u, P, 1 #0

11

A high value of the location entropy indicates a popular place with
many visitors and is not specific to anyone. On the other hand, a
low value of the location entropy implies a private place with few
visitors, such as houses, which are specific to a few people.

To help understand the meaning of location entropy, let’s assume
a simplified case, when N users have visited a location !/ and each
user visited it exactly once. The location entropy then becomes:

Y11
H = ;NlogN =log N 12)

As we see in this simplified case, location entropy is the logarithm
of the number of unique users, who have been at the place. We
show the dependence of location entropy’s value on the number of
unique visitors for this simplified case in Fig 3(a). Fig 3(b) shows
an example of location entropy for the case of three users from Fig
1, where the value of location entropy of each cell is underlined.
Note that cell 7,8,9 and 10 have no visitors and they have a default
value of 0 for location entropy (not shown in the figure). Fig. 3(b)
tells us that location entropy is not really determined by the number
of visits, but rather by the number of unique visitors. In addition,
the location entropy is higher if the location is less specific to any
user. Location entropy helps us answer two questions:

e Using location entropy, we can determine the places where co-
incidences are highly probable, even when the frequency of a
user pair in such places is low. That is because location entropy
for a place takes into account the visits of all others to that place.

e A low number of co-occurrences (low local frequency) at an
uncrowded place can also be a significant indicator of social
connections, even if the diversity is low. When the number of
co-locations is low, the diversity will also be low, hence this type
of co-occurrences cannot be captured by the diversity measure.
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Figure 3: Location Entropy (LE)

Therefore, it is necessary to ensure that co-occurrences at highly
private places are given more priority or weight.

Using location entropy, we will introduce weighted frequency in
Section 3.6 to capture this type of co-occurrences

3.6 Weighted Frequency

Co-occurrences in small uncrowded places, such as private houses,
often results in more social interaction, as compared to those in
crowded places. Therefore, the probability of friendships strongly
depends on the locations of co-occurrences. Given the co-occurrence
vector of Users ¢ and j in Equation (2), we define the weighted fre-
quency, which tells us how important the co-occurrences at non-
crowded places are to social strength, as follow:

Fij = Z Cij,l X exp(—Hl)
l

13)

It is interesting to note that exp(— Hy) is the inverse of diversity of a
location in terms of its visitors. This weighted frequency is inspired
by tf-idf - a numerical statistic widely used in information retrieval
and text mining [3] to measure the importance of a term/word ¢ to
a document in a corpus. #f is term frequency and often taken as
the number of times the term appears in a document. idf is inverse
document frequency, defined as |D|/(|d € D,t € d| + 1) - the to-
tal number of documents |D| divided by the number of documents
that have ¢. In our problem, location is similar to document in tf-
idf, thus the number of co-occurrences at a location is similar to
term frequency in a document. However, to weight co-occurrences,
we use exp(— H;), notidf, since location entropy provides insights
into the intrinsic characteristics, i.e., the visiting patterns to a loca-
tion. idf is not suitable here because by its definition, it says how
important or how specific a user pair is to a location, but we want
to answer a different question: how important a co-visit to that lo-
cation is to a pair of user?

Another tempting approach, which is also inspired by #f-idf and
in fact, used in [7], would be using c;;:/ Y, cij,i - the number
of co-occurrences of a user pair at a location divided by the total
number of co-occurrences by all user pairs at that location. To show
the shortcoming of this approach, assume we have a private living
house of a couple, who have made check-ins to produce 1000 co-
occurrences. Another guest couple visited them once and made 1
co-occurrence. The ¢,/ >, ¢ij,1 for the guest couple in this house
is 1/(1000+1) = 1/1001, which is very low and, therefore, would
say nothing about the social connection of the guest couple, but as
we know, such a co-occurrence, even just one, is a high indication
of a social connection. Our weighted frequency, however, looks
at this case differently. Since the house is visited by few people,
its location entropy is low (0.0079), which makes a high value of



weight exp(—H;) = 0.9921 (note that 0 < exp(—H;) < 1).
Thus, this only co-occurrence makes a high impact on weighted
frequency and is significant for the connection of the guest couple.

To continue the example in Section 3.4, we calculate weighted
frequencies for the two couples (a,b) and (c,d). As we assumed
earlier, cells 1 and 5 are crowded places. To compute location en-
tropy, we also need the visit information of other users in each cell.
To achieve that, assume there are additional 20 visitors at each of
cells 1 and 5, and each of them visited the cell 10 times. For sim-
plicity, also assume that each user a, b, ¢ and d visited each cell as
many times as they co-occurred with their partners. The weighted
frequency for each pair is Fg, = 1.10 and F.q = 3.07. Our analy-
sis shows that F,; is mostly impacted by cell 2, and F.q is mostly
impacted by cells 2, 3 and 4, which matches our expectation that
only non-crowded places contribute to weighted frequencies.

Note: Diversity and weighted frequency answer two different
question. Diversity decreases the impact of frequent coincidences
while weighted frequency increases the impact of co-occurrences
at less crowded places; the less crowded, the more impact.

Data sparseness: Weighted frequency plays an important role
when it comes to data sparseness, i.e., when the availability of spa-
tiotemporal data is very limited - only few co-occurrences for each
couple, the Renyi’s diversity can be very low. However, weighted
frequency compensates for low diversity by further looking into lo-
cation characteristics to capture the co-occurrences at non-crowded
areas, which can be insignificant for diversity, but very significant
for weighted frequency, and for friendship, consequently.

3.7 Social Strength

So far, we have formulated two independent ways, through which
co-occurrences contribute to social strength: 1) Diversity (through
Renyi entropy) - which measures how diverse the co-occurrences
of two people are, and at the same time, can control and tell us
how much coincidences can impact diversity, and 2) Weighted
frequency - which favorably captures the local frequencies of co-
occurrences at uncrowded places and can compensate for diversity
in case of data sparseness. If we want to combine these two mea-
sure to produce an ultimate one for social strength, it is necessary
to understand the relative importance of each component-measure
to social strength. To illustrate, from the example discussed in Sec-
tions 3.4 and 3.6, we have (D5, = 24.60, F,, = 1.10), (DX, =
279.67, F.q = 3.07). We see that the two measures have differ-
ent scales; as we decrease the order of diversity g, diversity will
scale itself up to more clearly differentiate the impacts of coinci-
dences and non-coincidences. As we see DY /DE, = 0.09, but at
the same time the diversity’s scale goes up to 279.67 and weighted
frequency remains at a low scale F.q = 3.07. This challenge influ-
ences us in the way we combine the two measures together.

We now formulate the social strength, which ultimately tells how
close two people are, by doing a linear regression over diversity D;;
and weighted frequency Fj;:

where @ and W are two linear functions and s;; is the ultimate
strength measure we look for. Since D;; focuses on the distribu-
tion of co-occurrences over different locations, while F;; focuses
on the intrinsic properties of locations, they are independent of each
other, subsequently, Equation (14) takes us to a multiple regression
problem over two independent variables D;; and F;;. For conve-
nience of conducting the multiple regression, we rewrite Equation
(14) in an explicit form through optimal parameters c, 3 and ~:

Sij = CM.DZ'J' —+ ﬂFlj +y (15)
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where D;; and Fj; are defined in Equations (10) and (13), respec-
tively. Parameters «, 8 and v ' can be learned from dataset and/or
provided by user. In Section 5.4.2 we show how these parameters
can be learned from training data and applicable across networks.
Equation (15) is the final formula to determine social strength
between two users given their co-occurrences in time and space.

4. OPTIMIZATION

To be efficient with massive datasets, we optimize the implemen-
tation by using k-d tree [1] for data structure and using MapReduce
framework to parallelize the computation.

different time

Figure 4: Data Structure

Data structure: We use k-d tree [1] with slight modifications
to make it suitable for our problem. It is a 3-D tree shown in Fig.
4, with an (z, y) plane for representing locations, and a t-axis for
time. The details of k-d tree’s implementation can be found in lit-
erature [1]. Our focus here, however, is how to split the tree or
sub-tree (named rectangular parallelepiped or RP for short) into
smaller sub-trees when inserted data exceeds its capacity? To do
that, we can either split the 1-D time interval into two equal halves
or the 2-D spatial square of the RP into four equal quads. The for-
mer method is cheaper as it is a 1-D split. However, consider the
case of quad ABCD in Fig 4, spatial splitting is a better option
as the spatial points are evenly spread out over the quad but all the
temporal points shrink to one end of the time interval. In contrast,
in the DEFG quad, temporal splitting is a better option. To fa-
cilitate decision making, one more time, we use entropy. Assume
we have N check-ins in an RP. Divide the RP’s spatial quad into
S = 4" equal cells indexed from 1 to S, and the RP’s time interval
into T' = 2™ equal sub-intervals indexed from 1 to 7" (n and m are
integers), then for the check-ins, the spatial Shannon entropy in the
quad and the temporal Shannon entropy in the time interval are:

Sq Sq t; t;
H, = 72 V() He= 72 (%)
i J

where s; and ¢; are the numbers of check-ins in spatial cell ¢ and
time sub-interval j, respectively, and 1 < ¢ < 5,1 < j < T.
The more evenly spread-out the check-ins in the quad (or the time
interval), the higher the entropy. These two quantities give us the
clue of which dimension to split in an RP when it reaches capacity
N. The empirical values for S and T"is 16 (n = 2 and m = 4). In
general, when the two entropies are roughly the same, time splitting
is chosen to save storage cost.

Implementation with MapReduce: First, with k-d tree, the
search for co-occurrences becomes efficient and standard as the
time interval and the spatial quad can efficiently filter out all non-
candidate points. The MapReduce implementation can be done in

(16)

'Tt is possible to keep only one parameter, say «, let 3 = 1 and
skip v. However, we keep all the three parameters just to follow
the more traditional form of the multiple regression problem.



two phases. In the first phase, Maps build partial co-occurrence
vectors in sub-trees, and Reduce combines them to make full co-
occurrence vectors and compute diversities. In the second phase,
Maps compute location entropy for each RP, while Reduce will
use the entropy values to compute weighted frequencies.

5. PERFORMANCE EVALUATION
5.1 Dataset

The data used in the experiments was collected by Gowalla - a
location-based social network, where users shared their locations
through check-ins. The data was collected from February 2009 to
October 2010 and consists of two different sets. The first set is
spatiotemporal data, which has 6,442,890 check-ins from 196,591
users. Each check-in has format: <user ID, latitude, longitute,
timestamp, location ID>. The second set is a social graph of friend-
ships among users. It has 950,727 edges (or friendships).

Since Gowalla’s spatial data are heavily concentrated in the US,
we used only the spatiotemporal data within the US for the experi-
ments. We divided the data into two subsets, training set and eval-
uation set. The training set contains 2,957, 830 check-ins in the
West of USA (named L.est), and the social network of 102, 320
users who performed check-ins in the West (named Syest). The
evaluation set contains 3,485, 060 check-ins in the East of USA
(named Lcqs¢) and the corresponding social network of 95, 725
users (named Seqst). Since some users performed check-ins in
both the West and East parts, the two subsets Syest and Seqst Over-
lap. However, our analysis shows that the overlaps of users is just
0.74%, and of friendships is only 0.107%. Thus, the overlap is
insignificant and cannot affect our evaluation.

5.2 Methodology

The two metrics we use to measure the accuracy of our tech-
niques are precision and recall. Let T'C be the set of true social con-
nections reported by Gowalla’s social network (i.e., ground truth)
and RC be the set of user pairs that our model reported as socially
connected. The precision and recall are defined as:

|TC N RC| |TC N RC|
p==— " p=-1== ¥
|RC| 7 TC|

where N denotes the intersection operation.

an

5.3 Experiment Setup

We conducted our experiments on Amazon EC2 cluster with in-
stances running on 64 bit Fedora 8 Linux Operating System with
15GB menory, 4 virtual cores and 4 disks with 1,690 GB storage.
Our Map/Reduce algorithm is implemented using Hadoop version
0.22.0. To obtain consistent results, we used the same setup to per-
form all the experiments.

5.4 Results
5.4.1 Order of Diversity

In this set of experiments, we want to examine how the order of
diversity ¢ controls the impact of coincidences on diversity and find
the optimal value for q. Towards this end, we use only diversity as
social strength. To be completely unbiased, we do this experiment
using only the training data L.es¢ and Swest-

We perform this particular experiment through the following steps.
Step 1: Vary the order of diversity ¢ from 0 with a step of 0.1, then
for each value of g, we calculate diversity ng based on Equation
(10). Step 2: Since Swyest only tells us if two users are friends or
not, while our output D;; gives us a numerical value (assumably

strength), we need to somehow make the two comparable. To ac-
complish this, we define the threshold of diversity to be D7 so that:
if Df; > D? then User i and User j are considered to be friends
by our model; otherwise they are not. Therefore, we vary threshold
DY from 0 with a step of maxz(D;;)/1000, take user pairs with
diversity ij > DY (assuming they are friends) to compare with
the real friendship information in Sy,es+ and calculate precision P
and recall R. As a result of varying D7, we get the dependence of
precision and recall on q.

Figs. 5(a) and (b) show the results of how g impacts precision.
The x-axis shows the order of diversity ¢ and the y-axis shows the
precision. To simplify the graph visualization, we split the graph
into two, each shows three curves, each curve corresponds to one
level of recall. In addition, we only show the results of ¢ that ranges
from O to 2.0 to keep a high level of details since further increasing
q beyond 2.0 decreases the precision dramatically. We made the
following observations:
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Figure 5: The impact of the order of diversity on precision.

Our major observation is all the curves at 6 different recall’s lev-
els show the same behavior: they all peak at ¢ = 0.1, which
says ¢ = 0.1 is the optimal value for limiting coincidences’ im-
pact. We believe this optimal value is a general phenomenon
across networks for two reasons: first, all the networks nowa-
days share the same nature of check-ins as users share their loca-
tions with their friends; second, coincidences are general spatial
phenomena and happen to all networks without bias to any par-
ticular network. To confirm this phenomenon, we repeated this
experiment on another similar dataset from a different network -
Brightkite, which consists of 58K users, 214K connections and
4.5M check-ins. The result showed a peak again at ¢ = 0.1 with
a very insignificant fluctuation (0.004), which can be considered
as experimental uncertainty.

e The case ¢ = 0 makes the diversity equal to the number of co-
occurrence locations (a.k.a richness). Fig. 5 shows the fact that
simply setting the diversity to the number of co-occurrence lo-
cations will produce low precision. This is because coincidences
are completely ignored and all cases of co-occurrences are con-
sidered equally important.

e When q increases from 0.1 to 2.0, the diversity increasingly
favors high local frequencies. Consequently it favors coinci-
dences because coincidences often produce high local frequen-
cies. Therefore coincidences now are out of control and have
more impact on diversity, which causes false predictions, and
consequently, causes the decrease in precision.

e Further decreasing g from 0.1 to 0 also results in the degradation
of precision, because low values of ¢ (¢ < 0.1) not only limits
the impact of coincidences (high local frequencies), but also lim-
its the impact of non-coincidences (medium local frequencies),
which results in excessive controlling or over-limiting.



We will use the optimal value ¢ = 0.1 for the rest of our experi-
ments. Note that diversity mainly deals with precision since its role
is to avoid coincidences. Therefore in Fig 5 we used precision to
learn about the order of diversity. The low recall associated with di-
versity will be compensated by weighted frequency, which is what
we are going to examine next.

5.4.2  Social Strength

Our goals in this set of experiments is 1) to compute the so-
cial strength by experimentally conducting multiple linear regres-
sion over diversity D;; and weighted frequency F};; 2) to evaluate
the social strength by relating it to friendship information from the
ground truth Seqs¢.

Linear Regression: In order to find the social strength in the
evaluation dataset L.qs¢, wWe first need to use the training set (Lest
and Syest) to learn about the parameters «, 8 and v in Equation
(15) (See section 3.7). Thus, we need diversity D;;, weighted fre-
quency F;; and strength 3;; (computed only based on social graph).
We already have D;; and F;; computed from Equations (10) and
(13). However, Syest is a social graph that only tells us if two
users are friends or not, but not the strength. Fortunately, there
exist different techniques to calculate social strength based solely
on a social graph. We will use three techniques, which have been
shown to have high performance [13], including Jaccard’s index,
Adamic/Adar similarity and Katz score.

Jaccard’s index of Users i and j (J;;) measures the probability
that both ¢ and j have a randomly selected person as a friend.

Jij = [T(@) NTE)I/ITE) VT ()] (18)

where I'(i) and I'(j) are the sets of friends of ¢ and j, respec-
tively. Jaccard’s index is inversely proportional to the total number
of friends of ¢ and j. Thus, the fewer friends that ¢ and j have, the
more influential their common friends are to Jaccard’s index.

Adamic/Adar similarity (AA;;) looks further at the popularity
of each common friend of Users ¢ and j and weights each of them
differently. Consequently, a common friend, who is also a friend of
many other people, has less impact on the similarity.

1
A= D T “9)
ke T'()NC(5)

Katz score K;;: If we represent a social network as a undirected
graph with users as nodes and edges as friendships between users,
then the Katz score considers the ensemble of all paths between
two nodes and sums over this ensemble:

Kij = ZEl X |Pij,l| (20)
l

where P;;; is the set of paths of length / from node 7 to node j, and
€ is a small positive constant that defines the attenuation of Katz
score as the length [ grows. The optimal value of ¢ is shown in [13]
to be of the order 1073.
Subsequently, §;; can be any of the three measures above. Among
the three, Katz score has the best performance, followed by Adam-
ic/Adar similarity, and by Jaccard’s index [13].

The optimal values of «, 8 and -y as the results of the least-square
method in linear regression [2] are given as follow:

o = ZFE)(E Dij-8iy) = (0 Dig Fiy) (2 Fij 315) o)
(X DENEF) — (32 Dij-Fiy)?
5= D) Fig3i) = G0 Dig i) (2, Dig-3ia) 5

(D) FL) — (30 Dij Fij)?
v =3ij —a.Di; — B.Fy; (23)
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Figure 6: Percentage of real friendships vs. the social strength
of buckets.

where §;;, D;;, and F; are the corresponding mean values of §;;,
Dij and F; ij-

Applying each of the three techniques above to the social network
Swest (i.e., the training data), we compute the social strength §;;.
However, before computing parameters (v, (3, ), we first normal-
ize diversity, weighted frequency and §;; so that we can use the val-
ues of « and S to analyze the relative importance of each measure
(diversity and weighted frequency) to social strength. The values
of (e, B) for each of the Jaccard, Adamic/Adar and Katz meth-
ods are (0.441, 0.550), (0.476, 0.521), and (0.483, 0.520), respec-
tively. As we see, the two measures are comparable in their impor-
tance to social strength in all three methods. Weighted frequency
gets a slightly higher priority, which reveals a fact that many co-
occurrences at uncrowded places have low frequencies. These are
general phenomena because people check in more frequently at fa-
mous and popular places as those are more interesting to share with
friends, while uncrowded places are less interesting to share, thus
the check-in’s frequencies there should be low. It is important and
also interesting to note that this nature of check-ins is general to
all networks since the main purpose of users’ check-ins is to share
their locations with friends, despite the fact that different networks
might have different ways of encouraging users to perform check-
ins. Therefore, consider two scenarios: first, if a partial social net-
work is available explicitly for a spatiotemporal dataset, then it can
be used to compute its own parameters («, 3, 7v). Second, however,
if no explicit social network is available, then the values of (o, 3, )
can be applied across networks without much sacrifice of precision
due to the general phenomena discussed above.

Finally, applying these parameters to the evaluation dataset Leqs¢,
we compute the social strength s;; for new user pairs based on their
spatiotemporal data.

Social Strength and Friendship: Our goal now is to show the
relationship of our predicted social strength with the friendships.
We do this by grouping the user pairs with similar social strength
together into subgroups called buckets and find the percentage of
real friendships in each bucket. We perform this experiment through
the following steps. Step 1: we divide the social strength axis into
100 intervals of equal length § = 0.01. Step 2: we group the user
pairs with s;; that belong to the same interval into a bucket. Step
3: we take the user pairs in each bucket and check with the social
network (i.e., ground truth Seqs¢) to find what percents of pairs in
each bucket are truly friends as reported by Gowalla.

Fig 6 shows the results in forms of charts. The x-axis shows the
middle value of normalized social strength of each bucket (or in-
terval), while the y-axis shows the percentage of real friendships
in each bucket as checked with the ground truth Scqs¢. The three
graphs in Fig 6(a)(b) and (c) correspond to three different cases of
which technique is used in the linear regression of social strength
in Section 5.4.2: (a) Jaccard’s index is used; (b) Adamic/Adar sim-
ilarity is used; (c) Katz score is used.



Observations: First, as observed in Fig. 6, our predicted social
strength is consistent with the ground truth: user pairs with higher
social strength have higher percentage of being friends than those
user pairs with lower social strength. This also fits the intuition
that user pairs with high social strength are more involved/interac-
tive with each other, therefore they are more likely to be friends.
Second, furthermore, as Katz score is a better metric than the other
two [13], our predicted social strength also shows a better perfor-
mance when Katz score is used in the regression. Fig. 6(c) shows
a more consistent curve as the percentage is supposed to increase
when the social strength of buckets increases. As Jaccard’s index
is the worst metric compared to Adamic/Adar similarity and Katz
score, we see more fluctuations in 6(a) as the percentage goes up
and down, while Fig 6(b) and Fig. 6(c) are smoother, which means
more consistent with the ground truth.

5.4.3 Goodness of fit

Our goal in this experiment is to evaluate how well our predicted
social strength from spatiotemporal data Leqs: fits the observed
strength computed based only on social graph Seqs:? This is known
as goodness of fit. This differs from the the previous experiments as
in Section 5.4.2 we tested our social strength against friendship, but
not observed strength. Hence, we use the coefficient of determi-
nation R? to measure the variance of our predicted social strength
si; from §;; computed solely based on ground truth Seqs¢ using
each of the techniques above.

Coefficient of Determination measures how well the the pre-
dicted values fit the observed values. Let N be the number of
user pairs, 5;; = Y. 4;;/N be the mean of the observed social
strengths, SSio1 = >, (8i; — 8:;)° be the total sum of squares and
SSerr = 3°,(8:5 — sij)? be the sum of squares of residuals. The
coefficient of determination is defined as:

Sserr

2
=1 - —
R Sstol

(24
R? is a statistic that shows the goodness of fit of the model. It
ranges from 0 to 1.0; R? near 1.0 indicates that the regression re-
sults fit the real data well, while R? near 0 indicates the opposite.

Table 2: Coefficient of Determination
Jaccard | Adamic/Adar | Katz
R% | 0.691 0.830 0.877

Table 2 shows the values of R? for each different technique used
to compute §;; in the evaluation’s social network Seqs¢. First, our
model very well predicts the social strength. Particularly, if we use
Katz score and assume its absolute reliability, then 87.7% of the
social strengths in the East of USA are predictable by our model.
Second, Katz and Adamic/Adar methods fit our linear regression
better than the Jaccard’s index. Logically, this also fits the evalu-
ation in [13], which reported that Katz score is a better metric for
social strength, followed by Adamic/Adar similarity, and followed
by Jaccard’s index. Third, the values of R? are high, which implies
that linear regression is the right choice to integrate diversity and
weighted frequency together.

5.4.4 Precision and Recall

We already showed that the precision of EBM is very high in
Section 5.4.1, even just using diversity. Here, we would like to eval-
uate its recall. That is, what percentage of Gowalla’s social connec-
tions can be predicted by just analyzing the check-in data? Note
that this is a very tough challenge since the check-in data collected
from Gowalla is very sparse (unlike more active social-networks
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such as Foursquare). For example, we analyzed the Gowalla users’
co-occurrence vectors and found that out of 996,621 user pairs
who have co-occurred, only 4.3% of them co-occurred more than
three times. 95% of pairs have few co-occurrences, which will in-
evitably limit the opportunity of exploring the social connections
from this sparse spatiotemporal data. To alleviate this, we could
have used other factors that can help us to infer social connec-
tions, such as common friends, common interests, etc. [4]. How-
ever, since the focus of this paper is on inferring social connections
only from spatiotemporal data, we challenged EBM by limiting its
knowledge to only the check-in data. Instead, to slightly level the
field, we removed from our dataset those pairs of users who have
zero or one co-occurrence and only included the pairs with more
than one co-occurrence. This is a fair adjustment as it is almost
impossible to infer friendship for those users with one or less co-
occurrence (by any method that only relies on the check-in data).

To calculate precision and recall, we need to compare EBM’s
predictions with ground truth Seqs¢. However, EBM gives us nu-
merical strengths, while Scqs: only tells us if two users are friends
or not. To work around this, we use the same technique as in Sec-
tion 5.4.1 by defining a threshold so for social strength and vary-
ing it to find precision and recall. Fig. 7(a) shows the results of
the EBM’s evaluation. The x-axis shows precision and the y-axis
shows recall. The dotted line corresponds to the case when only
diversity is used as social strength, while the other three are when
both diversity and weighted frequency are integrated together to
compute social strength, and correspond to three different tech-
niques used in Section 5.4.2.
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Figure 7: Precision vs. Recall

Observation 1: It is interesting to note that all the four curves
practically meet together when recall is below 35% and start di-
verging as recall increases. This can be explained as follow: the
low recall happens when we set high values for threshold so, thus
only a subset of user pairs with high number of co-occurrences can
pass through threshold so and be considered. Therefore, handling
coincidences is the only essential requirement for such subset. Di-
versity satisfies that requirement and it is used in all four cases, thus
they all have the same performance level. However, when we re-
duce threshold s is when user pairs with fewer co-occurrences can
pass through the threshold and get considered. At this point, just
handling coincidences is not enough and this is where weighted
Jrequency comes into play to cope with data sparseness, as dis-
cussed in Section 3.6. Weighted frequency takes into account the
location characteristics to predict social connections with very low
number of co-occurrences. Such subtle co-occurrences cannot be
captured by diversity, therefore its graph remains below the other
three, which do use weighted frequency in addition to diversity.
Observation 2: As shown in Section 5.4.3 and in the related work
[13], Katz score is a better metric for ground truth, followed by
Adamic/Adar similarity and Jaccard index. Fig. 7(a) shows that



our predicted social strength matches Katz score the best, which
enhances the trustworthiness of our model.

Observation 3: Our model achieves both high precision and re-
call. Particularly, using Katz technique we can achieve (precision,
recall) as high as (80%, 70%) or (70%, 82%). Moreover, consid-
ering the sparseness of the data where only 4.5% of co-occurred
pairs have more than three co-occurrences, being able to get those
high precision and recall is a major achievement.

5.4.5 Comparison of EBM with other models

Using the precision vs. recall graphs, we compare the perfor-
mance of EBM with other four models, which have previously stud-
ied the problem, including probability model (PM) [6], GEOSO
model [15], the model that utilizes various features (named FT for
short) [7], trajectory model (TR) [12]. Fig. 7(b) shows the results.

Observations: Precision: EBM outperforms all other four mod-
els in precision. This is due to the EBM’s ability of controlling
the impact of coincidences, which is the real challenge to the other
models since coincidences often produce very high local frequen-
cies, which can easily misguide any method that wants to infer so-
cial connections from spatiotemporal data. The PM’s precision re-
mains the lowest; it assumes that each user can have at most one
friend, which is almost never true; a possible fix would be remov-
ing that assumption, but that would severely interfere with its de-
sign and prevent it from formulating the probability of social con-
nection. All PM, GEOSO and TR completely ignore location char-
acteristics (aka location entropy in our work), thus there is no easy
way for them to handle data sparseness, where even coincidences
can have low frequencies, which is shown in our work as a difficult
and challenging question. TR also does not clearly address coin-
cidences at high frequencies. Finally, FT considers coincidences,
however, it does not compute social strength but only answers if
two people are friends or not. In addition, its ¢f-idf fails to capture
co-occurrences at private places as shown in Section 3.6.

Recall: Since we challenged all five models with a highly sparse
dataset, the result of recall truly shows how capable a model is
of mining friendship’s information. EBM achieves significantly
higher recall compared to other models due to its knowledge of the
locations (public or private, level of crowded-ness) and applies that
knowledge to make small things (few co-occurrences) become sig-
nificant. As discussed earlier, PM, GEOSO and TR have no knowl-
edge about locations, thus cannot capture minor co-occurrences,
consequently, have low recall. FT considers location characteris-
tics to capture few co-occurrences in uncrowded locations, which
explains its higher recall compared to GEOSO, PM and TR, but
still lower than EBM’s recall. The latter is because with EBM, di-
versity and weighted frequency can compensate for each other to
avoid coincidences, and at the same time, handle sparse data.

Efficiency: We also parallelized the algorithms for GEOSO in
[15], probability model (PM) in [6] and trajectory model in [12] to
make the comparison. The feature model (FT) in [7] does not pro-
pose any data structure since the model was to target a relatively
small proprietary data set, thus we do not examine its efficiency.
Using the same setup, we run the experiments using different num-
bers of nodes (maps). Table 3 shows the number of seconds each
model took to run in different setup: 100 nodes, 500 nodes and
1000 nodes. EBM outperforms the other three models. GEOSO
and PM use a uniform grid to partition space into equal cells, thus
results in high cost of storage as the number of cells grows enor-
mously. TR has high cost in time due to its construction of trajec-
tory (sequence) of user locations. Furthermore, EBM really takes
advantages of parallelization as we see the rate, at which the run-
ning time decreases when we add more nodes to the computation.
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Table 3: Efficiency of EBM and other models

EBM | GEOSO PM TR
100 maps | 159.12s | 282.36s | 203.25s | 394.73s
500 maps 34.84s 92.46s 76.92s | 129.32s
1000 maps | 19.21s 39.22s 29.36s | 64.291s

6. RELATED WORK

Given the experimental results are known now, we would like
to elaborate on the related studies. Table 4 summarizes EBM and
the previous studies with the same problem focus. The check-mark
(v') indicates that the question is addressed by the model, while the
cross-mark (X) indicates the opposite.

Table 4: Questions addressed by EBM and other models

EBM | GEOSO | PM | FT | TR | BS

Coincidences v v X | v | X | X
Location Characteristics | v X X | v I Xx | X
Data Sparseness v X X | X | X | X
Social Strength v v VX |V | X

To examine the relationship between a friendship network and
the human interactions, Eagle at al. [9] conducted their analysis
on two different sets of data of the same group of users: one from
mobile phone called “behavioral”, another was reported by users
called “self report" (shown as BS in Table 4). They examined the
communications, locations and proximity of the users over an ex-
tended period of time, conducted a regression analysis over the data
and finally compared the behavioral social network to self-reported
relationships. Their results showed that the two are indeed related.
In addition, communication was the most significant predictor of
friendships, followed by number of common locations and prox-
imity. However, this early study did not consider the impact of
coincidences nor the importance of co-occurrence locations, which
has been shown to be significant in our work.

Crandall et al. [6] used a probability model (PM in Table 4) to
infer the probability of friendships given the co-occurrences in time
and space and did the evaluation with a large dataset from Flickr.
The first limit of this model is that it makes a simplifying assump-
tion about the structure of the social network: each user can have
only one friend, which is not the case in reality. Second, it does
not consider the frequency of co-occurrences at each location; all
the co-occurrences at one location only count as once. Finally, the
impact of coincidences was not addressed, as well as the location
characterics, known as location entropy in our work and in [7].

Cranshaw et al. [7] introduced various features such as speci-
ficity, location entropy, etc, in order to analyze the social connec-
tions (FT in Table 4). Their experiments showed that there exists
a relationship between the mobility of patterns of a user and the
number of the user’s friends in the underlying social network. This
is an in-depth study and provides much insight into the social net-
work structure. However, they did not consider a subtle question
of the social network: how close two people are (aka the social
strength in our work)? In addition, they studied the location char-
acteristics to avoid coincidences, but for each user pair, the local
frequency was not clearly differentiated from location to location.
Here, we show that the influences of local frequencies to social con-
nections greatly vary from location to location. Furthermore, our
weighted frequency also differs from TFIDF in their work in that
we use the inverse diversity of a location (exp(—H;)) to weight the
local frequency, which considers the visiting patterns to a location
and detects the significance of each single co-occurrence to social



strength. Their TFIDF is more to show the specificity of a location
to a user pair.

With a similar problem focus, Li et al. [12] also used the history
of user locations to develop a similarity measure among users (TR
in Table 4). They first represented each user as a trajectory in a
hierarchical fashion, then used the similarity between the trajecto-
ries of two users as their social similarity. The model considers the
movements of users in both micro and macro scales. This research
is particularly promising for its scalability and its consideration of
different level of movements. However, coincidences and location
characteristics were not considered, which has been shown to be
crucial in our work.

We previously proposed a geometrical model called GEOSO to
infer the social connections based on co-occurrences in space and
time (GEOSO in Table 4). We first defined the social distance geo-
metrically and introduced two properties: commitment and compat-
ibility, which must be considered by any distance measure. This ap-
proach is particularly interesting as the presence of the two proper-
ties help avoid coincidences. However, this approach suffers from
complexity when working with massive data. In addition, all lo-
cations are considered equally important, therefore this is not an
ideal approach to apply when it comes to data sparseness when the
locations can be significant in predicting social connections.

In this work, we have addressed all the interesting, and at the
same time, difficult challenges that the previous studies either ig-
nored or suffered from. Our work does not make or simplify any as-
sumptions and the experiment has proved the high accuracy of our
model in predicting social connections with real-world data even
when the data is sparse, as well as its efficiency when it comes to
the problem of large-scale online processing.

7. CONCLUSIONS

In this paper, we studied the problem of inferring social connec-
tions from spatiotemporal data. Towards this end, we presented
the EBM model to address some of the subtle questions about so-
cial connections, including how to infer the social strength of two
people and how to avoid coincidences, which is a challenging prob-
lem due to its frequent nature. EBM also alleviated the problem of
data sparseness by incorporating the location characteristics into
the model when estimating the strength of social connections. Fi-
nally, our algorithm is efficient and parallelizable with Map-Reduce
framework. Our experiments confirmed the high accuracy and effi-
ciency of the EBM model and its superiority over competitors.

This work opens up new opportunities to answer some of the
questions including: How do the social networks influence human
physical behavior? How to use the social strengths inferred from
spatiotemporal data to further study other aspects of a social net-
work such as its durability and vulnerability? The issues of privacy
are also likely to be raised such as how much of spatiotemporal data
of a person is enough to maintain the social privacy of that person.
These are some of the issues we would like to investigate as part of
our future work.
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