
Incorporating Partitioning and Parallel Plans into
the SCOPE Optimizer
Jingren Zhou, Per-Ake Larson, Ronnie Chaiken

Microsoft, One Microsoft Way, Redmond, WA 98052, USA
{jrzhou, palarson, rchaiken}@microsoft.com

Abstract—Massive data analysis on large clusters presents
new opportunities and challenges for query optimization. Data
partitioning is crucial to performance in this environment.
However, data repartitioning is a very expensive operation
so minimizing the number of such operations can yield very
significant performance improvements. A query optimizer for
this environment must therefore be able to reason about data
partitioning including its interaction with sorting and grouping.
SCOPE is a SQL-like scripting language used at Microsoft

for massive data analysis. A transformation-based optimizer is
responsible for converting scripts into efficient execution plans
for the Cosmos distributed computing platform. In this paper, we
describe how reasoning about data partitioning is incorporated
into the SCOPE optimizer. We show how relational operators
affect partitioning, sorting and grouping properties and describe
how the optimizer reasons about and exploits such properties to
avoid unnecessary operations. In most optimizers, consideration
of parallel plans is an afterthought done in a postprocessing step.
Reasoning about partitioning enables the SCOPE optimizer to
fully integrate consideration of parallel, serial and mixed plans
into the cost-based optimization. The benefits are illustrated by
showing the variety of plans enabled by our approach.

I. INTRODUCTION

Internet companies have an increasing need to store and
analyze massive data sets, such as search logs, web content,
and click streams collected from a variety of web services.
Data analysis may involve tens or hundreds of terabytes
of data. To be able to perform such massive analysis in a
cost-effective manner, several companies have developed dis-
tributed data storage and processing platforms on large clusters
of shared-nothing commodity servers. Notable examples in-
clude Google’s File System [6], Bigtable [3], MapReduce [5],
Hadoop [1], Microsoft’s Cosmos [2], and Dryad [10]. A
typical cluster consists of hundreds or thousands of commodity
machines connected via a high-bandwidth network.
SCOPE is a SQL-like scripting language used at Microsoft

for massive data analysis [2]. SCOPE simplifies data analysis
on large clusters by hiding hardware and implementation
details, thus allowing users to focus on solving the problem at
hand. Hundreds of SCOPE jobs run daily in our data centers.
SCOPE uses a transformation-based optimizer, based on the
Cascades framework [8], to generate efficient query plans that
make use of all cluster resources.
In this environment it is crucial to generate parallel plans.

Query optimizers in database systems typically start with an
optimal serial plan and then add parallelism in a postprocess-
ing step. This approach may result in sub-optimal plans. The

challenge is to seamlessly integrate consideration of parallel
plans into the normal optimization process. In this paper we
describe how this was accomplished in the SCOPE optimizer.
Parallelism is achieved by partitioning data into subsets

that can be processed independently. This may require com-
plete repartitioning which is expensive because it involves
transporting all data across the shared network. Reducing the
number of partitioning operations is an important optimization
goal. However, data partitioning cannot be considered in
isolation because it often interacts with other data properties,
in particular, with sorting and grouping properties.
We illustrate the importance of property reasoning by an

example query. Assume that tables R and S are tens of
terabytes and are randomly partitioned and distributed over
a cluster of, say, 500 machines.
select R.c, S.d, count(*)
from R, S
where R.a = S.a and R.b = S.b and p1(R) and p2(S)
group by R.c, S.d

HashAgg
R.c,S.d

HashJoin
R.a=S.a&R.b=S.b

Rp1 Sp2

Repartition
(R.a,R.b)

Repartition
(S,a,S.b)

Repartition
(R.c,S.d)

HashAgg
R.c,S.d

HashJoin
R.a=S.a&R.b=S.b

Rp1 Sp2

Repartition
(R.a)

Repartition
(S,a)

(a) Always partition (b) Fewer partition operators
Fig. 1. Two Distributed Execution Plans

A straightforward execution plan is shown in Figure 1(a).
A group of three arrows indicates a partitioned data flow
with different partitions processed in parallel. Table R is first
filtered and then hash partitioned on columns {R.a, R.b}.
This step is done in parallel, with each machine processing
its portion of the table. Similarly, table S is filtered and
partitioned on {S.a, S.b}. Next, rows from matching R and
S partitions are joined (in parallel), producing a result parti-
tioned on {R.a, R.b} (or {S.a, S.b}). In preparation for the
subsequent group-by, the join result is then hash partitioned
on {R.c, R.d} to ensure that all rows with the same values for
{R.c, R.d} are contained in the same partition. Finally, each



partition is aggregated independently in parallel, producing the
final result.
The default plan (a) shown in Figure 1 is reasonable but

it may be expensive because of the two partitioning oper-
ations. Both R and S contain tens of terabytes of data so
the data reshuffling through the network can pose a serious
performance bottleneck. Plan (b) shows another plan where the
repartitioning before aggregation has been eliminated. Joins
and aggregations do not require the inputs to be partitioned
on the entire set of join or grouping columns: any subset
suffices. It is thus valid to partition R and S on R.a and
S.a, respectively, and evaluate the join, producing a result
that is partitioned on R.a (or S.a). If a functional dependency
R.c → R.a exists (for instance, R.c is the primary key of
R), the join result is also partitioned on R.c so that we can
safely perform aggregation without repartitioning the data.
Depending on data size and join selectivity, plan (b) can
be significantly cheaper than plan (a). The optimizer should
consider both plans in a cost-based fashion.
Earlier work has considered grouping and sorting but ours

is the first paper to also take into account partitioning. The
main contributions of our work are as follows.

• We design optimization rules and techniques to seam-
lessly generate and optimize both serial and parallel plans
in a transformation-based optimizer. Our techniques are
implemented in the SCOPE optimizer.

• We combine reasoning about partitioning, grouping, sort-
ing properties into a single uniform framework.

• We present formal semantics for partitioning, grouping,
and sorting properties and introduce a set of inference
rules that also exploit functional dependencies and data
constraints.

The rest of the paper is organized follows. We first describe
different types of data exchange operators in Section II. These
operators are key to generating parallel execution plans. In
Section III we describe property reasoning procedures and
their role inside the SCOPE optimizer. In Section IV, we
consider partitioning, grouping, and sorting properties in a
uniform framework and present formal semantics. Next, we
describe the property reasoning required in three contexts: how
to derive the properties of the results of various operators
in Section V, how to determine required properties for a
physical operator in Section VI, and how to match different
properties in Section VII. In Section VIII, we describe a new
set of rules to allow the optimizer to consider parallel query
execution plans natively. We describe additional system details
and illustrate the performance gains on a few example queries
in Section IX. We survey related work in Section X and
conclude in Section XI.

II. PARALLEL PLANS AND EXCHANGE OPERATORS
Distributed query processing is based on partitioning data

into smaller subsets and processing partitions in parallel on
multiple machines. This requires operators for splitting a single
input into smaller partitions, merging multiple partitions into
a single output, and repartitioning an already partitioned input

into a new set of partitions. This can done by a single logical
operator, the data exchange operator, that repartitions data
from n inputs to m outputs [7]. n = 1 corresponds to initial
partitioning of a single input and m = 1 corresponds to
merging n inputs into a single output. After an exchange
operator, the data is partitioned into m subsets that are
then processed independently and in parallel using standard
relational operators, until the data flows into the next exchange
operator. Parallelism can be added easily in this way without
modification to other relational operators.
At the implementation level, exchange consists of one or

two physical operators: a partition operator and/or a merge
operator. Suppose we want to repartition n input partitions,
each one on a different machine, into m output partitions on a
different set of machines. The processing is done by n partition
operators, one on each input machine, and m merge operators,
one on each output machine. A partition operator reads its
input and splits it onto m subpartitions. Each merge operator
collects the data for its partition from the n corresponding
subpartitions.
To integrate consideration of parallel plans into the op-

timizer it must be able to reason about physical properties
of data streams flowing between physical operators; how
the data is partitioned, sorted and/or grouped. This includes
understanding what requirements different operators have on
their inputs, what effect they have on the physical properties
of their outputs, and deciding whether the physical properties
of data delivered by an operator satisfy the requirements of
a consuming operator. This paper describes how we “taught”
the SCOPE optimizer these skills.
To set the stage, we first classify exchange operator ac-

cording to the topology of their data flows and describe the
different partition and merge operators that are considered in
this paper.

A. Exchange Topology

Figure 2 shows five types of exchange operators considered
in this paper.

• Initial Partitioning: Shown in Figure 2(a), this operator
consumes a single input stream and outputs m output
streams with the data partitioned among the m stream.

• (Full) Repartitioning: Shown in Figure 2(b), this operator
consumes n input partitions and produces m output
partitions, partitioned in a different way.

• Full Merge: Shown in Figure 2(c), this operator consumes
n input streams and merges then into a single output
stream.

• Partial Partitioning: Shown in Figure 2(d), this is a
special case of repartitioning. It takes n input streams and
produces kn output streams. The data from each input
partition is further partitioned among k output streams.

• Partial Merge: Shown in Figure 2(e), this is the inverse of
partial partition. A partial merge takes kn input streams,
merges groups of k of them together, and produces n
output streams.



(a) Initial Partitioning (b) Repartitioning (c) Full Merge (d) Partial Repartitioning (e) Partial Merge
Fig. 2. Different Types of Data Exchange

Partial partitioning and partial merge operators are not dis-
cussed further in this paper as they are relatively rare. The
same effect can be accomplished by full repartitioning and
full merge, though not as efficiently.

B. Partitioning Schemes
Conceptually, an instance of a partition operator takes

one input stream and generates multiple output streams. It
consumes one row at a time and writes the row to the output
stream selected by a partitioning function applied to the row.
In this paper, we assume all partition operators are FIFO (first-
in, first-out), that is, the order of two rows r1 and r2 in the
input stream is preserved in the output stream if they are
assigned to the same partition. There are several different types
of partitioning schemes.

• Hash Partitioning applies a hash function to the partition-
ing columns to generate the partition number to which
the row is output. This partitioning scheme is results in
non-ordered partitions.

• Range Partitioning divides the domain of the partitioning
columns into a set of disjoint ranges, as many as the
desired number of partitions. A row is assigned to the par-
tition determined by the value of its partitioning columns.
This partitioning scheme produces ordered partitions.

• Non-deterministic Partitioning is any scheme where the
data content of a row does not affect which partition the
row is assigned to. Round-robin partitioning and random
partitioning are of this type.

• Broadcasting takes one row at a time and outputs a copy
of the row to every partition, that is, every output stream
is a copy of the input stream. Broadcasting is typically
used only on small, non-partitioned inputs.

The partition function to use and the number of output
partitions are other aspects of exchange operators. It is up
to the optimizer to make an optimal choice, based on data
cardinalities and appropriate models for CPU, disk, and net-
work costs. The detailed discussions are beyond the scope of
this paper – our focus is on how to reason about partitioning,
regardless of how many partitions are generated.

C. Merging Schemes
A merge operator combines data from multiple input

streams into a single output stream. Depending on whether
the input streams are sorted individually and how rows from
different input streams are ordered, we have several types of
merge operations.

• Random Merge randomly pulls rows from different input
streams and merges them into a single output stream.

While the ordering of rows from the same input stream
is preserved, the ordering of rows from different inputs
is indeterminate.

• Sort Merge takes a list of sort columns as a parameter
and a set of input streams sorted on the same columns.
The input streams are merged together into a single sorted
output stream.

• Concat Merge concatenates multiple input streams into a
single output stream. It consumes one input stream at a
time and outputs its rows in order to the output stream.
That is, it maintains the row order within an input stream
but it does not guarantee the order in which the input
streams are consumed.

• Sort-Concat Merge is a sorted version of concat merge.
It takes a list of sort columns as a parameter. First, it
picks one row (usually the first one) from each input
stream, sorts them on the values on the sort columns,
and uses the row order to decide the order in which to
concatenate the input streams. This is useful for merging
range-partitioned inputs into a totally ordered output.

III. PROPERTY REASONING INSIDE THE OPTIMIZER

Conceptually, an optimizer generates all possible rewritings
of a query expression and chooses the one with the lowest
estimated cost. Query expressions are represented as operator
trees. Operators are of two types: logical and physical. A
logical operator specifies what operation to perform but not
the algorithm while a physical operator also specifies the
algorithm. For example, join is a logical operator while hash
join, merge join and nested-loop join are physical operators.
Transformation-based optimization can be viewed as di-

vided into two phases, namely, logical exploration and physical
optimization. Logical exploration applies transformation rules
that generate new logical expressions. During physical opti-
mization, implementation rules are applied that convert logical
operators to physical operators.
Algorithm 1 shows a (simplified) recursive optimization

routine that takes as input a query expression and a set of
requirements. We highlight three different contexts where rea-
soning about data properties occur during query optimization.

• Determining child required properties. The parent (phys-
ical) operator imposes requirements that the output from
the current physical operator must satisfy, for example,
the data must be sorted on R.b. To function correctly,
the operator may itself impose certain requirements on
its inputs, for example, the two inputs to a join must be
partitioned on R.a and S.a, respectively. Based on these



Algorithm 1: OptimizeExpr(expr, reqd)
Input: Expression expr, ReqdProperties reqd
Output: QueryPlan plan
/*Enumerate all the possible logical rewrites */
LogicalTranform(expr);
foreach logical expression lexpr do

/*Try out implementations for its root
operator */

PhysicalTranform(lexpr);
foreach expression pexpr that has physical
implementation for its root operator do

ReqdProperties reqdChild =
DetermineChildReqdProperties(pexpr, reqd);
/*Optimize child expressions */
QueryPlan planChild =
OptimizeExpr(pexpr.Child, reqdChild);
DlvdProperties dlvd =
DeriveDlvdProperties(planChild);
if PropertyMatch(dlvd, reqd) then

EnqueueToValidPlans();
end

end
end
plan = CheapestQueryPlan();

return plan;

two requirements, we must then determine what require-
ments to impose on the result of the input expressions.
The function DetermineChild ReqdProperties
is used for this purpose. If the requirements are incompat-
ible, a compensating operator such as a sort or partition
may need to be added. This part is covered in Section VI.

• Deriving delivered properties. Once physical plans for
the child expressions have been determined, we com-
pute the data properties of the result of the current
physical operator, by calling the function DeriveDlvd
Properties. A child expression may not deliver ex-
actly the requested properties. For example, we may
have requested a result grouped on R.a but the chosen
plan delivers a result that is, in addition, sorted on R.a.
The delivered properties are a function of the delivered
properties of the inputs and the behavior of the current
operator, for example, whether it is hash or merge join.
We explain this process in Section V.

• Property matching. Once the delivered properties have
been determined, we test whether they satisfy the required
properties, by calling the function PropertyMatch. If
they do not match, the plan with the current operator
is discarded. The match does not have to be exact –
a result with properties that exceed the requirements is
acceptable. We cover the details in Section VII.

IV. PROPERTY FORMALISM
We begin in Section IV-A by briefly reviewing functional

dependencies and a few other constraints. Partitioning, group-
ing, and sorting properties are formally defined in Section IV-
B. We summarize a set of inference rules in Section IV-C.

A. FDs, Constraints and Equivalences
A set of columns R = {R1, R2, . . . , Rn} functionally

determines a set of columns S = {S1, S2, . . . , Sm}, if for any

two rows that agree on the values of columns in R, they also
agree on the values of columns in S. We denote functional
dependency byR → S.R →S is simply a shorthand notation
for R → S1,R → S2, · · ·R → Sm.
Functional dependencies can arise in several ways.
Trivial FDs: R → R′ whenever R ⊇ R′.
Key constraints: Keys are a special case of functional

dependencies. If X is a key of relation T , then X functionally
determines every column of T .
Column equality constraints: A selection or join with a

predicate Ri = Sk implies that the functional dependencies
{Ri} → {Sk} and {Sk} → {Ri} hold in the result.
Constant constraints: After a selection with a predicate

Ri = constant all rows in the result have the same value for
column Ri. This can be viewed as a functional dependency
which we denote by ∅ → Ri.
Grouping columns: After a group-by with grouping

columns R, R is a key of the result and, thus, functionally
determines all other columns in the result.
A set of columns that are known to have the same value

in all tuples of a relation belong to a column equivalence
class. An equivalence class may also contain a constant c,
which implies that all column in the class have the value
c. Equivalence classes are generated by equality predicates,
typically equijoin conditions and equality comparisons with a
constant.
Functional dependencies and column equivalence classes

can be computed bottom up in an expression tree. As this
issue is well covered elsewhere [4], [16], [13], [12], we
omit the details but assume that functional dependencies and
equivalence classes have been computed.

B. Structural Properties
We now formally define three properties describing the

structure or layout of a relation: partitioning, grouping and
sorting, collectively referred to as structural (data) properties.
A relation can be a source table or a result produced by a
query expression. Table I summarizes some of the notation
used in this paper.
A partition operation divides a relation into disjoint subsets,

called partitions. A partition function defines which rows
belong to which partitions. Partitioning applies to the whole
relation; it is a global structural property. Grouping and
sorting properties define how the data within each partition is
organized and are thus partition-local properties, here refereed
to as local structural properties.
We first specify what it means for a sequence of rows to

be grouped or sorted and then formally define local structural
properties.

Definition IV.1 (Grouping) A sequence of rows
r1, r2, . . . , rm is grouped on a set of columns
X = {C1, C2, . . . , Cn}, if ∀ri, rj , i < j, ri[X ] = rj [X ] ⇒
∀k, i < k < j, rk[X ] = ri[X ]. We denote grouping by X g .

Definition IV.2 (Sorting) A sequence of rows r1, r2, . . . , rm

is sorted on a column C in an ascending (or descending) order,



TABLE I
NOTATION USED IN THIS PAPER

R, S, . . . Relations
C1, C2, . . . Columns
X ,Y , . . . Sets of columns

X ≡ Y Column sets are equal taking into account col-
umn equivalence

r1, r2, . . . Tuples
P1, P2, . . . Partitions

r[C], r[X ]
Projection of r onto column C and columns X ,
respectively

∗ Any properties (including empty)

if ∀ri, rj , i < j ⇒ ri[C] ≤ rj [C] (or ri[C] ≤ rj [C]). We
denote this ordering by C o where o ∈ {o↑, o↓}.
Note that grouping is performed on a set of columns and the
column order within the set does not matter while sorting is
performed on a list of columns and the column order matters.
Local structural properties can be represented by an ordered

sequence of actions {Â1, Â2, . . . , Âm}. Each action is either
grouping on a set of columnsX g , or sorting on a single column
Co. The definitions of grouping and sorting actions follow.

Definition IV.3 (Grouping Action) A sequence of rows
r1, r2, . . . , rn satisfies the local structural properties

{Â1, . . . , Âm−1,X g}

if it satisfies the properties {Â1, . . . , Âm−1} and, in addition,

∀ri, rj , i < j, ri[Â1, . . . , Âm−1,X ] = rj [Â1, . . . , Âm−1,X ] ⇒
∀k, i < k < j, rk[Â1, . . . , Âm−1,X ] = ri[Â1, . . . , Âm−1,X ].

Definition IV.4 (Sorting Action) A sequence of rows
r1, r2, . . . , rn satisfies the local structural properties

Â1, . . . , Âm−1, C
o

where o ∈ {o↑, o↓}, if it satisfies the properties
{Â1, . . . , Âm−1} and, in addition,

∀ri, rj , i < j, ri[Â1, . . . , Âm−1] = rj [Â1, . . . , Âm−1] ⇒
ri[C] op rj [C].

where op =′≤′ when o = o↑ and op =′≥′ when o = o↓.

Wang et, al. [17] also used an ordered sequence of annotated
columns to represent secondary ordering or grouping. But their
approach is more limited because each step in their sequence
can only be either grouping or sorting on a single column. Note
that {Cg

1 , Cg
2} ⇒ {{C1, C2}g} but {{C1, C2}g} ! {Cg

1 , Cg
2}.

There are two major classes of partitioning schemes, or-
dered and non-ordered. A non-ordered partitioning scheme en-
sures only that all rows with the same values of the partitioning
columns are contained in the same partition. This is analogous
to grouping as local property. An ordered partitioning scheme
provides the additional guarantee that the partitions cover
disjoint ranges of the partitioning columns. In other words,
rows assigned to a partition Pi are either all less than or greater
than rows in another partition Pj . This is analogous to ordering
as a local property.
The following definitions formally state what properties are

guaranteed by different partitioning schemes.

Definition IV.5 (Non-ordered Partitioning) A relation R is
non-ordered partitioned on columns X , if it satisfies the
condition

∀r1, r2 ∈ R : r1[X ] = r2[X ] ⇒ P(r1) = P(r2)

where P denotes the partitioning function used.

Definition IV.6 (Ordered Partitioning) A relation R is
ordered-partitioned into partitions P1, P2, . . . , Pm on columns
{Co1

1 , Co2
2 , . . . , Con

n } where oi ∈ {o↑, o↓}, if it satisfies
the condition in the previous definition and the additional
condition
∀Pi, Pj , i $= j : (∀r1 ∈ Pi, r2 ∈ Pj : r1 <C

o1
1 ,C

o2
2 ,...,Con

n
r2) or

(∀r1 ∈ Pi, r2 ∈ Pj : r1 >C
o1
1 ,C

o2
2 ,...,Con

n
r2).

An ordered partitioning can be achieved by range partition-
ing while several methods produce a non-ordered partitioning.
We discuss different partitioning methods further in Section II.

Definition IV.7 (Structural Properties) The structural prop-
erties of a relation R can be represented by partitioning
information and an ordered sequences of actions,

{Pθ; {Â1, Â2, . . . , Ân}}

where θ ∈ {o, g}, meaning ordered and non-ordered partition-
ing. The first part defines its global structural property while
the second sequence defines its local structural property.
Empty structural properties are allowed. {⊥; ∗} indicates that
data is not partitioned while {∅; ∗} indicates that data is
randomly partitioned. Another special case is {+; ∗}, which
indicates that data is completely duplicated and each partition
contains a complete copy of the data. For our purpose, the
exact partitioning function or the number of partitions are not
needed so they are not specified in Definition IV.7.

TABLE II
A EXAMPLE RELATION WITH PARTITIONING, GROUPING, AND SORTING

Partition 1 Partition 2 Partition 3
{1,4,2}, {1,4,5},
{7,1,2}

{4,1,5}, {3,7,8},
{3,7,9} {6,2,1}, {6,2,9}

Table II shows an instance of a relation with
three columns C1, C2, C3 and structural properties
{{C1}g; {{C1, C2}g, Co

3}}. In words, the relation is
partitioned on column C1 and, within each partition,
data is first grouped on columns C1, C2, and, within each
such group, sorted by column C3.

C. Inference Rules
We now briefly discuss inference rules for structural proper-

ties. The first rule shows that local properties can be truncated.
{∗; {Â1, . . . , Âm−1, Âm}} ⇒ {∗; {Â1, . . . , Âm−1}} (1)

Global properties cannot be truncated but they can be ex-
panded. A result that is partitioned on columns C1, C2 is not
partitioned on C1 because two rows with the same value for
C1 may be in different partitions. However, a result partitioned
on C1 alone is in fact partitioned on C1, C2 because two rows



that agree on C1, C2 also agree on C1 alone and, consequently,
they are in the same partition. This observation gives the
following two rules.
{{C1, C2, . . . , Cm}g ; ∗} ⇒ {{C1, C2, . . . , Cm, Cm+1}g ; ∗} (2)
{{Co

1 , Co
2 , . . . , Co

m}; ∗} ⇒ {{Co
1 , Co

2 , . . . , Co
m, Co

m+1}; ∗} (3)

If a sequence of rows is sorted, it is also grouped. This yields
two rules.
{∗; {Â1, . . . , C

o, . . . , Âm}} ⇒ {∗; {Â1, . . . , C
g, . . . , Âm}} (4)

{{Co
1 , Co

2 , . . . , Co
n}; ∗} ⇒ {{C1, C2, . . . , Cn}g ; ∗} (5)

Functional dependencies allow us to eliminate grouping and
sorting columns. The following two simplification rules can be
applied to global properties and to individual actions in local
properties.

∃ C ∈ X : (X − {C}) → C,X g ⇒ (X − {C})g (6)
∃ {C1, . . . , Cj−1} → Cj :

{Co
1 , . . . , Co

j−1, C
o
j , Co

j+1, . . .} ⇒
{Co

1 , . . . , Co
j−1, C

o
j+1, . . .} (7)

However, the following rule applies only to local structural
properties, where Columns returns a set of columns defined
in actions.

∃ Columns[Â1, . . . , Âi−1] → Columns[Âi] :

{∗; {Â1, . . . , Âi−1, Âi, Âi+1, . . .}} ⇒
{∗; {Â1, . . . , Âi−1, Âi+1, . . .}} (8)

V. DERIVING STRUCTURAL PROPERTIES
We now consider how to derive the structural properties of

the output of a physical operator. Earlier research has shown
how to derive ordering and grouping properties for standard
relational operators executed on non-partitioned inputs [15],
[16], [17], [13], [12]. Ordering and grouping are local proper-
ties, that is, properties of each partition, so previous work still
applies when the operators are running in partitioned mode.
Standard relational operators have no effect on partitioning.
What remains is to derive global and local properties after a
physical partition, merge or repartition operator.

A. Properties After a Partitioning Operator
Partition operators are assumed to be FIFO, that is, they

output rows in the same order that they are read from the input.
Thus, they affect the global properties but not local properties.
Every output partition inherits the local properties (sorting,
grouping) of its input. Table III summarizes the properties
of the output after a partition operator when the input has
properties {X ;Y}.
Hash partitioning on columns C1, C2, . . . , Cn produces a

non-ordered collection of partitions. This is similar to group-
ing so we indicate hash partitioning by {C1, C2, . . . , Cn}g.
The order of partitioning columns does not matter, that is,
{. . . , Ci, . . . , Cj , . . .}g ⇔ {. . . , Cj , . . . , Ci, . . .}g.
Range partitioning on columns C1, C2, . . . , Cn produces an

ordered collection of partitions. We denote range partitioning
by {Co1

1 , Co2
2 , . . . , Com

m }, oi ∈ {o↑, o↓}. We use the shorthand
{Co

1 , Co
2 , . . . , Co

m} or {C1, C2, . . . , Cm}o if the sort order on

individual columns is not important. For range partitioning,
the order of partitioning columns does matter.
In a non-deterministic partitioning scheme (round-robin and

random partitioning) which partition a row is assigned to is
independent on its content. They use no partitioning columns
so we indicate this form of partitioning by ∅.

TABLE III
STRUCTURAL PROPERTIES OF THE RESULT AFTER PARTITIONING AN

INPUT WITH PROPERTIES {X ;Y}

Scheme Result
Hash on C1, . . . , Cn {{C1, . . . , Cn}g;Y}
Range on Co

1 , . . . , Co
n {{Co

1 , . . . , Co
n};Y}

Non-Deterministic {∅;Y}
Broadcast {$;Y}

B. Properties After a Merge Operator

A merge operator produces a single output. Its local proper-
ties depend on the local properties of the input and the merge
operator type: random merge, sort merge, concat merge and
sort-concat merge.
Table IV summarizes the structural properties after a full

merge, depending on the type of merge operator and whether
the input partitioning is ordered or non-ordered.
A random merge does not guarantee any row order in the

result, so no local properties can be derived for the output.
For a sort-merge, there are two cases. If the local properties

of the input imply that the input streams are sorted on the
columns used in the merge, the output will be sorted, otherwise
not.
A concat merge operator maintains the row order within

each source partition. If each source partition is grouped in a
similar way to how it is non-ordered partitioned, the result of
is also grouped, otherwise not.

Example 1 Given inputs with properties {{C1, C2}g; {Co
2 ,

Co
1 , Co

3}}, concat merging generates an output with prop-
erties {{C1, C2}g; {{C1, C2}g, Co

3}}}, if the merge is part
of repartitioning operation, and {⊥; {{C1, C2}g, Co

3}}}, if it
implements a full merge.

A sort-concat merge produces a sorted result if inputs are
range partitioned and each partition is also sorted on the same
columns as it is partitioned on.

Example 2 A sort-concat full merge on {C o
1 , Co

2} of inputs
with properties {{Co

1 , Co
2}; {Co

1 , Co
2 , Cg

3}} generates an output
with properties {⊥; {Co

1 , Co
2 , Cg

3}}.

C. Properties After a Repartitioning Operator

The properties of the result after repartitioning depends
on the partitioning scheme, the merge scheme and the local
properties of the input. Table V summarizes the structural
properties after repartitioning an input with properties {P ;Y}
where P denotes any partition property.



TABLE IV
STRUCTURAL PROPERTIES OF THE RESULT AFTER A FULL MERGE

Input Properties {Xg;Y} Input Properties {Xo;Y}
Random merge {⊥; ∅} {⊥; ∅}
Sort merge on So 1). {⊥;So} if Y ⇒ So 1). {⊥;So} if Y ⇒ So

2). {⊥; ∅} otherwise 2). {⊥; ∅} otherwise
Concat merge 1). {⊥; {X g ,Z}} if Y ⇒ {X g ,Z} 1). {⊥; {X g ,Z}} if Y ⇒ {Xg,Z}

2). {⊥; ∅} otherwise 2). {⊥; ∅} otherwise
Sort-concat merge on So 1). {⊥; {X g ,Z}} if Y ⇒ {X g ,Z} 1). {⊥;Y} if So ⇔ X o and Y ⇒ So

2). {⊥; ∅} otherwise 2). {⊥; ∅} otherwise
TABLE V

STRUCTURAL PROPERTIES OF THE RESULT AFTER REPARTITIONING ON X AN INPUT WITH PROPERTIES {P;Y}

Hash partitioning Range partitioning Non-determ. partitioning
Random merge {Xg ; ∅} {X o; ∅} {∅; ∅}
Sort merge on So 1). {X g;So} if Y ⇒ So 1). {X o;So} if Y ⇒ So 1). {∅;So} if Y ⇒ So

2). {X g; ∅} otherwise 2). {Xo; ∅} otherwise 2). {∅; ∅} otherwise
Concat merge 1). {Xg; {X g ,Z}} if Y ⇒ {Xg ,Z} 1). {X o; {X g,Z}} if Y ⇒ {Xg ,Z} 1). {∅; {X g,Z}} if Y ⇒ {Xg,Z}

2). {X g; ∅} otherwise 2). {Xo; ∅} otherwise 2). {∅; ∅} otherwise
Sort-concat merge on So 1). {X g; {X g ,Z}} if Y ⇒ {Xg ,Z} 1). {X o;Y} if So ⇔ X o and Y ⇒ So 1). {∅;Y} if So ⇔ X o and Y ⇒ So

2). {X g; ∅} otherwise 2). {Xo; ∅} otherwise 2). {∅; ∅} otherwise

VI. DERIVING REQUIRED PROPERTIES
We now consider how to determine required properties

of the inputs for different physical operators. Table VI lists
required input properties for the most common physical op-
erators. Depending on whether the operator is executed in
either partitioned or non-partitioned mode, it imposes different
requirements on its inputs.
Table scan, select and project process individual rows and

impose no requirements on their inputs, that is, it doesn’t
matter how the input data is partitioned, sorted, or grouped.
Thus their input requirements are shown as {X ; ∗} where X
can be any set of columns.
In the partitioned mode, a sort of the complete input requires

that the input be range partitioned on a prefix of the sort
columns and each partition be sorted on the sort columns.
Sorted output partitions are then obtained by a sort-merge.
For a hash aggregation to work correctly, all rows with

the same value of the grouping columns must be in a single
partition. This is guaranteed as long as the input is partitioned
on a subset of the grouping columns. A stream aggregation
also requires that the input be partitioned on a subset of the
grouping columns. In addition, the rows within each partition
must, as a minimum, be grouped on the grouping columns.
We consider two types of partitioned joins: pair-wise join

and broadcast join. A pair-wise join takes two partitioned
inputs. The inputs must be partitioned on a subset of the
join columns and in the same way, that is, on the same set
of equivalent columns into the same number of partitions.
Broadcast join takes one partitioned input and one non-
partitioned input that is sent (broadcast) to each partition of
the other input. It doesn’t matter how the partitioned input is
partitioned. These are the only requirements for a nested-loop
or hash join. A merge join has the additional requirement that
each partition be sorted on the join columns.
Example 3 Suppose we are considering using a partitioned
merge join to join tables R and S on R.C1 = S.C1 and
R.C2 = S.C2. Based on the rules in Table VI, both inputs

must be partitioned and sorted in the same way. The partition-
ing columns must be a subset of or equal to the join columns
({R.C1, R.C2} and {S.C1, S.C2}, respectively). A prefix of
the sort columns must also be equal to the join columns on
each input.
Each of the following requirements satisfies the restrictions

and is thus valid input requirements. We do not list all the
possibilities here and also leave the exact sort order, o↑ and
o↓, unspecified.

• {R.Cg
1 ; {R.Co

2 , R.Co
1}} and {S.Cg

1 ; {S.Co
2 , S.Co

1}}
• {R.Co

2 ; {R.Co
1 , R.Co

2}} and {S.Co
2 ; {S.Co

1 , S.Co
2}}

• {{R.C1, R.C2}g; {R.Co
2 , R.Co

1}} and
{{S.C1, S.C2}g; {S.Co

2 , S.Co
1}}

As shown by the example, the requirements in Table VI
for the child expressions are not always unique and can
be satisfied in several ways. For instance, aggregation on
{C1, C2} requires the input to be partitioned on {C1}, {C2},
or {C1, C2}. Conceptually, each requirement corresponds to
one specific implementation. This situation could be handled
by generating multiple alternatives, one for each requirement.
However, this approach would generate a large number of
alternatives, making optimization more expensive. Instead, we
allow required properties to cover a range of possibilities and
rely on enforcer rules, described in Section VIII, to generate
valid rewrites.
To this end, our optimizer encodes required structural prop-

erties as follows.
• Partitioning requirement:

– Non-partitioned (⊥), broadcast (+) or partitioned
mode

– If in partitioned mode, minimum partitioning col-
umn set Pmin and maximum partitioning column set
Pmax(∅ ⊆ Pmin ⊆ Pmax)

– If Pmin = ∅, whether an explicit partitioning by
some column is required so that P .= ∅.



TABLE VI
REQUIRED STRUCTURAL PROPERTIES OF INPUTS TO PHYSICAL OPERATORS

Non-Partitioned
Version Partitioned Version

Table Scan {⊥; ∗} {X ; ∗},X (= ∅
Select {⊥; ∗} {X ; ∗},X (= ∅
Project {⊥; ∗} {X ; ∗},X (= ∅
Sort on So(S (= ∅) {⊥; {So, ∗}} {X o;So},X (= ∅,So ⇒ X o

Hash Aggregate on G {⊥; ∗} {X ; ∗}, ∅ ⊂ X ⊆ G,G (= ∅
Stream Aggregate on G {⊥; {Gg, ∗}} {X ; {Gg, ∗}}, ∅ ⊂ X ⊆ G,G (= ∅

Nested-loop or Hash Join
(equijoin on columns
J1 ≡ J2)

Both inputs {⊥; ∗}
Pair-wise Join:
Input 1: {X ; ∗}, ∅ ⊂ X ⊆ J1; Input 2: {Y ; ∗}, ∅ ⊂ Y ⊆ J2; X ≡ Y
Broadcast Join:
Input 1: {$; ∗}; Input 2: {X ; ∗},X (= ∅

Merge Join
(equijoin on columns
J1 ≡ J2)

Input 1: {⊥;So
1}

Input 2: {⊥;So
2}

Pair-wise Join:
Input 1: {X ;So

1}, ∅ ⊂ X ⊆ J1; Input 2: {Y ;So
2}, ∅ ⊂ Y ⊆ J2; X ≡ Y

Broadcast Join:
Input 1: {$;So

1}; Input 2: {Y ;So
2},Y (= ∅

J1 = prefix(So
1 ), J2 = prefix(So

2 )

• Sorting requirement:
a list of sorting columns {So

1 , So
2 , . . . , So

n}, o ∈ {o↑, o↓}
• Grouping requirement:
a set of grouping columns {G1, G2, . . . , Gn}g

In the previous example of aggregation on {C1, C2}, the par-
titioning requirement would be Pmin = ∅,Pmax = {C1, C2}.
This requirement is satisfied by hash or range partition with
column set P where Pmin ⊂ P ⊆ Pmax.
The rules in Table VI do not consider requirements imposed

on the operator by its parent. For instance, if a merge join
is required to produce a result sorted on {C1, C2} but its
equality join predicates are on {C3}, there is no merge join
implementation that could satisfy its sorting requirements,
assuming that sorting on {C3} does not imply sorting on
{C1, C2}. In this case, this merge join is an invalid alternative
- it can never produce an output that satisfies the requirements.
The optimizer checks for such invalid alternatives and discards
them immediately.

VII. PROPERTY MATCHING

Property matching checks whether one set of properties P 1

satisfies anotherP2, that is, whether P1 ⇒ P2. The optimizer
ensures that a physical (sub)plan is valid by checking that its
delivered properties satisfy the required properties.
Matching of structural properties can be done by matching

global and local properties separately.
{Pθ; {Â1, Â2, . . . , Ân}} ⇒ {Qβ ; {B̂1, B̂2, . . . , B̂n}}

⇔
Pθ ⇒ Qβand {Â1, Â2, . . . ,Ân} ⇒ {B̂1, B̂2, . . . , B̂n}

However, two structural properties may be equivalent even
if they appear different because of functional dependencies
and column equivalences. We cannot simply compare their
original forms but must first convert them to normalized
form. The basic idea of the normalization procedure is as
follows: a) in each partitioning, sorting, grouping property,
and functional dependency, replace each column with the
representative column in its equivalence class, then b) in each
partitioning, sorting and grouping property, remove columns
that are functionally determined by some other columns.

Global and local properties are matched separately. Normal-
ization and matching of local properties (sorting and grouping)
have been studied extensively in [13], [12]. Matching of global
properties (partitioning) is based on inference rules (2), (3),
and (5) in section V. Recall that required properties are not
always unique but may encode multiple alternatives, which
results in additional matching opportunities.
Example 4 We want to test whether the structural properties
P1 = {{C7, C1, C3}g; {Co↑

6 , C
o↓
2 , C

o↑
5 }} satisfy the structural

properties P2 = {{C1, C2, C4}g; {{C1, C2}g}}. We know
that the data satisfies the FD {C6, C2} → {C3}. There are
two column equivalence classes {C1, C6} and {C2, C7} with
C1 and C2 as representative columns, respectively.
After replacing columns by representative columns, we have

P1 = {{C2, C1, C3}g ; {Co↑
1 , C

o↓
2 , C

o↑
5 }}

P2 = {{C1, C2, C4}g ; {{C1, C2}g}}
{C1, C2} → {C3}.

Next we apply the functional dependency to eliminate C3,
which changes P1 to

P1 = {{C2, C1}g; {Co↑
1 , C

o↓
2 , C

o↑
5 }}.

while P2 is unchanged.
We first consider global properties. We want to prove that

{C2, C1}g ⇒ {C1, C2, C4}g. According to the expansion rule
for global properties (inference rule (2)), the implication holds
and thus the global properties match.
For local properties, we need to show that

{Co↑
1 , C

o↓
2 , C

o↑
5 } ⇒ {{C1, C2}g}. Applying the truncation

rule for local properties (inference rule (1)), we obtain
{Co↑

1 , C
o↓
2 } ⇒ {{C1, C2}g} because sorting implies grouping

(inference rule (4)).
Since both global and local properties are matches, we

deduce that P1 satisfy P2.

VIII. ENFORCER RULES
In this section we describe optimization rules that automat-

ically introduce data exchange operators and thus seamlessly
generate and optimize distributed query plans. We enhance the
optimization framework in two ways.



• For each logical operator, we consider both non-
partitioned and partitioned implementations, as long as
they can ever satisfy their requirements.

• We rely on a series of enforcer rules (explained below) to
modify requirements for structural properties, say, from
non-partitioned to partitioned, or from sorted to non-
sorted, etc.

Together with other optimization rules and property inferences,
this enables the optimizer to consider both serial and parallel
in a single integrated framework. It greatly enhances the power
of a traditional query optimizer without dramatic infrastructure
changes.
We begin with a simple example of sort optimization. Sup-

pose that, during optimization, there is a request to optimize an
expression with a specific sort requirement S. The optimizer
then considers different alternative physical operators for the
root operator of the expression tree, derives what properties
their inputs must satisfy, and requests an optimal plan for each
input. There are typically three possible ways of ensuring that
the result will be sorted. It is up to the optimizer to decide
which plan is the best based on its cost estimates.

• If a physical operator itself can generate a sorted output,
try this operator and push requirements imposed by the
operator itself to its child expressions.

• If a physical operator retains the input order, try this
operator and push the sort requirement plus requirements
imposed by the operator itself to its child expressions.

• Otherwise, try the operator but add an explicit sort
operator matching the requirement and then optimize the
child expressions without the sort requirement.

In the last case, the optimizer enforces a sort requirement on
top of the physical operator. We call such optimization rules
enforcer rules. Grouping requirements can be handled in a
similar way, expect we may not have an explicit group-only
operator. A grouped result is usually produced as a side-effect
of another operator, for example, a one-to-many nested-loop
join.
A data exchange operator is similar to sorting. Its only

effect is to change structural properties; it does not add or
eliminate rows, nor does it modify individual rows in any way.
Therefore, we model data exchange operators as enforcers of
structural properties.
Algorithm 2 shows simplified pseudo-code for enforcing

partitioning. For simplicity, handling of sorting and grouping
requirements is not shown. When a sorting requirement exists,
we consider both sort-merge exchange and regular exchange
operations. We also ignore the details of the partitioning
requirement.
Although the pseudo-code is much simplified, it captures

the core ideas of enforcing partitioning requirements. For
any expression with particular partitioning requirements, the
optimizer 1) uses an operator that itself satisfies the require-
ments; 2) uses a partition-preserving operator and pushes the
requirements to its children; 3) adds data exchange operators
that allow the requirements for its child expressions to be

Algorithm 2: EnforceDataExchange(expr, reqd)
Input: Expression expr, ReqdProperties reqd
ReqdProperties reqdNew;
if Serial(reqd) then

/*Require a serial output */
AddExchange(FullMerge);
reqdNew = GenParallel(reqd);
Optimize(expr, reqdNew);

else
/*Require a parallel output */
/*Enumerate all possible partitioning
properties that Pmin ⊆ P ⊆ Pmax */

foreach valid partition schema P do
/*Case 1: repartition */
AddExchange(Repartition);
/*Generate new partitioning requirements
for its children; remove specific
partitioning columns */

reqdNew = GenParallel(reqd);
Optimize(expr, reqdNew);
/*Case 2: initial partition */
AddExchange(InitialPartition);
/*Force the child to generate a serial
output */

reqdNew = GenSerial(reqd);
Optimize(expr, reqdNew);

end
end
return;

relaxed or modified. The optimizer tries all the alternatives
and selects the best plan based on estimated costs.
Enforcer rules can seamlessly enable a single instance of an

operator to work on a partitioned input by introducing a full
merge operator. It can enable multiple instances of an operator
to work on a non-partitioned input by introducing an initial
partition operator. It can also enable multiple instances of an
operator with specific partitioning requirements to work on any
partitioned input sets by introducing a repartition operator.
Example 5 Assume we optimize a filter operator with a
requirement that its results must be partitioned on {C1, C2}.
Since the filter operator itself cannot generate a partitioned
output, the optimizer consider at least the following three
alternatives.
1) Keep the filter operator and propagate the partition
requirement to its child expression.

2) Add a repartition operator on {C1, C2} before the filter
operator. The child expression of the repartition operator
can be partitioned in any way.

3) Add an initial partitioning operator on {C1, C2} before
the filter operator. The child expression of the repartition
operator has to produce a non-partitioned output.

If the child expression turns out to produce its results already
partitioned on {C1, C2}, possibly because the inputs are
partitioned in the same way or there is an explicit partition
before, the first choice is likely to be the cheapest. In such a
plan, no additional enforcer (partitioning) is needed.

The number of alternatives generated by enforcer rules
could be large so usually the optimizer applies cost-based
heuristics to prioritize alternatives and prune out less promis-
ing ones.



IX. THE OPTIMIZER IN ACTION
The execution platform for SCOPE is called Cosmos.

Cosmos is a distributed computing platform for storing and
analyzing massive data sets [2]. Cosmos is designed to run on
large clusters consisting of thousands of commodity servers.
It has two major subsystems.
Cosmos Storage. A distributed storage subsystem designed

to reliably and efficiently store extremely large files. A file is
divided into extents that are distributed and replicated for fault
tolerance and compressed for better storage efficiency and I/O
throughput.
Cosmos Execution Environment. A Cosmos computation

job is modelled as a dataflow graph: a directed acyclic graph
(DAG) with vertices representing processes and edges repre-
senting data flows. A job manager handles execution of a job.
It schedules a DAG vertex onto the system processing nodes
when all the inputs are ready, monitors vertex progress, and
re-executes part of the DAG in case of failures [10].
In Cosmos, intermediate results are materialized on disk.

This reduces the amount of re-computation required on failure
and simplifies scheduling - any task whose inputs are available
is runnable and can be scheduled independently of other
tasks [5], [10], [2].

A. Sample Query
A typical SCOPE script involves one or more joins and

multiple levels of aggregation and scans tens of (or hundreds
of) terabytes of data. Here we use a relatively simple script
but with a pattern that is very common in user scripts.
Among other things, SCOPE is used to analyze the load

and performance of Cosmos production clusters. The system
records a variety of system information as runtime events. The
system records “ProcessStarted” events for every vertex, which
includes the machine name on which the vertex runs, its job
guid and process (vertex) guid, user name, job priority, and
the time stamp when the vertex starts, etc. When a vertex
finishes, the system also records “ProcessEnded” events, which
includes its job guid and process guid, exit code, user group,
and the time stamp when it ends, etc. Raw event files may
contain duplicate events that need to be eliminated during
analysis.
The script below calculates how much machine time has

been spent on jobs issued by different user groups during the
last month. This is a rough estimate of the system resources
used by each user group.
extractStart =
EXTRACT CurrentTimeStamp, ProcessGUID
FROM ”[...]/ProcessStartedEvents?Date=(Today-30)..Today”
USING EventExtractor(”ProcessStarted”);

startData =
SELECT DISTINCT CurrentTimeStamp AS StartTime, ProcessGUID
FROM extractStart;

extractEnd =
EXTRACT CurrentTimeStamp, UserGroupName, ProcessGUID
FROM ”[...]/ProcessEndedEvents?Date=(Today-30)..Today”
USING EventExtractor(”ProcessEnded”);

endData =
SELECT DISTINCT CurrentTimeStamp AS EndTime, UserGroupName,
ProcessGUID
FROM extractEnd;

perUserGroup =
SELECT SUM((EndTime-StartTime).TotalMilliseconds)/3600000
AS TotalCPUHours, UserGroupName
FROM startData JOIN endData
ON startData.ProcessGUID == endData.ProcessGUID
GROUP BY UserGroupName
ORDER BY UserGroupName;

OUTPUT perUserGroup TO ”/my/CPUHoursPerUserGroup.txt”;

The script first selects events from the last month and
extracts time stamp information when each vertex (process)
starts and ends, respectively, plus process guid and user group
information. Next, duplicates in the raw events are removed
by applying a DISTINCT aggregate on all columns. Finally,
the cleaned data are joined on the process guid and the total
CPU time per user group is calculated.
The “ProcessStarted” event in the queried period contains

about 173 GB of data while the “ProcessEnded” event contains
about 264 GB of data. Both Cosmos files are randomly
distributed and replicated across the cluster.
We ran the query against on a small test cluster of 84

machines. Each machine has two dual-core Xeon processors
running at 2GHz, 8 GB of DRAM, and four 500GB SATA
disks. All machines run Windows Server 2003 Enterprise X64
Edition SP1.

B. Query Plans
Figure 3 compares query plans with and without optimiza-

tion. We begin by explaining the default SCOPE plan, shown
in Figure 3(a). A partitioned stream is shown as three arrows.
Different partitions of an input are processed in parallel with
one operator instance for each partition. Partitioning operators
are shown with a grey background. A sequence of operators
between two partitioning operators are grouped together into
a pipeline and may run on the same machine. Note that a
partitioning operator may consist of two suboperators, the first
generating partitions on source machines and the second merg-
ing corresponding source partitions on destination machines.

• (1) - (3). The input event files are randomly parti-
tioned and distributed across all machines in the cluster.
After extracting the “ProcessStarted” event, the input
is sorted on each machine by the grouping columns,
{starttime, guid} and duplicates removed locally (local
aggregation) to reduce data before hitting the network
in the next stage. The data is sorted by the grouping
columns so a streaming aggregation operator is used. The
intermediate result after (3) is randomly partitioned with
each partition sorted. Similar operations are performed
on the “ProcessEnded” event except that the sorting and
aggregation are on {endtime, usergroup, guid}.

• (4). To do a full aggregate, the intermediate result must
be repartitioned by the grouping columns so all rows
with the same value of the grouping columns end up on
the same destination machine. Each destination machine



StreamAgg (Global)
(UserGroup)

MergeJoin
(GUID)

SortMerge (StartTime, GUID)
Repartition (StartTime, GUID)

Sort Merge
(UserGroup)

Sort
(StartTime,GUID)

Extract
(ProcessStart)

Sort
(UserGroup)

Sort
(GUID)

SortMerge (GUID)
Repartition (GUID)

Sort
(EndTime,UserGroup,

GUID)

Extract
(ProcessEnd)

Sort
(GUID)

SortMerge (UserGroup)
Repartition (UserGroup)

SortMerge (EndTime, UserGroup, GUID)
Repartition (EndTime, UserGroup, GUID)

SortMerge (GUID)
Repartition (GUID)

(1)

(2)

(4)

(5)

(6)

(7)

(8)

(9)

(11)

(12)

(13)

StreamAgg (Local)
(DISTINCT)(3)

StreamAgg (Local)
(DISTINCT)

StreamAgg (Global)
(DISTINCT)

StreamAgg (Global)
(DISTINCT)

StreamAgg (Local)
(UserGroup)(10)

Output(14)

StreamAgg (Local)
(UserGroup)

MergeJoin
(GUID)

SortMerge
(GUID,StartTime)

Repartition (GUID)

Sort Merge
(UserGroup)

Sort
(GUID,StartTime)

Extract
(ProcessStart)

Sort
(UserGroup)

Sort
(GUID,EndTime,UserGroup)

Extract
(ProcessEnd)

SortMerge
(GUID,EndTime,UserGroup)
Repartition (GUID)

(1)

(2)

(4)

(6)

(7)

(8)

(9)

StreamAgg (Local)
(DISTINCT)(3)

StreamAgg (Local)
(DISTINCT)

(5)
StreamAgg (Global)

(DISTINCT)
StreamAgg (Global)

(DISTINCT)

StreamAgg (Global)
(UserGroup)

Output(11)

(10)

(a) Default Plan (b) Optimized Plan
Fig. 3. Query Plan Comparison

sort-merges its inputs from the source machines so the
sort order is maintained. Similar operations apply to
both inputs, except that one side is partitioned and sort-
merged by {startT ime, guid} and the other side is by
{endtime, usergroup, guid}.

• (5) - (6). The global aggregates are then calculated in
parallel. On each machine, the result is next sorted by
the guid column in preparation for the subsequent merge
join.

• (7) - (8). The intermediate result is repartitioned by the
join column guid of the merge join. Each destination
machine sort-merges its partitions to maintain the sort
order on guid and the result flows directly into the merge
join instance on that machine.

• (9) - (10). The join results are resorted locally on the
next grouping column usergroup and a local aggregate
is applied immediately to reduce the data.

• (11). The data is repartitioned on usergroup and each
destination machine sort-merges its inputs to retain the
sort order on usergroup.

• (12). All rows from the usergroup now reside on the
same machine and the global aggregate on usergroup is
calculated.

• (13) - (14). Finally, all result partitions are routed to the
same machine that sort-merges them, producing a single
sorted result that is output to a Cosmos file.

The default plan uses 150 partitions. This slight over-
partitioning improves load balancing and mitigates effects of
data skew.
Figure 3(b) shows the optimized plan generated by the

optimizer. The plan also chooses a merge join and stream
aggregates. As described in Algorithm 1 in Section III,
we first determine input properties required by individual
operators. Based on the rules in Table VI, the partitioned
merge join requires both inputs to have structural properties
{{guid}; {guido, ∗}}. The partitioned stream aggregate on
“ProcessStarted” events requires an input with properties

{X ; {{starttime, guid}g, ∗}}, ∅ ⊂ X ⊆ {starttime, guid}

and the partitioned stream aggregate on “ProcessEnded”
events requires its inputs to have properties

{Y; {{endtime, usergroup, guid}g, ∗}},
∅ ⊂ Y ⊆ {endtime, usergroup, guid}

• (1) - (4). In the optimized plan the inputs
are sorted by {guido, starttimeo} and
{guido, endtimeo, usergroupo}, respectively, and
then partitioned on guid. By the inference rules in
Section V and the derivation rules in Table IV, the
results have properties {{guid}g; {guido, starttimeo}}
and {{guid}g; {guido, endtimeo, usergroupo}},
respectively. These properties satisfy the requirements of
its DISTINCT aggregate.

• (5) - (6). After the DISTINCT aggregates, the outputs
have the properties {{guid}g; {guido, starttimeo}}
and {{guid}g; {guido, endtimeo, usergroupo}},
respectively. The properties satisfy the requirements of
the partitioned merge join so there is no need to resort
or repartition the inputs. This avoids the unnecessary
sorting and repartitioning in the default query plan.

• (7) - (11). The optimizer also takes advantage of the
fact that join results in this particular query are relatively
small and decides not to repartition on usergroup. In-
stead, it sort-merges the inputs into a single serial output
in (9) and performs the global aggregate on a single
machine (10). The final result is then output directly into
a Cosmos file.

Compared with the default query plan, the optimized plan
saves unnecessary sorting and repartitioning. The default query
plan takes 21 minutes to finish while the optimized query
plan takes around 11 minutes, a speedup of close to 2X. The
optimization process takes much less than a second and the
cost is negligible.

X. RELATED WORK

Reasoning about plan properties has received considerable
attention in the research community for the last two decades.
However, all previous work focused on inferring sorting and/or
grouping properties. To the best of our knowledge, this is the
first paper to integrate reasoning about partitioning, grouping,
and sorting in a uniform framework.



System R [15] pioneered keeping track of ordering infor-
mation for intermediate query results in order to influence the
choice of sort-merge joins. Simmen, et al. [16] showed how
to exploit functional dependencies to infer sorting properties.
Wang, et al. [17] combined reasoning about grouping and
sorting together and, specifically, exploited both primary and
secondary ordering information. They used a postprocessing
step that derives local properties for intermediate results and
eliminates unnecessary sorting and grouping operations. Our
definition of local structural properties is more general and
integrated directly into the optimization process. Neumann and
Moerkotte described a combined platform to handle sorting
and grouping optimization [13], [12]. They invented new data
structures to keep track of sorting and grouping properties
efficiently and simplified the normalization process needed for
property comparisons. Their techniques are orthogonal to ours
and can be applied in our framework as well.
Recently there has been a flurry of research on large-scale

distributed computation. Google’s MapReduce programming
model [5] provides a simple abstraction of common group-
by-aggregation operations where Map functions correspond to
groupings and Reduce functions correspond to aggregations.
Hadoop is an open-source version of a MapReduce execution
engine. Microsoft’s Dryad [10] provides a more flexible
model where a distributed computation job is represented as
a dataflow graph. High-level declarative languages have also
been introduced that allow users to easily program distributed
computation jobs. Pig Latin [14] is a data flow language using
a nested data model. DryadLINQ [18] integrate Dryad with
the .NET Language Integrated Query (LINQ). SCOPE [2] is
a SQL-like declarative scripting language with rich classes of
runtime implementations. Regardless of the language differ-
ences, their declarative nature hides system complexities from
the users and need an optimizer to generate efficient execution
plans.
Query processing techniques in parallel and distributed

database systems have been studied extensively [11], [9].
Many traditional optimization techniques are of course ap-
plicable in the new context of cloud-scale computations.
Conversely, the techniques described in this paper are also
applicable in parallel database systems.

XI. CONCLUSION
Massive data analysis in cloud-scale data centers plays

a crucial role in improving quality of service. High-level
scripting languages free users from understanding various
system trade-offs and complexities, and provide a transparent
abstraction of the underlying system. Such languages pose
great challenges for query optimization, requiring the opti-
mizer to generate efficient parallel execution plans.
In the optimizer for SCOPE, Microsoft’s scripting language

for massive data analysis, consideration of parallel plans is
fully integrated into the optimization process. We described
the optimizer extensions required for parallel plans. A key
extension was reasoning about structural properties (partition-
ing, grouping, and sorting properties) of data. We presented

formal semantics for structural properties, introduced rules to
infer properties of intermediate and final results, and described
how property reasoning is integrated into the optimizer. The
optimizer is in production use at Microsoft and has proven to
be effective, greatly improving query performance.

REFERENCES
[1] Apache. Hadoop. http://hadoop.apache.org/.
[2] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib, S. Weaver,

and J. Zhou. Scope: Easy and efficient parallel processing of massive
data sets. In Proceedings of VLDB Conference, 2008.

[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. Gruber. Bigtable: A distributed
storage system for structured data. In Proceedings of OSDI Conference,
2006.

[4] H. Darwen and C. Date. The role of functional dependencies in query
decomposition. Relational Database Writings 1989 - 1991, 1992.

[5] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. In Proceedings of OSDI Conference, 2004.

[6] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. In
Proceedings of SOSP Conference, 2003.

[7] G. Graefe. Encapsulation of parallelism in the Volcano query processing
system. In Proceeding of SIGMOD Conference, 1990.

[8] G. Graefe. The Cascades framework for query optimization. Data
Engineering Bulletin, 18(3), 1995.

[9] G. Graefe and W. J. McKenna. The Volcano optimizer generator:
Extensibility and efficient search. In Proceeding of ICDE Conference,
1993.

[10] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed
data-parallel programs from sequential building blocks. In Proceedings
of EuroSys Conference, 2007.

[11] H. Lu. Query Processing in Parallel Relational Database Systems. IEEE
Computer Society Press, 1994.

[12] T. Neumann and G. Moerkotte. A combined framework for grouping
and order optimization. In Proceedings of VLDB Conference, 2004.

[13] T. Neumann and G. Moerkotte. An efficient framework for order
optimization. In Proceedings of ICDE Conference, 2004.

[14] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
latin: A not-so-foreign language for data processing. In Proceedings of
SIGMOD Conference, 2008.

[15] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price. Access path selection in a relational database management
system. In Proceedings of SIGMOD Conference, 1979.

[16] D. Simmen, E. Shekita, and T. Malkenus. Fundamental techniques for
order optimization. In Proceedings of SIGMOD Conference, 1996.

[17] X. Wang and M. Cherniack. Avoiding sorting and grouping in processing
queries. In Proceedings of VLDB Conference, 2003.

[18] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda,
and J. Currey. DryadLINQ: A system for general-purpose distributed
data-parallel computing using a high-level language. In Proceedings of
OSDI Conference, 2008.


