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Abstract

Remote Direct Memory Access (RDMA) is a mechanism
whereby data is moved directly between the application
memory of the local and remote computer. In bypassing
the operating system, RDMA significantly reduces the CPU
cost of large data transfers and eliminates intermediate
copying across buffers, thereby making it very attractive for
implementing distributed applications. With the advent of
hardware implementations of RDMA over Ethernet (iWARP),
its advantages have become even more obvious. In this paper
we analyze the applicability of RDMA and identify hidden
costs in the setup of its interactions that, if not handled
carefully, remove any performance advantage, especially in
hardware implementations. From an application point of
view, the major difference to TCP/IP based communication
is that the buffer management has to be done explicitly by
the application. Without the proper optimizations, RDMA
loses all its advantages. We discuss the problem in detail,
analyze what applications can profit from RDMA, present
a number of optimization strategies, and show through
extensive performance experiments that these optimizations
make a substantial difference in the overall performance of
RDMA based applications.

1. Introduction

Remote Direct Memory Access (RDMA) is a mechanism
whereby data is placed directly in the application memory of
a remote computer [1]. In bypassing the operating system
and eliminating intermediate copying across buffers (zero
copy), RDMA significantly reduces the CPU cost of large
data transfers as well as the end-to-end latency, thereby
making it very attractive for implementing distributed appli-
cations [2], [3], [4]. Having the CPU available for compu-
tation while receiving and sending data at a very high rate
is important for various applications such as a distributed
real-time analysis of large scientific experiments or high-
definition video streaming to a substantial number of clients.
Although the ideas behind RDMA are not new [5], [6], [7],
[8], [9], [10], it has only been with the constant increase in
network bandwidth that they have become a necessity not

only for proprietary high-bandwidth fabrics such as Infini-
band [11] but also for Ethernet based TCP/IP [12]. Early
attempts to reduce the CPU load caused by high-bandwidth
TCP/IP communication offloaded the entire TCP/IP stack
onto the network interface card (NIC). This proved not to be
enough [13]. Today, the approach most favored is a TCP/IP
offload engine (TOE) plus direct memory access (DMA)
from the NIC to application memory [14], [15]. In a nutshell,
this is what RDMA over Ethernet (also known as iWARP)
provides.
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Figure 1. Typical example of TCP/IP network stack CPU
load distribution.

The advantages of RDMA over plain TCP/IP offload-
ing can be demonstrated with a simple experiment [16].
Transferring bulk data as fast as possible over a standard
TCP/IP connection reveals a CPU load distribution like
the one shown in Figure 1. Most CPU cycles are spent
on data copying within the local host. Although offloading
the TCP/IP stack onto the NIC shows some improvement,
only the TOE in combination with RDMA reduces the CPU
load significantly by eliminating the data copying. This is
the reason why RDMA is being looked at with increas-
ing interest as a key design element of future distributed
systems [17], [18], [19]. Nevertheless, it is also facing
a lot of criticism [20], [21]. To our knowledge, RDMA
is not widely applied today (besides for MPI and HPC
applications). We have added RDMA support to a distributed
compiler and to Java RMI, and were disappointed to find
that the performance benefit was negligible. In Section 5
we explain why. Those informal experiments motivated the
investigation presented in this paper, which more rigorously
characterizes the circumstances under which the benefit of
RDMA becomes significant.



1.1. Problem Statement

One of the key differences between RDMA and operating
system driven TCP/IP communication is that the application
has to explicitly manage the memory segment(s) that will
be used as communication buffer(s). The application has
to preregister certain parts of its memory with the RDMA
subsystem as source and/or destination buffers for the data
transfers. During registration, the memory pages get pinned
by the OS making sure they stay resident and cannot be
swapped out to disk. The pinned pages are then registered
with the RDMA enabled NIC (RNIC) so that it can access
them using DMA operations which eliminates the need for
OS callbacks and intermediate buffering during transfers.
The RDMA syntax refers to these registered memory seg-
ments as Memory Regions (MR).

MR registration happens through the resource manage-
ment path which requires kernel activity and therefore
induces a delay as well as a nonnegligible CPU load. Even
though the expensive data copy operations are avoided with
RDMA, the explicit buffer management renders RDMA
useless for applications that are not able to reuse their
buffers. In this paper we show that the management of these
user space communication buffers is crucial to implementing
efficient RDMA communication.

We address the open question to what extent the hid-
den memory management costs affect the performance of
RDMA. Our experiments show that, even for data trans-
fers of moderate size, these hidden costs can completely
eliminate the performance advantage of RDMA. We fur-
ther present the critical parameters such as the increased
connection setup time or the more expensive and complex
RDMA object management that need to be considered when
assessing the value of RDMA for any application.

1.2. Contributions

In this paper we describe the hidden costs of RDMA
and show in detail how to design applications so that they
take full advantage of RDMA. We also use our results to
characterize which applications are likely to benefit from
RDMA.

The contributions of this paper are three-fold. First, we
provide extensive performance experiments that show the
hidden costs of RDMA and compare them with the poten-
tial advantages. Second, we describe cost-effective memory
management strategies for RDMA and demonstrate their
feasibility and performance with experiments on the Chelsio
RNIC over 10 Gigabit Ethernet. Third, we present a list of
the critical parameters based on which the added value of
RDMA can be assessed.

2. RDMA Background

RDMA is described in full detail in the RDMA Verbs [1]
document. In here, we focus on the aspects that are relevant
for our purposes in this paper.

2.1. Asynchronous Communication Interface

In contrast to the classical TCP/IP semantics, all RDMA
operations are executed asynchronously. They are described
by the application in terms of Work Requests (WR) which
are posted to a Work Queue for asynchronous processing by
the RNIC. Since posting a WR is nonblocking and since
the actual data transfer described in the WR is handled by
the RNIC without CPU involvement, the application can
overlap communication with computation. RDMA might be
of limited use for an application that cannot to profit from
this.

2.2. RDMA Data Transfer Operations

The data transfer operations offered by RDMA are Send,
Receive, RDMA Read and RDMA Write.

The Send and Receive operations are called two-sided
because the applications on both sides are actively involved
in the data transfer. The sending application specifies the
buffer from which the data to be sent must be taken by
posting a Send WR and the receiving application at the other
side decides where to place the inbound data by posting
a Receive WR beforehand containing a descriptor of the
destination buffer. The other two operations are called one-
sided, meaning that only the application layer of the host
issuing the operation is actively involved in the data transfer.
At the other host, the operation is handled entirely by the
RNIC without notifying the application. The RDMA Write
operation copies data from a local MR into a remote one
whereas the RDMA Read does the opposite. Asynchronous
notification about completion of the local work request can
be demanded for all operations.

The following list presents peculiarities of the above
RDMA operations which limit their applicability in certain
cases:

1) they are executable only on explicitly preregistered
buffers

2) the receiver needs to know the size of the inbound data
in order to have an appropriate target buffer ready

3) one-sided operations require knowledge of the remote
buffer which necessitates a prior advertisement

4) reregistration of a buffer requires a readvertisement
inducing protocol delay

5) the remote side of a one-sided operation cannot im-
plicitly be notified of the completion of an operation



2.3. Explicit Buffer Management

Applications based on TCP/IP assume implicit commu-
nication buffers provided by the OS. The flexibility of
that approach comes with the major drawback of requiring
intermediate buffer copies, which induce a significant CPU
and memory bus overhead as shown in Figure 1. The RDMA
model on the other hand requires the application developer
to allocate his communication buffers (or Memory Regions,
MRs) explicitly and to register them with the RNIC for
hardware accelerated direct data placement using DMA.
Once registered, an MR has a fixed size which can only
be changed by deregistering it and thereafter registering
the buffer as a new MR. Since the registered MRs block
the underlying memory for other applications, they should
be deregistered when they are no longer needed. As we
will see later in this paper, MR (de-)registration induces
a significant overhead. Applications that cannot reuse their
communication buffer(s) therefore lose a significant perfor-
mance advantage.

3. RDMA Cost Analysis

When looking at a network data transfer from a high-level
perspective, the data path can be divided into two parts:
Firstly, the data is copied locally between the application
buffer and the wire (part A in Figure 2). Secondly, it is
transferred across the network (part B) to the remote host.
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Figure 2. Network data transfer.

The performance advantages of RDMA appear only after
the path (A-B-A of Figure 2) is established and does not
need to be changed anymore. Hence, for an application
to profit from RDMA, it has to reuse its buffers during
operation. Such reuse is only possible if the application can
be designed to output all its data directly to that fixed user
virtual memory address interval where the MR is situated.
Furthermore the data set must always be of the same size or
else memory is wasted. If this is not possible, the application
must either copy the data locally into an existing MR
(Application X in Figure 3) or register a new MR on the data
(Application Y). Our experiments in this section indicate
that only a combined approach is able to keep the overhead
low.
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Figure 3. Prepare output data for RDMA.

3.1. Test Environment

Our testbed consists of an IBM BladeCenter containing
HS21 BladeServers. Each of them is equipped with a quad
core Intel Xeon CPU running at 2.33 GHz, 32 KB L1 data
cache and 32 KB L1 instruction cache, 4 MB unified L2
cache and 8 GB of main memory (see Figure 4).
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Figure 4. Intel Xeon cache layout.

RDMA hardware support is provided by Chelsio T3
RNICs (S320EM-BCH) which offer full TCP/IP offload-
ing (TOE) and iWARP RDMA support. The RNICs are
interconnected through a Nortel 10 Gb Ethernet Switch
Module. The BladeServers are running Fedora Core 9 with
a 2.6.24 vanilla kernel. The OpenFabrics Enterprise Dis-
tribution (OFED v1.3.1) software stack [22] serves as OS
interface to the RDMA subsystem.

3.2. RDMA Setup

Before remote DMA access is even possible, an elaborate
connection setup followed by the creation of a number of
RDMA objects such as the Protection Domain(PD), Queue
Pair(QP), Completion Queue(CQ) and others is necessary.
In order to assess the overhead compared to a simple TCP
handshake, we have measured the time-to-first-byte — the
time it takes for a client to connect to a server and send
a byte of payload. It includes the connection setup, the
creation of the required resources, and the transfer of the
single byte. On our link (round-trip time of 0.025 ms) we
have found a time-to-first-byte of 202 ms for RDMA and
a mere 0.1 ms for TCP/IP. A factor of a thousand. This
clearly shows that RDMA is a bad fit for any application



using many short-lived connections (e.g., a webserver) due
to the huge connection setup cost.

3.3. Memory Region (De-)Registration

In our next experiment, we have identified the cost for
registering and deregistering RDMA MRs of different sizes.

1: for size in {min ... max} do
2: buf = mmap(size);
3: clock gettime(CLOCK REALTIME, &t start);
4: ibv reg mr(pd, buf, size, access);
5: clock gettime(CLOCK REALTIME, &t stop);
6: end for
Our benchmark core is sketched as pseudo code in the

above listing. Reading the clock induces an overhead of
0.14 µs which is negligible unless stated otherwise. The
Memory Regions are registered on line 5 in the above listing.
In our RDMA subsystem, they are managed by the user
space library of OpenFabrics in a balanced search tree (red-
black tree). When calling ibv_reg_mr(), a new MR
reference is created and added to the tree. After that, the
code traps into privileged mode where the user pages are
mapped into the kernel virtual address space. In the next
step, the underlying physical pages are allocated and pinned
in main memory as necessary. Last, the page addresses are
translated into bus addresses which are then registered with
the RNIC for DMA.
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Figure 5. MR (de-)registration costs.

Figure 5 shows the time required for registering Memory
Regions of sizes between 1 B and 2 GB on a doubly
logarithmic scale. As can be seen, the MR registration cost is
constant up to and including 4 KB (page size) and increases
linearly with the size of the MR (number of pinned pages)
after that. The constant overhead for small buffers results
from the rather long code path described above. It is a coinci-
dence of our test system that the constant cost is almost equal
to the round-trip time — MR registration does not involve
network communication. After 4 KB, the dominating costs
are page table lookups, walking and updating the involved
data structures, translating the addresses and the like.

Since all the pages of the new MR must be pinned,
they first need to be resident in physical memory. In the

worst case, this means that each page of the MR causes a
page fault (marked with circles in Figure 5). To find out
how much weight these page faults carry in the context of
MR registration, we have conducted a second test series
with MRs whose underlying pages were already resident
in physical memory before registration. Beyond the size
of a page, registering Memory Regions on pages which
are not resident becomes significantly more expensive than
registering an MR on resident pages. At a size of about
2 MB, the difference reaches almost an order of magnitude
(we are not considering the noncompetitive case where the
pages have been swapped out to disk).

Huge pages can be used to reduce the total number of
pages required to back a memory region of a given size.
Since the overhead of registering a memory region increases
with the number of pages involved, we expect to see a cost
reduction when using pages of size 2 MB rather than the
standard 4 KB. Our experiments have shown a reduction
of the registration cost of up to 40% as compared to the
standard page size. This is only true for memory regions
which are larger than the size of a huge page, of course.

Deregistration is a slightly simpler, inverse version of the
registration code path. Since the pages of registered MRs
are always pinned, page residency is not an issue here. As
expected, Figure 5 shows that deregistration is significantly
faster than registration (for all sizes). The explanation for
this is that there is no need for address translations and that
unpinning the pages is cheaper than pinning them. Up to
and including 128 KB, the deregistration time is constant at
∼15 µs. For larger MRs, the time increases linearly with the
buffer size as well. As pointed out before, deregistration of
MRs which are no longer used is vital for system resource
management because the underlying physical memory is
pinned and not available for other processes.

We conclude that (de-)registering MRs induces a nonneg-
ligible hidden cost in terms of CPU load as well as increased
delay.

3.4. Memory Copying

Having an application that cannot steer its output into an
existing MR (e.g., coming from a mapped file) forces us to
either register a new MR on the data (see previous section
for the cost analysis) or copy the data into an existing MR if
we want to use RDMA. We now consider the second option
(copying). For that, we measure the pure copy performance
of memcpy() on the same buffers as before, once with the
pages resident in main memory and once causing page faults.
Figure 6 displays the results of our experiments where the
buffer size indicates the amount of data being copied.

Since memcpy() is a highly optimized function with
a short code path, it has a very low overhead for buffers
smaller than a page — the delay measured is actually
dominated by the timer here. In our setup, up to 2 KB can be
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Figure 6. Memory copy costs.

copied in under 1 µs which is about two orders of magnitude
faster than MR registration. For buffers larger than 2 KB
we see a picture which is similar to MR registration: The
time increases linearly to the amount of bytes copied. As
we will explore in Section 4, copying very large buffers
is significantly slower than registering them as new MRs.
Page residency is also important for memcpy() but the
performance improvement on large buffers is not as dramatic
as in the case of MR registration.
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Figure 7. Memory copy on various systems.

Since memcpy() does not involve the RNIC, we expect
its performance to be strongly dependent on the CPU as well
as on the the page size and cache sizes. Figure 7 confirms
that for various systems. On an older Intel P4 1.8GHz, the
copy delay is much larger than on a more recent Intel Xeon
2.66GHz for all buffer sizes.

4. Optimization Strategies

Based on our findings we now present several optimiza-
tion strategies that reduce the overhead of RDMA commu-
nication.

4.1. Respect the Critical Buffer Size

In the case where we cannot steer our application output
into an existing MR, we must either register the application
output buffer as a new MR by means of ibv_reg_mr()
or copy its content into an existing MR of appropriate

size using memcpy() (see Section 3). Both approaches
were used out of the box (i.e., no on-machine tuning was
performed).

Figure 8 compares the delay of these two options and
shows that MR registration has a significant overhead
for small Memory Regions (<256 KB) as compared to
memcpy() (up to several orders of magnitude!). After
256 KB however, it is much more efficient to register a new
MR than it is to copy the application output. At about 4 MB
(size of L2 cache), the delay difference reaches almost an
order of magnitude in favor of the registration. Furthermore,
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Figure 8. MR registration VS. memcpy with resident
pages.

copying always induces 100% CPU load, whereas a rereg-
istration (deregistration followed by registration) induces
between 60% and 75% due to the additional hardware I/O.

This leads to our first optimization: If buffer reuse is not
possible but RDMA is still desired, buffers smaller than
the critical size ought to be copied into existing MRs and
larger buffers must be reregistered. Copying a large (>2 MB)
buffer is not only a lot slower than registering a new MR
on it but it also consumes all the available CPU cycles and
induces a much higher load on the memory bus. In terms of
cache pollution, registration is also preferred because it does
not touch the data. As we will discuss later, this optimization
matches typical communication buffer usage.

The important question now is what determines this criti-
cal size where registration outperforms copying. The answer
is two-fold. The first aspect is the CPU performance: Since
memcpy() is more CPU intensive than ibv_reg_mr(),
running the above experiments on a slower CPU decreases
the copy performance compared to registration, which results
in a shift of the critical size towards smaller buffers. The sec-
ond aspect which is even more serious is the page residency.
Figure 9 shows that the registration of nonresident pages
outperforms copying already for buffers larger than 32 KB
which is a shift in favor of ibv_reg_mr() by a factor of
8. Using huge pages does not have a significant influence
on the critical size as the cost reduction for memcpy() is
about the same as for ibv_reg_mr().
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4.2. Overlap Buffer Management with Communi-
cation

The second optimization is to amortize the MR
(de-)registration cost by overlapping it with waiting for a
message from the remote host. The dotted horizontal line
in the previous figures marks the round-trip time (RTT)
between two RNICs through our 10 GbE fabric (∼25 µs).
We can register a buffer on resident pages of up to 64 KB (or
8 KB in case of nonresident pages) within the RTT without
inducing an overall protocol delay. MRs of up to 1 MB
can be deregistered during RTT. The 64 KB for registration
and 1 MB for deregistration are pessimistic lower bounds
since our RTT does not take into account any application
processing delay which typical real world protocols have.

4.3. Register Buffer on Resident Pages

Our third optimization is to design RDMA-based applica-
tions such that they register their MRs shortly after having
touched or created the data — especially if they encompass
more than one page — which reduces the expensive page
fault processing during registration and therefore reduces the
registration time by up to an order of magnitude. This also
allows larger MRs to be registered during RTT.

4.4. Parallel Buffer Registration and Applicability

Today, most machines are equipped with several CPUs
and/or several cores. The question arises whether MR reg-
istration can benefit from that. Figure 10 depicts the latency
for registering 4 MRs in parallel (one on each core). Again,
we look at the case where the pages are resident (marked
with triangles) and compare it with the one causing page
faults. The dotted lines on top serve as reference showing
the delay for sequential registration of the MRs on a single
core and the solid lines at the bottom reflect the cost
for registering a single MR. When comparing sequential
with parallel MR registration, it is evident that the parallel
registration can only profit from multiple cores when the

pages are resident. Otherwise it is almost as expensive to
register four MRs in parallel as it is to register them one
after the other. We have found that the reason for this is
the limited overall page fault rate of the system. Another
motivation for the application to make sure the pages are
resident before registration.

Parallel MR Registration on Quad-Core CPU
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4.5. Suitability of the Optimizations

We now show why the proposed buffer management op-
timizations fit very well with regard to real world protocols.

Large buffers typically contain the actual application data
and are highly variable in size. Registering these large
buffers as MRs, renders an equally large amount of the phys-
ically available main memory unusable for other processes
due to the pinning requirement of RDMA buffers. Hence
they should be deregistered when they are no longer needed.
This matches our finding of reregistration being cheaper for
large MRs than copying.

Small buffers on the other hand are typically used for
exchanging control messages of constant size. By keeping
them registered as MRs and refilling them with memcpy(),
we induce a significantly lower delay and do not waste much
memory even if they are not used at the moment. Since
communicating hosts are often waiting for some kind of
control messages from their peers before they can proceed
with the protocol, it is vital that the delay for shipping
these messages is low in order to get an efficient overall
data exchange. An alternative approach is to transport these
small control messages using plain TCP/IP but that results in
the loss of packet ordering guarantees because of the extra
socket.

Our experimental evaluation demonstrates clearly that a
straight-forward explicit Memory Region management can
degrade the overall application performance dramatically not
only in terms of latency but also in terms of induced CPU
load, cache pollution etc. For a good buffer management
strategy — whenever buffer reuse is not an option — it is
vital to respect the critical size where reregistration becomes
more efficient. As we have shown, reregistering or copying
the data according to the critical size results in a performance
gain of up to several orders of magnitude in both directions.



Critical Parameter Example App. RDMA Suitable
CPU intensive HPC [18] yes
large data transfers DB recovery yes
long lasting connections DB logging yes
data in main memory HPC yes
small data size variation DB logging yes
reuse buffers streaming yes
use async interface HPC yes
make use of scatter-gather list HPC yes
use one-sided operations streaming yes
time-to-first-byte DNS no
short-lived connections webserver [17] no
unpredictable msg size RPC [23] no
indirect buffer Java apps no

Table 1. RDMA Suitability Assessment

5. When is RDMA beneficial?

RDMA over Ethernet offers a lower latency as well as
a higher throughput than TCP/IP and even complements
that with a close to idle CPU that TCP/IP cannot provide.
Figure 11 represents an ideal scenario of an application that
can reuse its registered buffers extensively and therefore
does not have to face the aforementioned costs. For this
experiment, we transmit 1 GB of payload using consecutive
RDMA Write operations. Figure 11 shows that RDMA
performs efficiently when transmitting messages larger than
4 KB where the communication link is saturated and the
CPU is close to idle.

1B 2097152 chunks x 512 writes 1 bytes 4.4885 mbps 0.0044885 gbps

1048576 chunks x 512 writes 2 bytes 8.9789 mbps 0.0089789 gbps

524288 chunks x 512 writes 4 bytes 17.9559 mbps 0.0179559 gbps

262144 chunks x 512 writes 8 bytes 35.9084 mbps 0.0359084 gbps

131072 chunks x 512 writes 16 bytes 71.8025 mbps 0.0718025 gbps

65536 chunks x 512 writes 32 bytes 143.6382 mbps 0.1436382 gbps

32768 chunks x 512 writes 64 bytes 287.1313 mbps 0.2871313 gbps

16384 chunks x 512 writes 128 bytes 574.1366 mbps 0.5741366 gbps

8192 chunks x 512 writes 256 bytes 1147.1301 mbps 1.1471301 gbps

4096 chunks x 512 writes 512 bytes 2290.5441 mbps 2.2905441 gbps

1KB 2048 chunks x 512 writes 1024 bytes 4560.1388 mbps 4.5601388 gbps

1024 chunks x 512 writes 2048 bytes 8997.9707 mbps 8.9979707 gbps

512 chunks x 512 writes 4096 bytes 9390.6765 mbps 9.3906765 gbps

256 chunks x 512 writes 8192 bytes 9412.5593 mbps 9.4125593 gbps

128 chunks x 512 writes 16384 bytes 9415.906 mbps 9.415906 gbps

64 chunks x 512 writes 32768 bytes 9417.6118 mbps 9.4176118 gbps

32 chunks x 512 writes 65536 bytes 9419.7309 mbps 9.4197309 gbps

16 chunks x 512 writes 131072 bytes 9428.3918 mbps 9.4283918 gbps

8 chunks x 512 writes 262144 bytes 9428.8797 mbps 9.4288797 gbps

4 chunks x 512 writes 524288 bytes 9431.124 mbps 9.431124 gbps

1MB 2 chunks x 512 writes 1048576 bytes 9431.3345 mbps 9.4313345 gbps

2 chunks x 256 writes 2097152 bytes 9431.8048 mbps 9.4318048 gbps

2 chunks x 128 writes 4194304 bytes 9431.817 mbps 9.431817 gbps

2 chunks x 64 writes 8388608 bytes 9432.0357 mbps 9.4320357 gbps

2 chunks x 32 writes 16777216 bytes 9432.0061 mbps 9.4320061 gbps

2 chunks x 16 writes 33554432 bytes 9431.9812 mbps 9.4319812 gbps

2 chunks x 8 writes 67108864 bytes 9431.9505 mbps 9.4319505 gbps

2 chunks x 4 writes 134217728 bytes 9432.0067 mbps 9.4320067 gbps

2 chunks x 2 writes 268435456 bytes 9431.9984 mbps 9.4319984 gbps

512MB 2 chunks x 1 writes 536870912 bytes 9432.0459 mbps 9.4320459 gbps
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Figure 11. RDMA Write Throughput.

Nevertheless there are applications that perform better
when using plain TCP/IP. In Section 3 we have shown that
RDMA has hidden costs such as the connection setup or the
explicit buffer management. In Table 1, we address the open
question as to when RDMA offers a benefit over traditional
TCP/IP by listing the critical parameters and giving an
example application for each parameter.

We conclude that an application profiting from full
RDMA performance has the following characteristics: It
lives in an environment where there is little or no churn (neg-
ligible connection setup costs), it can reuse its buffers (MRs)
extensively and transfers a lot of data. Furthermore, it is able
to overlap communication with computation (asynchronous
interface) and can make use of one-sided operations (remote

computer does not need to be notified; few synchronization
points in the protocol).

On the other hand, an application that faces a lot of
churn, operates on unpredictable, highly varying buffer sizes
and depends on a short time-to-first-byte (e.g., RPC) will
perform much better using plain TCP/IP.

6. Related Work

The fact that RDMA requires an explicit communication
buffer management has been identified as a drawback before.
A detailed analysis of the MR registration cost in the Mel-
lanox Infiniband software stack can be found in [24]. Even
though it is not iWARP and not based on the OpenFabrics
RDMA stack, the issues are similar. Unlike in this this paper,
however, the only optimization put forward in [24] is to
use large pages which results in a cost reduction of 15%.
Arbitrarily increasing the page size is not suitable in many
contexts and has nonnegligible side effects. Our proposed
solution is less intrusive and over all more effective.

The idea to deregister MRs lazily is proposed in [25].
Upon receiving a deregistration request from the application,
the subsystem does not actually remove the registered seg-
ment but keeps it in a cache to reduce future MR registration
costs. The memory is unpinned only when the cache exceeds
a certain limit. Most popular RDMA subsystems as well as
the Linux kernel do not support this yet. Even though it
sounds like a good idea, kernel support is required to keep
the cache consistent since the user has access to a variety
of operating system calls to alter the memory layout and
thereby potentially destroying earlier cached registrations. A
detailed description of the issues can be found in [26]. Our
proposed optimizations do not require a modified kernel and
are therefore more generally applicable.

The performance advantage of RDMA is marginal when
issuing lots of small I/Os as the per-I/O cost prevails over
the per-byte cost (see Figure 11). In the context of RPC over
RDMA, an optimistic RDMA is proposed in [23] where data
is sent assuming that there is a target buffer ready at the
receiver and an exception is returned if it is not the case.
While this optimization shows an improved performance for
small RPC I/Os due to the reduced response time, it breaks
compliance with the RDMA Verbs on which the industry
has agreed.

7. Conclusions

Even though RDMA offers zero copy and kernel bypass-
ing for very efficient data transfers between remote hosts
in terms of CPU load and memory bus bandwidth, it has
hidden costs. Therefore RDMA is not equally well suited
for all applications. We have argued why a low-overhead
communication buffer management is key to the efficient
use of RDMA and have presented a number of optimization



strategies. For the case where the buffers cannot be reused,
we have shown how the communication delay is reduced by
up to a couple orders of magnitude if the critical buffer
size is respected. Large buffers must be reregistered and
small buffers refilled. The result is a significantly lower
latency, less CPU load and reduced waste of memory. In that
context, we have pointed out the importance of registering
MRs on pages which are resident in main memory. Finally
we have specified the application parameters which must be
considered when assessing the use of RDMA for a concrete
application.
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