
Noname manuscript No.
(will be inserted by the editor)

Compression of Trajectory Data: A Comprehensive
Evaluation and New Approach

Jonathan Muckell · Paul W. Olsen Jr. ·
Jeong-Hyon Hwang · Catherine T.
Lawson · S. S. Ravi

Received: date / Accepted: date

Abstract GPS-equipped mobile devices such as smart phones and in-car navi-
gation units are collecting enormous amounts of spatial and temporal informa-
tion that traces a moving object’s path. The exponential increase in the amount
of such trajectory data has caused three major problems. First, transmission of
large amounts of data is expensive and time-consuming. Second, queries on large
amounts of trajectory data require computationally expensive operations to ex-
tract useful patterns and information. Third, GPS trajectories often contain large
amounts of redundant data that waste storage and cause increased disk I/O time.
These issues can be addressed by algorithms that reduce the size of trajectory data.
A key requirement for these algorithms is to minimize the loss of information essen-
tial to location-based applications. This paper presents a new compression method
called SQUISH-E (Spatial QUalIty Simplification Heuristic - Extended) that pro-
vides improved run-time performance and usability. A comprehensive comparison

J. Muckell
Department of Informatics, College of Computing and Information, University at Albany –
State University of New York, Albany, NY 12222, USA.
E-mail: jonmuckell@gmail.com

P. Olsen
Department of Computer Science, College of Computing and Information, University at Albany
– State University of New York, Albany, NY 12222, USA.
E-mail: protsoph@gmail.com

J. Hwang
Department of Computer Science, College of Computing and Information, University at Albany
– State University of New York, Albany, NY 12222, USA.
E-mail: jhh@cs.albany.edu

C. Lawson
Department of Geography and Planning and College of Computing and Information, University
at Albany – State University of New York, Albany, NY 12222, USA.
E-mail: lawsonc@albany.edu

S. Ravi
Department of Computer Science, College of Computing and Information, University at Albany
– State University of New York, Albany, NY 12222, USA.
E-mail: ravi@cs.albany.edu

2 Jonathan Muckell et al.

of SQUISH-E with other algorithms is carried out through an empirical study
across three types of real-world datasets and a variety of error metrics.

Keywords Trajectories · Compression · GIS

1 Introduction

In recent years, the number of GPS-enabled devices sold has drastically increased,
following an impressive exponential trend. Canalys, an information technology
firm that studies market patterns, reported a 116% increase in the number of GPS
units sold between 2006 and 2007 [1]. Location-based services and applications
built from GPS-equipped mobile devices represent a rapidly expanding consumer
market. In 2009, there was an estimated 27 million GPS-equipped smart phones
sold, bringing the world-wide GPS user-base to at least 68 million in the consumer
market alone [2]. These devices have the ability to generate, store and transmit
trajectory data. A trajectory is defined as a stream of 3-tuple records consisting of
the position (latitude, longitude), along with the temporal information (when the
moving object was at the location).

Three major problems currently exist in location-based applications that use
trajectory data. First, storing the sheer volume of trajectory data can quickly
overwhelm available data storage space. For instance, if data is collected without
compression at 10 second intervals, 1 Gb of storage capacity is required to store
just over 4,000 objects for a single day [3]. For this reason, efficiently storing and
querying GPS trajectories is an area of active research [3–6]. Second, the cost
of sending a large amount of trajectory data over cellular or satellite networks
can be expensive, typically ranging from $5 to $7 per megabyte [7]. Thus, for
example, tracking a fleet of 4,000 vehicles for a single day would incur a cost
of $5,000 to $7,000, or approximately $1,800,000 to $2,500,000 annually. Third,
as the trajectory data size gets larger, it becomes more difficult to detect useful
patterns from the data. Reducing the size of the trajectory data has the potential
to accelerate the mining of trajectory patterns [8].

This paper extends two of our previous conference publications. The first pub-
lication [9] empirically compared seven existing algorithms for compressing trajec-
tories. This work provided a discussion on the strengths and weaknesses of these
algorithms and provided guidelines for selecting application-specific compression
algorithms. A follow-up publication [10] presented a new trajectory compression
algorithm. This algorithm, called SQUISH (Spatial QUalIty Simplification Heuris-
tic), uses a priority queue where the priority of each point is defined as an estimate
of the error that the removal of that point would introduce. SQUISH compresses
each trajectory by removing points of the lowest priority from the priority queue
until it achieves the target compression ratio. This algorithm is fast and tends to
introduce small errors during compression. However, it cannot compress trajecto-
ries while ensuring that the resulting error is within a user-specified bound. It also
exhibits relatively large errors when the compression ratio is high.

This paper presents a new version of SQUISH, called SQUISH-E (Spatial QUal-
Ity Simplification Heuristic - Extended), that overcomes the limitations mentioned
above. In contrast to its predecessor, this new algorithm provides provable guar-
antees on the error caused by compression. Given a trajectory T and parameters

Compression of Trajectory Data: A Comprehensive Evaluation and New Approach 3

λ and µ, this algorithm first compresses T while striving to minimize the error
due to compression and ensuring the compression ratio of λ. It then further com-
presses T as long as this compression will not increase errors beyond µ. In this way,
the new SQUISH-E algorithm allows users to control compression with respect to
both compression ratio and error, sharply contrasting with previous compression
algorithms. In particular, setting µ to 0 causes this algorithm to minimize error
while achieving the compression ratio of λ. When λ is 1, this algorithm maximizes
compression ratio while keeping errors under µ.

Other contributions of this paper include a comprehensive performance evalua-
tion and comparison across three large datasets representing different travel modes
(e.g, bus, urban commuter, and multi-modal travel which involves walking, cycling
and rail). We analyzed the influence of travel modes on trajectory data particu-
larly in terms of changes in direction, speed and acceleration. We also measured
the impact of such changes on the degree of errors that each compression algo-
rithm introduces (e.g., frequent, often unpredictable changes in movement make it
difficult to compress trajectories with high accuracy). In our previous work [9], all
of the compression algorithms were implemented in Matlab, which had limitations
in code efficiency. We reimplemented these algorithms in Java and evaluated them
with a focus on their unique trade-offs between compression speed and accuracy.

In this paper, we make the following contributions:

– We present a new algorithm, SQUISH-E, that compresses trajectories with
provable guarantees on errors. This algorithm has the flexibility of tuning com-
pression with respect to compression ratio and error.

– We provide formal proofs for the correctness of SQUISH-E.
– We present a comprehensive evaluation of trajectory compression algorithms

using datasets that represent various data profiles (urban commuter, bus and
multi-modal).

– We provide guidelines for choosing a compression algorithm that is best suited
to the characteristics of trajectories as well as the organizational and technical
requirements.

The remainder of this paper is organized as follows. Section 2 describes previous
work for compressing trajectories, along with metrics for comparing trajectory
compression algorithms. In Section 3, our new SQUISH-E algorithm is described in
detail. An empirical evaluation of trajectory compression algorithms is provided in
Section 4. The paper concludes with recommendations for future work in Section 5.

2 Background

Compression algorithms can be classified into two categories, namely lossless and
lossy compression. Lossless compression enables exact reconstruction of the orig-
inal data with no information loss. In contrast, lossy compression introduces in-
accuracies when compared to the original data. The primary advantage of lossy
compression is that it can often drastically reduce storage requirements while main-
taining an acceptable degree of error. Due to this benefit, this paper focuses on
lossy compression of trajectory data. This section presents a comprehensive survey
of metrics for comparing lossy trajectory compression algorithms (Section 2.1) and
a summary of these algorithms (Section 2.2).

4 Jonathan Muckell et al.

P5

P4P3
P2

P6
P1

original

compressed

P2’

P3’
P4’

(a) Spatial Error

P5

P4P3
P2

P6
P1

original

compressed
P2’

P3’
P4’

(b) Synchronized Euclidean Distance

Fig. 1 Compression Accuracy Metrics: Spatial error and SED are illustrated using a trajectory
consisting of P1, P2, · · · , P6 and its compressed representation which contains P1, P4 and P6.

2.1 Metrics

A trajectory T of length n consists of points Pi(xi, yi, ti) for i ∈ {1, 2, · · · , n},
where xi and yi are the longitude and latitude of a moving object at time ti.
Trajectory compression algorithms described in Section 2.2 can compress trajec-
tory T into another trajectory T ′ which contains a subset of points from T (i.e.,
Pj(xj , yj , tj) for j ∈ M ⊂ {1, 2, · · · , n}). Metrics for expressing the difference be-
tween a trajectory and its compressed representation are explained in Section 2.1.1
and metrics for comparing the performance of trajectory compression algorithms
are summarized in Section 2.1.2.

2.1.1 Accuracy Metrics

Given a trajectory T and its compressed representation T ′, the spatial error of
T ′ with respect to a point Pi in T is defined as the distance between Pi(xi, yi, ti)
and its estimation P ′i (x

′
i, y
′
i, ti). If T ′ contains Pi, then P ′i is Pi (e.g., P ′1 = P1 and

P ′4 = P4 in Figure 1(a) where a trajectory containing P1, P2, · · · , P6 is approx-
imated using only P1, P4 and P6). Otherwise, P ′i is defined as the closest point
to Pi along the line between predT ′(Pi) and succT ′(Pi), where predT ′(Pi) and
succT ′(Pi) denote Pi’s closest predecessor and successor among the points in T ′.
In Figure 1(a), predT ′(P2) = P1 and succT ′(P2) = P4. Therefore, the spatial error
of T ′ with respect to P2 is the perpendicular distance from P2 to line P1P4.

Spatial error does not incorporate temporal data. Synchronized Euclidean Dis-
tance (SED) overcomes this limitation [11]. As in the case of spatial error, the SED
between point Pi(xi, yi, ti) and its estimation P ′i (x

′
i, y
′
i, ti), denoted as d(Pi, P

′
i),

is defined as the distance between (xi, yi) and (x′i, y
′
i). However, x′i and y′i are ob-

tained for time point ti via linear interpolation between predT ′(Pi) and succT ′(Pi).
For instance, if ti = i for i ∈ {1, 2, 3, 4} in Figure 1(b), P ′2 and P ′3 correspond to
the points that divide the line between P1 and P4 into three line segments of the
same length.

In addition to SED, many applications require accurate preservation of speed
and heading information. For example, law enforcement needs accurate speed in-
formation to derive speeding hot-spots [12]. Furthermore, traffic flow modeling re-
quires records about sharp changes in speed and heading to detect erratic behavior
or disturbances in traffic flow [13]. Both speed and heading errors are determined
in a way similar to SED, except that they capture the difference in speed and

Compression of Trajectory Data: A Comprehensive Evaluation and New Approach 5

heading between the actual and estimated movements. Given points Pi(xi, yi, ti)

and Pi+1(xi+1, yi+1, ti+1), the speed at Pi is computed as d(Pi,Pi+1)
ti+1−ti . For estima-

tions P ′i and P ′i+1 of Pi and Pi+1, the speed at P ′i is similarly calculated. The
speed error of T ′ with respect to Pi is defined as the difference between the speed
at Pi and the estimated speed at P ′i .

Each of the metrics mentioned above expresses the error of a compressed rep-
resentation T ′ with respect to a point in the original trajectory T . The overall
error of T ′ with respect to T can be defined as an aggregate value (e.g., average,
maximum) over the error values computed with respect to all of the points in T .
For example, the maximum SED of T ′ is defined as max{SEDT ′(Pi) : Pi ∈ T}
where SEDT ′(Pi) denotes the SED of T ′ with respect to Pi.

2.1.2 Performance Metrics

In addition to the accuracy metrics mentioned in Section 2.1.1, there are other
types of metrics which are used for comparing the performance of trajectory com-
pression algorithms. One metric, called compression time, refers to the amount of
time that it takes to compress a trajectory. Another metric, compression ratio, is
defined as the size of the original trajectory divided by the size of the compressed
representation of that trajectory. For example, a compression ratio of 50 indicates
that 2% of the original points remain in the compressed representation of the
trajactory.

2.2 Trajectory Compression Algorithms

Various trajectory compression algorithms exist in the literature. Each offers a
different tradeoff among compression time, compression ratio, and accuracy. This
section summarizes these algorithms.

2.2.1 Uniform Sampling

Given a trajectory T and the target compression ratio λ, Uniform Sampling down-
samples T at fixed time intervals in a manner that achieves the compression ratio
of λ. Uniform sampling is fast, but often introduces large spatial and SED errors.

2.2.2 Douglas-Peucker

Given a trajectory T and a parameter Ψ , the Douglas-Peucker Algorithm [14] con-
structs a new trajectory T ′ by repeatedly adding points from T until the maximum
spatial error of T ′ becomes smaller than Ψ . Figure 2 illustrates the operation of
this algorithm. This algorithm initially approximates the original trajectory using
the first and last points of the trajectory (Figure 2(b)). Then, it repeats the process
of selecting the point that causes the largest spatial error (e.g., P3 in Figure 2(b)
and P5 in Figure 2(c)) and using that point to more accurately approximate the
original trajectory. This process stops when the maximum spatial error (e.g., the
distance from P4 to P3P5 in Figure 2(d)) is smaller than Ψ .

6 Jonathan Muckell et al.

P6

P5

P1

P4

P3

P2

(a) Original trajectory

P6P1

P4

P3

P3’

P2
P5

(b) Approximation using P1 and P6

P6P1

P4

P3

P2
P5

P5’

(c) Addition of P3

P5

P6P1

P4

P3

P2

P4’

(d) Addition of P5

Fig. 2 Execution of Douglas-Peucker: Gray dots and dashed lines represent the original tra-
jectory while black dots and solid lines represent the compressed representation of that trajec-
tory. The compressed representation becomes a more accurate approximation of the original
trajectory with the addition of a point whose absence caused the largest spatial error.

The worst-case running time of the original Douglas-Peucker algorithm is
O(n2), where n is the number of original points. This running time can be im-
proved to O(n logn) using an approach that involves convex hulls [15]. A primary
advantage of this algorithm is the guarantee that the resulting spatial error is less
than the user-specified bound Ψ . A major drawback of Douglas-Peucker is that it
ignores temporal data due to the use of spatial error. Douglas-Peucker also does
not allow users to set the desired compression ratio.

2.2.3 Top-Down Time Ratio (TD-TR)

The Douglas-Peucker algorithm has the limitation of ignoring temporal data. Top-
Down Time Ratio (TD-TR) [3] overcomes this limitation by using SED instead of
spatial error. The worst-case running time of TD-TR is O(n2) since it extends the
original Douglas-Peucker algorithm. The O(n logn) implementation of Douglas-
Peucker [15] takes advantage of geometric properties that do not hold for SED.
Therefore, it cannot be applied to TD-TR.

2.2.4 Opening Window Algorithms

Similar to Douglas-Peucker, Opening Window algorithms [16] approximate each
trajectory using an increasing number of points so that the resulting spatial error
is smaller than a bound Ψ . A unique characteristic of Opening Window algorithms
is that they slide a window over the points in the original trajectory. This window
is initially anchored at the first point and gradually includes subsequent points

Compression of Trajectory Data: A Comprehensive Evaluation and New Approach 7

algorithm param. mode time complexity
SED (same

compres. ratio)

Uniform Sampling λ online O(n) large
Douglas-Peucker Ψ offline O(n2) [14], O(n log n) [15] large
TD-TR µ offline O(n2) small
Opening Window Ψ online O(n2) large
OPW-TR µ online O(n2) large
Dead Reckoning µ online O(n) large
SQUISH-E(λ) λ online/offline O(n log n

λ
) small

SQUISH-E(µ) µ offline O(n logn) small

Table 1 Summary of Trajectory Compression Algorithms (n: trajectory size, λ: target
compression ratio, Ψ : spatial error bound, µ: SED error bound)

until the distance from a point Pj in the window to the line segment between the
first and last points in the window becomes larger than Ψ . Next, either point Pj is
added to the compressed representation (Normal Opening Window Algorithm or
NOWA) or the point right before Pj is added (Before Opening Window or BOPW).
Such an added point is then used as the anchor of the next opening window. The
above process is repeated until the last point of the original trajectory is processed.
The worst-case running time of Opening Window algorithms is O(n2) [16].

2.2.5 Opening Window Time Ratio (OPW-TR)

Opening Window Time Ratio (OPW-TR) [3] is an extension to Opening Window
which uses SED instead of spatial error. Compared to Opening Window algo-
rithms, OPW-TR has the benefit of taking temporal data into account. Just like
Opening Window algorithms, OPW-TR has O(n2) worst-case running time.

2.2.6 Dead Reckoning

Dead Reckoning [17] stores the location of the first point P1 and the velocity at P1

in the compressed representation. It then skips every subsequent point Pi (i > 1)
whose location can be estimated from the information about P1 within the SED
of µ. If Pj is the first point whose location cannot be estimated as above, both the
location of Pj and the speed at Pj are stored in the compressed representation,
which are used for estimating the location of each point after Pj . This process is
repeated until the input trajectory ends.

The computational complexity of Dead Reckoning is O(n), where n is the
number of points in the original trajectory. This complexity is due to the fact that
it takes only O(1) time to compare the actual and estimated locations of each
point. The primary disadvantages of Dead Reckoning are that it tends to achieve
lower compression ratios than other techniques (Section 4.3) and it does not allow
users to set the target compression ratio.

2.2.7 Discussion

As summarized in Table 1, trajectory compression algorithms have different char-
acteristics in terms of their guarantees on compression (e.g., Uniform Sampling

8 Jonathan Muckell et al.

achieves the compression ratio of λ while TD-TR limits SED under µ) and com-
pression speed. Douglas-Peucker and TD-TR are offline algorithms that begin
compression only after obtaining all of the points from the input trajectory. On
the other hand, Uniform Sampling, Opening Window, OPW-TR, and Dead Reck-
oning are online algorithms which compress each trajectory while they retrieve
points from that trajectory. Such online algorithms have the advantages of sup-
porting real-time applications and using a small amount of memory. Trajectory
compression algorithms also introduce substantially different SED errors when
their parameters are tuned so that they achieve the same compression ratio (Sec-
tion 4).

Fast compression algorithms such as Uniform Sampling and Dead Reckoning
tend to introduce large SED errors. Algorithms that use spatial error (i.e. Douglas-
Peucker, Opening Window) also exhibit large SED errors since they ignore tem-
poral data. Online compression algorithms tend to cause larger SED error than
TD-TR. However, TD-TR incurs high computational overhead (i.e., low compres-
sion speed) since it recomputes the SED of the current compressed representation
with respect to multiple points whenever it adds a point into the compressed
representation.

The above shortcomings of the previous algorithms motivated the development
of our SQUISH-E algorithm which is further described in Section 3. This algorithm
supports online compression in that it starts removing points before it reaches the
end of the input trajectory. It also has one characteristic of an offline algorithm in
that it produces the final compressed representation only after it has accessed all of
the points in the trajectory. Compared to TD-TR, SQUISH-E achieves competitive
accuracy while incurring substantially lower computational and space overhead
(Section 4).

The algorithms examined in this study approximate each trajectory using a
subset of points from that trajectory. Among such point-selection algorithms,
STTrace [11] and Bellman’s Algorithm [18] are not included in this study be-
cause of their significantly higher error rates and computational costs compared
to other algorithms [19]. Another point-selection algorithm, explored by Feldman
et at. [20], uses coresets for approximating a large collection of sensor data. Given
a large set of points S, a coreset C is a small subset S such that C can be used
to approximate S [21]. For practical problems where the number of points is very
large, the corresponding algorithms that provide good approximations tend to be
computationally expensive [20].

In contrast to point-selection approaches, semantic compression [22] enables
extreme compression by storing only the points that represent key events such as
transport stops. Semantic compression is effective for applications that have fixed
requirements. On the other hand, point-selection approaches have wider applica-
bility since they use error metrics that consider only spatial and temporal data
rather than other application-specific information. There has also been research
on lossless compression of trajectory data. One such study by Lin et al. [23] uses
inter-frame encoding. Lossless compression techniques in general achieve a lower
compression ratio compared to lossy compression techniques. Lossy and lossless
techniques can also be used in tandem by applying lossy compression followed by
lossless compression to each trajectory.

Additional lossy compression algorithms and data structures have been pro-
posed. One approach by Kaul et al. [24] approximates trajectories using polynomial

Compression of Trajectory Data: A Comprehensive Evaluation and New Approach 9

prediction. A key finding in this work is that linear prediction which relies on the
two most recent GPS updates outperforms more complex polynomial prediction
techniques. This approach is not as accurate as Douglas-Peucker and conceptu-
ally similar to Dead Reckoning which also uses linear prediction. Potamias et al.
proposed a data structure, called AM-Tree [25, 26], which stores the most recent
information at a higher rate. This data structure is based on the assumption that
the value of information decays over time.

3 Spatial QUalIty Simplification Heuristic - Extended (SQUISH-E)

A key contribution of our research is a novel approach called SQUISH-E for com-
pressing trajectories. Given λ, the target compression ratio, our previous SQUISH
algorithm [10] compresses a trajectory of length n into a trajectory of length at
most n/λ. This algorithm enables highly accurate approximation of trajectories
in a substantially shorter time than other techniques [10]. However, it lacks the
capability of compressing trajectories while ensuring that SED error is within a
user-specified bound. Our SQUISH-E algorithm overcomes this limitation. Algo-
rithmic details and the correctness of this version are explained in Sections 3.1
and 3.2, respectively. Section 3.3 discusses the novelty and unique benefits of this
version.

3.1 Algorithm Description

Our new SQUISH-E algorithm requires a trajectory T to compress, and two addi-
tional parameters λ and µ. It compresses trajectory T while striving to minimize
SED error and achieving the compression ratio of λ. Then, it further compresses T
as long as this compression will not increase SED error beyond µ. Therefore, set-
ting µ to 0 causes this algorithm to minimize SED error ensuring the compression
ratio of λ. We refer to this case as SQUISH-E(λ). SQUISH-E(µ) denotes another
case where λ is set to 1 and therefore SQUISH-E maximizes compression ratio
while keeping SED error under µ.

The key idea of SQUISH-E is to use a priority queue Q, where the priority of
each point is defined as an upper bound on the SED error that the removal of that
point would introduce. Therefore, SQUISH-E can find and remove a point from
Q that has the lowest priority (i.e., a point whose removal would increase SED
error within the lowest bound) in O(log |Q|) time, where |Q| denotes the number
of points stored in Q. By removing points in this way, SQUISH-E can effectively
limit the growth of SED error.

Algorithm 1 provides a detailed description of SQUISH-E. Table 2 summarizes
the variables used in Algorithm 1. Figure 3 illustrates the operation of SQUISH-E
using an example. In SQUISH-E, variable β stores the capacity of priority queue Q.
The initial value of β is 4 (line 1 in Algorithm 1) so that Q can store the first four
points (e.g., P1, P2, P3 and P4 in Figures 3(a)). The value of β increases whenever
i
λ ≥ β, where i denotes the number of points retrieved so far from trajectory T
(lines 3 and 4). Each point Pi from trajectory T (line 2) is initially assigned a
priority of ∞ when it is inserted into Q (line 5). If Pi is not the first point (line
7), Pi is registered as the closest successor of its previous point Pi−1 (line 8). Pi−1

10 Jonathan Muckell et al.

Algorithm 1: SQUISH-E(T, λ, µ)

input : trajectory T , lower bound λ on compression ratio, upper bound µ on SED
output : trajectory T ′

1 β ← 4; // the initial capacity of Q is 4
2 for each point Pi ∈ T do

3 if i
λ
≥ β then

4 β ← β + 1; // increase the capacity of Q

5 set priority(Pi,∞, Q); // enqueue Pi with the priority of Pi being ∞
6 π[Pi]← 0;
7 if i > 1 then // Pi is not the first point
8 succ[Pi−1]← Pi; // register Pi as Pi−1’s closest successor
9 pred[Pi]← Pi−1; // register Pi−1 as Pi’s closest predecessor

10 adjust priority(Pi−1, Q, pred, succ, π); // Algorithm 3

11 if |Q| = β then // Q is full
12 reduce(Q, pred, succ, π); // Algorithm 2

13 p← min priority(Q); // find the lowest priority from Q
14 while p ≤ µ do // the lowest priority is not higher than µ
15 reduce(Q, pred, succ, π); // Algorithm 2
16 p← min priority(Q); // find the lowest priority from Q

17 return trajectory T ′ comprising the points in Q in the order reflected in the succ map;

variable description

Q priority queue
β capacity of Q
pred map storing, for each Pi ∈ Q, Pi’s closest predecessor among the points in Q
succ map storing, for each Pi ∈ Q, Pi’s closest successor among the points in Q
π map storing, for each Pi ∈ Q, the maximum of the priorities that the neighboring

points of Pi had when they were removed from Q

Table 2 Variables used in Algorithm 1

is also registered as the closest predecessor of Pi (line 9). Then, the priority of
Pi−1 is adjusted to the SED error that the removal of Pi−1 would introduce (line
10). In Figure 3(a), the priority of P2 is set to 0.5 since removing P2 will cause
the SED with respect to P2 to be 0.5 (i.e., the distance between P2 and P ′2 in
Figure 3(b)). Further details of priority adjustment (Algorithm 3) are provided
later in this section.

When Q is full (i.e., contains β points), SQUISH-E reduces Q by removing
from Q a point that has the lowest priority (lines 11 and 12 in Algorithm 1).
For example, in Figure 3(a), SQUISH-E would remove either P2 or P3 since they
have the lowest priority of 0.5 among the four points in Q. Reducing Q as above
ensures that Q keeps only β − 1 points out of the points seen so far in a manner
that effectively limits the growth of SED error. Once all of the points in T are
processed, SQUISH-E finds the lowest priority p obtained from the priorities of
the points remaining in Q (lines 13). If p is not higher than µ (i.e., removing a point
which has the lowest priority will not increase SED error beyond µ), SQUISH-E
reduces Q by removing a point which has the lowest priority (lines 14 and 15).
This process of reducing Q is repeated until every point remaining in Q has a
priority higher than µ.

Compression of Trajectory Data: A Comprehensive Evaluation and New Approach 11

P1(0,0,0):∞

P2(1,3,1):0.5

P3(2,5,2):0.5
P4(3,6,3):∞

P5(4,5,4)

P6(5,3,5)

P7(6,0,6)

(a) Enqueuing P1, P2, P3 and P4

P5(4,5,4):∞

P2(1,3,1)

P4(3,6,3):1

P6(5,3,5)

P7(6,0,6)

’P2(1,2.5,1)

P3(2,5,2):1.5

P1(0,0,0):∞

(b) Dequeuing P2 and enqueuing P5

’P2(1,2.5,1)

P2(1,3,1)

P4(3,6,3)

P6(5,3,5):∞

P7(6,0,6)

’P4(3,5,3)
P5(4,5,4):2.3P3(2,5,2):3.5

P1(0,0,0):∞

(c) Dequeuing P4 and enqueuing P6

P5(4,5,4)

P2(1,3,1)

P4(3,6,3)

P7(6,0,6):∞

P6(5,3,5):4.1

P3(2,5,2):6.1

P1(0,0,0):∞

’P2(1,2.5,1)

’P4(3,4.3,3)
’P5(4,3.7,4)

(d) Dequeuing P5 and enqueuing P7

Fig. 3 Execution of SQUISH-E: Black dots represent the points kept in priority queue Q. The
numbers within a pair of parentheses are the coordinate values of the corresponding point. The
number after a pair of parentheses is the current priority of the corresponding point.

Algorithm 2: reduce(Q, pred, succ, π)

input : priority queue Q, maps pred, succ and π (refer to Table 2)
1 Pj ← remove min(Q); // point Pj which has the lowest priority is removed from Q
2 π[succ[Pj]]← max(priority(Pj), π[succ[Pj]]); // ensure that π[succ[Pj]] ≥ priority(Pj)
3 π[pred[Pj]]← max(priority(Pj), π[pred[Pj]]); // ensure that π[pred[Pj]] ≥ priority(Pj)
4 succ[pred[Pj]]← succ[Pj]; // register succ[Pj] as the closest successor of pred[Pj]
5 pred[succ[Pj]]← pred[Pj]; // register pred[Pj] as the closest predecessor of succ[Pj]
6 adjust priority(pred[Pj], Q, pred, succ, π); // Algorithm 3
7 adjust priority(succ[Pj], Q, pred, succ, π); // Algorithm 3
8 remove the entry for Pj from pred, succ, and π; // garbage collection

Algorithm 2 describes the details of reducing priority queueQ. In this process, a
point Pj which has the lowest priority is removed from Q (line 1). Next, the priority
of Pj is used to update π[succ[Pj]] and π[pred[Pj]] (lines 2 and 3). For each point
Pk ∈ Q, π[Pk] stores the maximum of the priorities that the neighboring points
of Pk had when they were removed from Q. If none of Pk’s neighboring points
has been removed, π[Pk] = 0 (line 6 in Algorithm 1). For example, in Figure 3(a),
P2 has the lowest priority of 0.5. Therefore, removing P2 causes the values of
π[P1] and π[P3] to change from 0 to 0.5. As explained below, maintaining π[Pk] as

12 Jonathan Muckell et al.

Algorithm 3: adjust priority(Pj , Q, pred, succ, π)

input : point Pj , priority queue Q, maps pred, succ and π (refer to Table 2)
1 if pred[Pj] 6= null and succ[Pj] 6= null then
2 p← π[Pj] + SED(Pj , pred[Pj], succ[Pj]);
3 set priority(Pj , p,Q);

above for each point Pk ∈ Q allows SQUISH-E to derive an upper bound on the
SED error that the removal of Pk would introduce (a formal proof is provided in
Section 3.2).

In addition to updating π[succ[Pj]] and π[pred[Pj]] as above, SQUISH-E reg-
isters succ[Pj] as the new closest successor of pred[Pj] (lined 4 in Algorithm 2)
and registers pred[Pj] as the new closest predecessor of succ[Pj] (line 5). In Fig-
ure 3(b), due to the removal of P2, the closest successor of P1 becomes P3 (i.e.,
succ[P1] = P3) and the closest predecessor of P3 becomes P1 (i.e., pred[P3] = P1).
Then, the priority of pred[Pj] and that of succ[Pj] are adjusted (lines 6 and 7
in Algorithm 2) using Algorithm 3. The reason for this adjustment is that the
removal of Pj affects the SED error with respect to pred[Pj] and succ[Pj]. For
example, in Figure 3(a), the calculation of P3’s priority takes into account line
segment P2P4. After removing P2 (Figure 3(b)), that calculation needs to involve
P1P4 rather than P2P4.

Algorithm 3 shows how SQUISH-E adjusts the priority of point Pj . If Pj is the
first point (i.e., pred[Pj] = null) or the last point (i.e., succ[Pj] = null) among
the points in Q (line 1), the priority of Pj remains at its initial value ∞ (line
5 in Algorithm 1). Otherwise, the priority of Pj is set to a new value p, which
is the sum of π[Pj] (i.e., the maximum of the priorities that Pj ’s neighboring
points had when they were removed) and the SED between Pj and line segment
pred[Pj], succ[Pj] (line 2 in Algorithm 3). For instance, when point P2 whose
priority is 0.5 in Figure 3(a) is removed (Figure 3(b)), π[P3] becomes 0.5 and
SED(P3, P1, P4) becomes the distance between P3(2, 5, 2) and P ′3(2, 4, 2), which
is 1. For this reason, the priority of P3 is set to 0.5 + 1 = 1.5. After obtaining p as
above, point Pj is first removed from Q and then inserted into Q with priority p
(line 3). Section 3.2 provides a formal proof that p is an upper bound on the SED
that the removal of Pj would introduce (Lemma 1).

3.2 Correctness of SQUISH-E

The λ parameter of SQUISH-E indicates a lower bound on the compression ratio.
When λ is set to 1, the SQUISH-E algorithm must ensure that the actual SED
error introduced during compression is no larger than µ. Theorems 1 and 2 verify
the correctness of this algorithm:

Theorem 1 (Compression Ratio) Given a trajectory T , SQUISH-E produces

a compressed representation T ′ of T so that |T ||T ′| ≥ λ, where |T | and |T ′| denote
the lengths of T and T ′, respectively.

Proof In Algorithm 1, for λ ≥ 1, β is incremented whenever i
λ ≥ β (lines 3 and 4),

meaning that i
λ < β ≤ i

λ +1 after this step. Whenever |Q| = β, a point is removed

Compression of Trajectory Data: A Comprehensive Evaluation and New Approach 13

Pa

Pb

Pk Pj

Pc

after removing Pk, Pb, Pj
after removing Pk, Pb

original trajectory

Pk’

Pk’’ Pj’’

Fig. 4 Illustration of the Induction Step in the Proof of Lemma 1

from Q (lines 11-12). More points may also be removed from Q after the end of T
is reached (lines 13-16). Since T ′ consists of the points that ultimately remain in

Q, |T ′| = |Q| ≤ β − 1 ≤ (iλ + 1)− 1 = i
λ = |T |

λ . Therefore, |T ||T ′| ≥
|T |
|T |
λ

= λ. ut

Lemma 1 After SQUISH-E reduces Q (lines 12 and 15 in Algorithm 1) using
Algorithm 2, for each Pj ∈ Q such that 1 < j < i and for each point Pk between
pred[Pj] and succ[Pj] in the original trajectory T ,

priority(Pj) ≥ SED(Pk, pred[Pj], succ[Pj]) (1)

where priority(Pj) denotes the priority of point Pj and SED(Pk, pred[Pj], succ[Pj])
denotes the SED between Pk and the line segment joining pred[Pj] and succ[Pj].

Proof We prove this lemma by induction as follows:
Base case. Suppose that both Pj−1 and Pj+1 are in Q, meaning that priority(Pj)
did not change after it was adjusted to π[Pj] + SED(Pj , pred[Pj], succ[Pj]) =
0 + SED(Pj , Pj−1, Pj+1) (line 2 in Algorithm 3 and line 10 in Algorithm 1). In
this case, (1) holds.
Induction step. If Pj−1 is not in Q, then let Pa be pred[Pj], and Pb be the most
recently removed point among the points between Pa and Pj in the original tra-
jectory T (Figure 4). Also, assume, as an induction hypothesis, that when Pb
was removed, priority(Pb) ≥ SED(Pk, pred[Pb], succ[Pb]) for each Pk between
pred[Pb] = Pa and succ[Pb] = Pj in T (Figure 4). Let P ′k denote the estima-
tion of Pk in the case of SED (Section 2.1.1) along line segment PaPj . Then,
π[Pj] = π[succ[Pb]] ≥ priority(Pb) (line 2 in Algorithm 2) and priority(Pb) ≥
SED(Pk, pred[Pb], succ[Pb]) = d(Pk, P

′
k). Therefore, π[Pj] ≥ d(Pk, P

′
k) (i). Let

P ′′k and P ′′j represent the estimation of Pk and that of Pj along PaPc. Then,
SED(Pj , pred[Pj], succ[Pj]) = d(Pj , P

′′
j) > d(P ′k, P

′′
k) (ii) since the angle between

PaP ′k and PaP ′′k and the angle between PaPj and PaP ′′j are the same, P ′k and P ′′k
divide PaPj and PaP ′′j , respectively, in the same proportion by the definition of

SED (Section 2.1.1), and PaPj is longer than PaP ′k. At this point, due to line 2
in Algorithm 3, priority(Pj) = π[Pj] +SED(Pj , pred[Pj], succ[Pj]) ≥ d(Pk, P

′
k) +

d(P ′k, P
′′
k) by (i) and (ii). Furthermore, d(Pk, P

′
k) + d(P ′k, P

′′
k) ≥ d(Pk, P

′′
k) =

SED(Pk, pred[Pj], succ[Pj]) by triangle inequality. Therefore, (1) holds for each
Pk between pred[Pj] and Pj in T (iii).

If Pj+1 is not in Q, then it can also be proven as in the derivation of (iii) that
(1) holds for each Pk between Pj and succ[Pj] in T (iv). Since priority(Pj) =
π[Pj] + SED(Pj , pred[Pj], succ[Pj]) (line 2 in Algorithm 3) and π[Pj] ≥ 0 (line 6

14 Jonathan Muckell et al.

-73.8240

-73.8215

-73.8190

-73.8165

-73.8140

42.685 42.686 42.687 42.688 42.689

latitude

lo
ng
itu
de

(a) With λ = 5, SQUISH(λ) achieves a
compression ratio of 5.

latitude

-73.8240

-73.8215

-73.8190

-73.8165

-73.8140

42.685 42.686 42.687 42.688 42.689

lo
ng
itu
de

(b) With λ = 5, µ = 10 (meters),
SQUISH-E(λ, µ) achieves a compression
ratio higher than 5.

Fig. 5 Benefit of SQUISH-E(λ, µ)

in Algorithm 1 and lines 2 and 3 in Algorithm 3), (1) holds when Pk is Pj (v). By
(iii), (iv), and (v), for each Pk between pred[Pj] and succ[Pj] in T , (1) holds. ut

Theorem 2 (SED Error) Suppose that SQUISH-E compresses a trajectory T
into T ′ with λ set to 1. Then, SEDT ′(Pi) ≤ µ for every Pi ∈ T , where SEDT ′(Pi)
denotes the SED of T ′ with respect to point Pi.

Proof For µ ≥ 0 and for each point Pi ∈ T ′, SEDT ′(Pi) = 0 ≤ µ (Section 2.1.1).
For an arbitrary point Pi ∈ T − T ′, let Pj denote the most recently removed
point such that Pi was between pred[Pj] and succ[Pj]. Then, SEDT ′(Pi) =
SED(Pi, pred[Pj], succ[Pj]) ≤ priority(Pj) when Pj was removed (Lemma 1) and
priority(Pj) ≤ µ (line 14 in Algorithm 1). Therefore, SEDT ′(Pi) ≤ µ. ut

3.3 Discussion

Compared to its predecessor [10], a major benefit of SQUISH-E is that it provides
a provable guarantee on the SED error introduced during compression. It also
has the benefit of supporting two special modes, namely SQUISH-E(λ) which
minimizes SED error while achieving the compression ratio of λ and SQUISH-
E(µ) which maximizes compression ratio while limiting SED error under µ. The
previous SQUISH algorithm [10] is similar to SQUISH-E(λ) in nature, but different
in that it lacks guarantees on SED error. Furthermore, SQUISH-E overcomes the
previous version’s limitation of ignoring compression opportunities once it achieves
the compression ratio of λ. For instance, the previous SQUISH algorithm always
compresses a trajectory T into another trajectory whose length is |T |/λ even if
the input trajectory T exhibits little variations in speed and heading. On the
other hand, setting µ to a tolerable error value allows SQUISH-E to achieve a
much higher compression ratio through additional removals which do not increase
SED error beyond µ (Figure 5). Furthermore, the previous SQUISH algorithm
uses a fixed size priority queue which is constructed only after the length of the

Compression of Trajectory Data: A Comprehensive Evaluation and New Approach 15

Table 3 GPS Trajectory Datasets

dataset location mode(s) trajectories points size sampling rate

GeoLife Beijing,
China

multi-
modal

6,923 12,847 641Mb 1−5 seconds

Bus Albany,
NY

bus 52 4,608 7Mb 5 seconds

NYMTC New York
City

urban
commuter

30 2,902 52Mb 5 seconds

input trajectory and target compression ratio are given. In contrast, SQUISH-
E dynamically increases the size of the priority queue and thus can be used for
trajectories that are provided in the form of streaming data.

To achieve the above benefits, the details of SQUISH-E (particularly, the ways
of updating variables and adjusting the priorities of points in Algorithms 1, 2,
and 3) are substantially different from those of its previous version. These tech-
nical details (Section 3.1) and the formal proofs on the correctness of SQUISH-E
(Section 3.2) are new contributions of this paper.

SQUISH-E has unique advantages over previous trajectory compression algo-
rithms. First, SQUISH-E has the flexibility of controlling compression with respect
to both compression ratio and SED error. Second, SQUISH-E enables fast com-
pression. The operation of removing a point with the lowest priority from Q takes
O(log |Q|) time, where |Q| is the number of points in Q. Given a trajectory T of
length n, the running time and space overhead of SQUISH-E(λ) are O(n log n

λ)
and O(nλ) since |Q| ≤ n

λ . In the case of SQUISH-E(µ), the running time and space
overhead are O(n logn) and O(n), respectively, since |Q| ≤ n. In addition to the
above benefits, SQUISH-E achieves low SED error since it removes points whose
removal will increase SED by the smallest possible amount. These characteris-
tics of SQUISH-E are summarized in Table 1 and experimentally demonstrated in
Section 4.

4 Evaluation

This section experimentally evaluates algorithms that compress trajectories by re-
moving a subset of points from them. Our evaluation does not include STTrace [11]
and Bellman’s algorithm [18] which introduce larger errors despite longer running
times compared to TD-TR [3] (refer to Section 2.2.7 for further details). The
techniques that are evaluated in this section have unique benefits in balancing
compression time and the degree of error (Table 1).

Section 4.1 describes the datasets used for evaluating trajectory compression
algorithms. Sections 4.2 and 4.3 compare the trajectory compression algorithms
in terms of compression time (Section 2.1.2) and accuracy/error metrics (Sec-
tion 2.1.1), respectively. Section 4.4 presents application-specific recommendations
for choosing trajectory compression algorithms.

16 Jonathan Muckell et al.

Table 4 Statistics of Datasets: ∆ speed and ∆ direction represent changes in speed and
direction, respectively (speed unit: km/hr, direction unit: degrees).

dataset avg(speed) std(speed) avg(∆ speed) std(∆ speed) std(∆ direction)

GeoLife 20.7 18.8 7.5 5.9 27.5
Bus 15.7 18.4 4.9 7.9 27.8
NYMTC 10.2 19.2 2.6 3.7 29.9

4.1 Datasets

Table 3 summarizes the datasets used for evaluating trajectory compression al-
gorithms. Each dataset represents a different transportation mode (bus, urban
commuter, and multi-modal).

4.1.1 Microsoft GeoLife Dataset

The Microsoft GeoLife [27, 28] dataset was obtained from 178 individuals over a
period of two years (from April 2007 to August 2009). This dataset includes various
transportation modes such as biking, walking, and rail. Approximately 91% of the
trajectories have a sampling rate of 1 - 5 seconds and others have higher sampling
rates. Most of the data collection occurred around Beijing, China and a small
number of trajectories were obtained in the United States and Europe.

To properly evaluate trajectory compression algorithms, we cleaned the Geo-
Life dataset. For example, we removed every part in the trajectories which was col-
lected while the corresponding individual remained stationary for over 20 minutes.
The reason for this removal is to prevent compression results from being skewed
by unusually high data redundancy. We also split each trajectory whenever we
detected a gap in recorded time which was at least 20 minutes long. Furthermore,
points that exhibit unrealistic speed (e.g., 1000 km/hr) were removed from the
trajectories. As a result, we obtained a total of 6,923 trajectories, each containing
12,847 points on average.

4.1.2 Albany Bus Transit Dataset

The Bus dataset in Table 3 was obtained from buses traveling along four routes in
Albany, New York, over a period of 12 weeks (October to December, 2009) [29].
This dataset consists of 52 trajectories with a combined total of roughly 240,000
spatio-temporal points collected every 5 seconds.

4.1.3 New York Metropolitan Transportation Council Dataset

This dataset consists of trajectories collected at the sampling rate of 5 seconds by
24 volunteers from the New York Metropolitan Transportation Council (NYMTC) [30].
These trajectories reflect the movements of individuals commuting into New York
City for work and returning home at the end of the day.

Compression of Trajectory Data: A Comprehensive Evaluation and New Approach 17

Table 5 Impact of Datasets on Compression Errors at a Fixed Compression Ratio of 10
(SED/spatial error unit: meters, speed unit: km/hr, heading unit: degrees)

dataset avg(SED error) avg(spatial error) avg(speed error) avg(heading error)
GeoLife 75.0 66 24.1 25.7
Bus 33.1 50 6.28 42.3
NYMTC 12.7 43 2.39 52.5

4.1.4 Discussion

Each dataset included in this study represents a unique data profile. Travel mode
is a crucial predictor of such profiles. On average, as Table 4 shows, the GeoLife
dataset has the largest changes in speed and direction, followed by the Bus and
NYMTC datasets. The GeoLife dataset represents a multitude of different travel
modes that occurred mainly in the complex urban environment of Beijing, China.
Although filters were applied to clean the dataset, significant inaccuracies in the
data are inevitable due to the urban canyon effect and obstructions that affect GPS
readings. The Bus dataset represents noticeable changes in speed that took place
as buses stopped due to traffic or the arrival at designated stops, or as GPS units
inside a bus had an obstructed view of the sky. On the other hand, a large number
of trajectories in the NYMTC dataset represent the urban commuter mode which
typically involves a ride at a relatively constant speed, typically of a car or rail
with smooth stops.

Table 5 shows how the characteristics of datasets affect the errors introduced
during compression. The results in the table were obtained across all of the com-
pression algorithms evaluated in this study. Specific breakdowns of the results per
compression algorithm are provided and discussed in Section 4.3. Trajectories from
the GeoLife dataset are by far the most difficult to compress with high accuracy
due to the high average speed and large variations in speed. In contrast, trajec-
tories from the NYMTC dataset were compressed with lowest SED, speed, and
spatial errors. Table 5 shows that the ranking of accuracy is in general consistent
across SED, speed, and spatial errors. On the other hand, compressing trajectories
from the NYMTC dataset resulted in large heading errors.

4.2 Evaluation Based on Compression Times

Figure 6 depicts the actual execution times of each trajectory compression al-
gorithm. This experiment used 71 trajectories, each containing a minimum of
20,000 points. To measure the effect of the trajectory size on compression time,
we obtained sub-trajectories by taking the first 5,000, 10,000, 15,000, and 20,000
points from each of the original trajectories. To compare the algorithms on a fair
basis, the compression ratio was set to 10 for all of these algorithms. However,
most algorithms including Douglas-Peucker, Dead-Reckoning, Opening Window
and SQUISH-E(µ) do not take a target compression ratio as an input parameter
(Table 1). Therefore, we used an approach which repeatedly executed such an algo-
rithm, modifying the error bound parameter as in binary search, until the desired
compression ratio was achieved. To obtain reliable results on compression time
despite short compression runs, we repeatedly ran each algorithm on the same

18 Jonathan Muckell et al.

0"

0.01"

0.02"

0.03"

0.04"

0.05"

0.06"

0.07"

0.08"

0.09"

0" 5000" 10000" 15000" 20000"

Co
m
pr
es
si
on

*T
im

e*
(s
ec
on

ds
)*

Trajetory*Size*(number*of*points)*

Uniform"Sampling"

Douglas<Peucker"

TD<TR"

Open"Window"

OPW<TD"

Dead"Reckoning"

SQUISH<E(λ)"

SQUISH<E(µ)"

Fig. 6 Average Compression Time

trajectory until the accumulated execution time became greater than 1 second.
Then, we averaged the execution times of these iterations to obtain the compres-
sion time for that combination of algorithm and trajectory. In this evaluation
study, we used one core of a Xeon E5430 2.67 GHz CPU for each run.

In Figure 6, the fastest algorithm is Uniform Sampling which compressed tra-
jectories consisting of 20,000 points within 36 microseconds on average. For the
same trajectories, the average execution time of TD-TR, the slowest among the
eight algorithms, was 85 milliseconds, which was more than 2,000 times longer
than that of Uniform Sampling. As Figure 6 shows, TD-TR incurs significantly
higher computational overhead than Douglas-Peucker although they are identical
except for the error metrics that they use. The reason behind this difference is
that SED error (TD-TR) requires more computation than spatial error (Douglas-
Peucker) particularly due to the Haversine distance calculation between two points
on a sphere [31]. For the same reason, OPW-TR is also substantially slower than
Opening Window. The benefits of using SED error with respect to error metrics
are experimentally demonstrated in Section 4.3. In our result, Dead Reckoning
and Opening Window were the fastest algorithms after Uniform Sampling. Dead
Reckoning has linear time overhead like Uniform Sampling (Table 1). In theory,
Opening Window may exhibit quadratic time overhead (Table 1). However, in
our evaluation study, it demonstrated substantially lower overhead. Despite this
speed benefit, Uniform Sampling, Dead Reckoning, and Opening Window have
fundamental limitations in controlling the growth of errors during compression
(Section 4.3).

Both SQUISH-E(λ) and SQUISH-E(µ) demonstrate significantly higher com-
pression speed than other algorithms that use SED. In particular, they are ap-
proximately 4-6 times faster than TD-TR and often faster than Douglas-Peucker
which uses a less expensive error metric (spatial error). This benefit in compression
speed is due to the use of a priority queue which enables both fast and effective re-
moval of points (Section 3.1). Furthermore, whenever a point is removed from the
priority queue, SQUISH-E needs to update information for at most two points.
On the other hand, both Douglas-Peucker and TD-TR tend to recalculate, for
each addition of a point, error values with respect to a large number of points

Compression of Trajectory Data: A Comprehensive Evaluation and New Approach 19

0"

20"

40"

60"

80"

100"

120"

140"

160"

0" 5" 10" 15" 20" 25" 30"

A
ve
ra
ge
'S
ED

'E
rr
or
'(m

et
er
s)
'

Compression'Ra6o'

Uniform"Sampling"

Douglas9Peucker"

TD9TR"

Open"Window"

OPW9TD"

Dead"Reckoning"

SQUISH9E(λ)"

SQUISH9E(µ)"

Fig. 7 Average SED Error

0"

50"

100"

150"

200"

250"

0" 5" 10" 15" 20" 25" 30"

A
ve
ra
ge
'S
pa

*
al
'E
rr
or
'(m

et
er
s)
'

Compression'Ra*o'

Uniform"Sampling"

Douglas6Peucker"

TD6TR"

Open"Window"

OPW6TD"

Dead"Reckoning"

SQUISH6E(λ)"

SQUISH6E(µ)"

Fig. 8 Average Spatial Error

(Section 2.2.2). SQUISH-E(µ) is slightly slower than SQUISH-E(λ) since it can
further remove redundant points as long as this removal increases SED error be-
low a tolerable bound.

Although there were significant differences in run-time performance between
algorithms, we did not observe the same amongst different datasets (i.e., travel
modes). In general, particularly in the case of Uniform Sampling and SQUISH-
E, compression time is affected directly by the trajectory size and compression
ratio rather than variations in speed and heading. In contrast, these characteris-
tics of trajectories may have significant impact on the errors introduced during
compression (Table 5 and Figure 9).

4.3 Evaluation Based on Error Metrics

This section experimentally compares trajectory compression algorithms across
multiple metrics including SED, spatial, and speed errors. Figures 7 and 8 con-

20 Jonathan Muckell et al.

0"

20"

40"

60"

80"

100"

120"

140"

A
ve
ra
ge
'S
ED

'E
rr
or
'(m

et
er
s)
'

GeoLife'''''''''''''Bus''''''''''''''NYMTC'

Uniform"Sampling"

Douglas7Peucker"

TD7TR"

Open"Window"

OPW7TD"

Dead"Reckoning"

SQUISH7E(λ)"

SQUISH7E(µ)"

Fig. 9 Average SED Error (per Dataset)

trast compression algorithms in terms of SED and spatial errors. These results
are a composition from the three datasets mentioned in Section 4.1. In terms of
overall accuracy, TD-TR and SQUISH-E(µ) outperform other algorithms with the
differences between them being insignificant in most cases. TD-TR is slightly more
accurate than SQUISH-E(µ) since it strives to minimize the maximum SED er-
ror by taking many points into account. As mentioned in Section 4.2, SQUISH-E
is 4-6 times faster than TD-TR because it updates information for at most two
points for each removal of a point. Unlike other algorithms, SQUISH-E also has
the ability to compress trajectories while balancing both the compression ratio
and error introduced during compression.

In Figures 7 and 8, algorithms that are faster than SQUISH-E (Figure 6)
have substantial limitations in controlling errors during compression. For exam-
ple, Uniform Sampling had about two times higher SED and spatial errors than
SQUISH-E(µ). Surprisingly, both Dead Reckoning and Opening Window intro-
duced larger SED and spatial errors than Uniform Sampling. These figures also
illustrate that SED error has benefits over spatial error. For example, algorithms
such as Douglas-Peucker and Opening Window, that are optimized for spatial
error tend to introduce the largest SED errors (Figure 7). On the other hand,
algorithms that take into account SED error, including TD-TR, SQUISH-E(λ),
SQUISH-E(µ), and OPW-TD keep spatial error at a relatively low level. As ex-
plained in Section 2.1.1, SED error has the benefit of incorporating temporal data
into error calculation.

The compression algorithms examined in this study attempt to minimize spe-
cific error metrics (Table 1). Douglas-Peucker is optimized for spatial error, while
TD-TR, a modification of Douglas-Peucker, is optimized for SED error. Douglas-
Peucker and TD-TR enabled most accurate compressions in terms of spatial error
and SED error, respectively. In the case of Opening Window, a significant improve-
ment can be observed for OPW-TR compared to Opening Window in Figure 7.

Figure 9 demonstrates significant differences between various trajectory com-
pression algorithms, as well as the datasets explained in Section 4.1. For this result,
all algorithms were compared at the common compression ratio of 10. As discussed
in Section 4.1.4, the GeoLife dataset had the highest degree of error, followed by

Compression of Trajectory Data: A Comprehensive Evaluation and New Approach 21

0"

1"

2"

3"

4"

5"

6"

7"

8"

5" 10" 15" 20" 25" 30"

A
ve
ra
ge
'R
an

ki
ng
'

Compression'Ra1o'

Uniform"Sampling"

Douglas:Peucker"

TD:TR"

Open"Window"

OPW:TD"

Dead"Reckoning"

SQUISH:E(λ)"

SQUISH:E(µ)"

Fig. 10 Ranking in terms of Average SED Error

0"

2"

4"

6"

8"

10"

12"

0" 5" 10" 15" 20" 25" 30"

A
ve
ra
ge
'S
pe

ed
'E
rr
or
'(k

m
/h
ou

r)
'

Compression'Ra9o'

Uniform"Sampling"

Douglas9Peucker"

TD9TR"

Open"Window"

OPW9TD"

Dead"Reckoning"

SQUISH9E(λ)"

SQUISH9E(µ)"

Fig. 11 Average Speed Error

the Bus and NYMTC datasets. For this reason, most of the algorithms introduced
the largest SED error when they are compressing trajectories from the GeoLife
dataset. In contrast to other algorithms, TD-TR, SQUISH-E(µ), and SQUISH-
E(λ) effectively kept SED error under control across these datasets.

Figure 10 provides an additional comparison which uses an ordered ranking of
the algorithms in terms of average SED error. A ranking of 1 for a particular tra-
jectory implies that the algorithm had the lowest SED error compared to the other
algorithms. Similarly, an algorithm that had a ranking of 8 had the highest SED
error among the 8 algorithms. The results presented in Figure 10 were obtained
over all of the three datasets mentioned in Section 4.1 and across various compres-
sion ratios that ranged from 5 to 30. TD-TR, SQUISH-E(µ) and SQUISH-E(λ)
are shown to be the most accurate algorithms with a ranking of nearly 1, 2 and
3, respectively. Douglas-Peucker and Opening Window are the worst performers,
presumably because they are not optimized for SED errors. Uniform Sampling had
a better average ranking compared to Dead Reckoning.

22 Jonathan Muckell et al.

0"

100"

200"

300"

400"

500"

600"

0" 20" 40" 60" 80" 100"

A
ve
ra
ge
'S
ED

'E
rr
or
'(m

et
er
s)
'

Compression'Ra6o'

SQUISH"

SQUISH/E(λ)"

Fig. 12 Comparison of the Previous Version of SQUISH and New Version SQUISH-E(λ)

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

0" 50" 100" 150" 200" 250"

Pe
rc
en

&
le
(

SED(Error((meters)(

Uniform"Sampling"

Douglas;Peucker"

TD;TR"

Open"Window"

OPW;TD"

Dead"Reckoning"

SQUISH;E(λ)"

SQUISH;E(µ)"

Fig. 13 Cumulative Distribution of SED Errors

Figure 11 shows the average speed error for each algorithm over various com-
pression ratios. TD-TR and SQUISH-E(µ) were most accurate algorithms in terms
of speed error. Uniform Sampling has the third best performance. The performance
of the other algorithms was nearly identical. The effectiveness of SQUISH-E(µ) and
TD-TR is due to the fact that they use temporal information in deciding which
points to remove from or to add to the compressed representation.

Our previous SQUISH algorithm was vulnerable to error propagation at high
compression ratios. Furthermore, it was not be able to provide provable guarantees
on SED errors that the removal of points would introduce. SQUISH-E overcomes
these problems using a different way of adjusting the priority of points. The cor-
rectness of this new approach is presented in Section 3.2 of this paper. Figure 12
shows the difference between these two versions in terms of average SED error.
SQUISH-E enables a more tight control over the growth of SED error particularly
under high compression ratios.

Figure 13 shows the distribution of SED errors for the compression algorithms
at a compression ratio of 10. Each curve in the figure depicts the probability

Compression of Trajectory Data: A Comprehensive Evaluation and New Approach 23

that the actual SED error will be be less than or equal to each error value. For
example, the curve labeled “Douglas-Peucker” illustrates that the average SED
error introduced by Douglas-Peucker was less than 100 meters for about 80% of
the trajectories that were compressed. This distribution also indicates that there is
no significant difference in terms of SED error between TD-TR and SQUISH-E(µ).

4.4 Discussion

As summarized in Table 1, trajectory compression algorithms have different char-
acteristics in terms of compression parameters, compression speed and accuracy.
Determining the most appropriate algorithm for a specific context requires under-
standing the tradeoffs that these algorithms offer in conjunction with the proper-
ties of the trajectory data to manage. Despite the results indicating significant dif-
ferences in accuracy amongst the compression algorithms, the clear overall winners
are TD-TR and SQUISH-E. Between these two algorithms, SQUISH-E compresses
trajectories at a much higher speed than TD-TR.

Most applications require a balance between accuracy, performance and usabil-
ity. For example, applications that have very short sampling intervals over long
durations might be willing to substitute accuracy for faster processing or space
efficiency. SQUISH-E allows users to control compression with respect to both
compression ratio and accuracy. This flexibility which is not supported by other
algorithms fulfills an important niche in the literature.

5 Conclusions and Future Work

This paper presents a new approach to trajectory compression. This approach,
called SQUISH-E (Spatial QUalIty Simplification Heuristic - Extended), inserts
points from a trajectory into a priority queue where the priority of each point is
set to an upper bound on the error that the removal of that point would introduce.
In this way, it can quickly remove points while effectively bounding the growth of
error caused by the removal of points. This technique also allows users to control
compression while striking a balance between compression ratio and accuracy.

Another contribution of this paper is a comprehensive evaluation study which
measures the effectiveness of trajectory compression algorithms in terms of perfor-
mance and various error metrics. In this study, SQUISH-E achieves most accurate
compression within a substantially shorter time than other techniques. This study
also analyzed characteristics of real-world trajectory data and their impact on the
performance of trajectory compression algorithms.

Our future work includes determining the effectiveness of compression on com-
mon spatial applications such as modeling of traffic flow, identification of con-
gestion bottlenecks, and detection of speeding violation hot-spots. One possible
approach for improving the quality of trajectory compression would be to use
knowledge of the road network. This research would require fast detection of de-
viations from the road network and efficient storage of information that captures
the behaviour of moving objects. A key goal in this research would be to enable a
drastically smaller compressed representation with low computation overhead and
reduced error.

24 Jonathan Muckell et al.

6 Acknowledgments

This work is supported in part by the National Science Foundation under CA-
REER award IIS-1149372 and the Research and Innovative Technology Adminis-
tration of the U.S. Department of Transportation through the Region 2 - University
Transportation Research Centers Program.

References

1. Canalys. Worldwide Mobile Navigation Device Market More Than Doubles. Technical
report, Canalys Research Release, 2007.

2. Canalys. North America Overtakes EMEA as Largest Satellite Navigation Market. Tech-
nical report, Canalys Research Release, 2009.

3. Nirvana Meratnia and Rolf A. de By. Spatiotemporal Compression Techniques for Moving
Point Objects. In Proceedings of the 9th International Conference on Extending Database
Technology (EDBT), pages 765–782, 2004.

4. M. Abdelguerfi, J. Givaudan, K. Shaw, and R. Ladner. The 2-3TR-tree, a Trajectory-
Oriented Index Structure for Fully Envolving Valid-Time Spatio-Temporal Datasets. In
Proceedings of the 10th SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems (ACM-GIS), pages 29–34, 2002.

5. P. K. Agarwal, L. J. Guibas, H. Edelsbrunner, J. Erickson, M. Isard, S. Har-Peled, J. Her-
shberger, C. Jensen, and L. Kavraki. Algorithmic Issues in Modeling Motion. ACM
Computing Surveys, 34:550–572, 2002.

6. H. Zhu, J. Su, and O. H. Ibarra. Trajectory Queries and Octagons in Moving Object
Databases. In Proceedings of the 11th Conference on Information and Knowledge Man-
agement (CIKM), pages 413–421, 2002.

7. Michael Prior-Jones. Satellite Communications Systems Buyer’s Guide. British Antarctic
Survey, 2008.

8. Fosca Giannotti, Mirco Nanni, Fabio Pinelli, and Dino Pedreschi. Trajectory Pattern
Mining. In Proceedings of the 13th International Conference on Knowledge Discovery
and Data Mining (ACM-KDD), pages 330–339, 2007.

9. Jonathan Muckell, Jeong-Hyon Hwang, Catherine T. Lawson, and S. S. Ravi. Algorithms
for Compressing GPS Trajectory Data: An Empirical Evaluation. In Proceedings of the
18th SIGSPATIAL International Conference on Advances in Geographic Information Sys-
tems (ACM-GIS), pages 402–405, 2010.

10. Jonathan Muckell, Jeong-Hyon Hwang, Vikram Patil, Catherine T. Lawson, Fan Ping,
and S. S. Ravi. SQUISH: An Online Approach for GPS Trajectory Compression. In
Proceedings of the 2nd International Conference on Computing for Geospatial Research
and Applications (COM.Geo), pages 13.1–13.8, 2011.

11. Michalis Potamias, Kostas Patroumpas, and Timos Sellis. Sampling Trajectory Streams
with Spatio-temporal Criteria. In Proceedings of the 18th International Conference on
Scientific and Statistical Database Management (SSDBM), pages 275–284, 2006.

12. J.G. Harper. Traffic Violation Detection and Deterrence: Implications for Automatic
Policing. Applied Ergonomics, 22(3):189 – 197, 1991.

13. M. Karpinski, A. Senart, and V. Cahill. Sensor Networks For Smart Roads. In Proceedings
of the 4th IEEE Conference on Pervasive Computing and Communications Workshops
(PerCom 2006 Workshops), pages 306–310, 2006.

14. D.H. Douglas and T.K. Peucker. Algorithms for the Reduction of the Number of Points
Required to Represent a Line or its Caricature. The Canadian Cartographer, 10(2):112–
122, 1973.

15. John Hershberger and Jack Snoeyink. Speeding Up the Douglas-Peucker Line Simplifi-
cation Algorithm. In Proceedings of the 5th International Symposium on Spatial Data
Handling (SDH), pages 134–143, 1992.

16. Eamonn J. Keogh, Selina Chu, David Hart, and Michael J. Pazzani. An Online Algorithm
for Segmenting Time Series. In Proceedings of the 2001 IEEE International Conference
on Data Mining (ICDM), pages 289–296, 2001.

Compression of Trajectory Data: A Comprehensive Evaluation and New Approach 25

17. Goce Trajcevski, Hu Cao, Peter Scheuermann, Ouri Wolfson, and Dennis Vaccaro. On-line
Data Reduction and the Quality of History in Moving Objects Databases. In Proceedings
of the 5th ACM International Workshop on Data Engineering for Wireless and Mobile
Access (MobiDE), pages 19–26, 2006.

18. Richard Ernest Bellman. On the Approximation of Curves by Line Segments Using Dy-
namic Programming. Communications of the ACM (CACM), 4(6):284, 1961.

19. Jonathan Muckell, Jeong-Hyon Hwang, Catherine T. Lawson, and S.S. Ravi. Algorithms
for Compressing GPS Trajectory Data: An Empirical Evaluation. Technical Report
SUNYA-CS-10-06, CS Department, University at Albany – SUNY, 2010.

20. Dan Feldman, Andrew Sugaya, and Daniela Rus. An Effective Coreset Compression Al-
gorithm for Large Scale Sensor Networks. In Proceedings of the 11th International Con-
ference on Information Processing in Sensor Networks (IPSN), pages 257–268, 2012.

21. Pankaj Agarwal, Sariel Har-Peled, and Kasturi Varadarajan. Geometric Approximation
via Coresets. Technical report, Computer Science Department, Duke University, 2005.

22. Falko Schmid, Kai-Florian Richter, and Patrick Laube. Semantic Trajectory Compression.
In Proceedings of the 11th International Symposium on Advances in Spatial and Temporal
Databases (SSTD), pages 411–416, 2009.

23. C.Y. Lin, H.C. Chen, Y.Y. Chen, W.C. Lee, and L.J. Chen. Compressing Trajectories
Using Inter-Frame Coding. Technical Report TR-IIS-10-007, Institute of Information Sci-
ence, 2010.

24. S. Kaul, M. Gruteser, V. Rai, and J. Kenney. On Predicting and Compressing Vehicular
GPS Traces. In Proceedings of the 2010 IEEE International Conference on Communica-
tions Workshops (ICC Workshops), pages 1–5, 2010.

25. Michalis Potamias, Kostas Patroumpas, and Timos Sellis. Amnesic Online Synopses for
Moving Objects. In Proceedings of Conference on Information and Knowledge Managment
(CIKM), pages 784–785, 2006.

26. M. Potamias, K. Patroumpas, and T. Sellis. Online Amnesic Summarization of Streaming
Locations. In Proceedings of the 10th International Symposium on Advances in Spatial
and Temporal Databases (SSTD), pages 148–166, 2007.

27. Yu Zheng, Quannan Li, Yukun Chen, Xing Xie, and Wei-Ying Ma. Understanding Mobility
Based on GPS Data. In Proceedings of the 10th International Conference on Ubiquitous
Computing (UbiComp), pages 312–321, 2008.

28. Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma. Mining Interesting Locations and
Travel Sequences from GPS Trajectories. In Proceedings of the 18th International Con-
ference on World Wide Web (WWW), pages 791–800, 2009.

29. Catherine T. Lawson and Mary Ellen Mallia. Understanding Commuter Patterns and Be-
havior: An Analysis to Recommend Policies Aimed at Reducing Vehcile Use. Technical re-
port, The New York State Energy and Research and Development Authority (NYSERDA),
2010.

30. Catherine T. Lawson, Cynthia Chen, Hongmian Gong, Sowmya Karthikeyan, and Alain
Kornhauser. GPS Pilot Project: Phase Four. Technical report, New York Metropolitan
Transportation Council, 2009.

31. C.C. Robusto. The Cosine-Haversine Formula. The American Mathematical Monthly,
64(1):38–40, 1957.

