
Real-time Probabilistic Data Association over Streams∗

Mert Akdere
†

Google, Inc.
Mountain View, CA, USA
makdere@gmail.com

Jeong-Hyon Hwang
University at Albany, SUNY

Albany, NY, USA
jhh@cs.albany.edu

Uǧur Çetintemel
Brown University

Providence, RI, USA
ugur@cs.brown.edu

ABSTRACT
The Probabilistic Data Association (PDA) problem involves
identifying correspondences between items over data se-
quences on the basis of similarity functions. PDA has long
been a topic of interest in many application areas such as
real-time tracking and surveillance. Despite its significance,
however, it has largely been ignored by the event-processing
community. Our work rectifies this situation by studying
PDA in the context of continuous event processing.

Specifically, we formulate PDA as a continuous prob-
abilistic ranking problem with constraints and efficiently
solve it using fast constraint resolution. Our solutions are
built on a top-k approximation to the problem guided by
resource-aware optimization techniques that adaptively uti-
lize the available resources to produce real-time results.
User-defined data association constraints are used to restrict
the solution space and quickly eliminate inconsistent solu-
tion candidates. We also derive the runtime complexity of
our solutions and experimentally evaluate these solutions us-
ing a prime PDA application: real-time tracking of moving
objects within a camera network. Our evaluation results
demonstrate the superiority of our solutions over traditional
constraint programming formulations.

Categories and Subject Descriptors
H.2 [Database Management]: Systems

Keywords
data association; data streams; probabilistic databases;
ranking; constraint resolution

∗This work has been supported by the National Science
Foundation under CNS-0721703 and CAREER award IIS-
1149372.
†Work done while at Brown University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS’13, June 29–July 3, 2013, Arlington, Texas, USA.
Copyright 2013 ACM 978-1-4503-1758-0/13/06 ...$15.00.

1. INTRODUCTION
The data association problem refers to identifying corre-

spondences between items over data sequences [19, 20]. A
classical application area for data association is tracking [20],
where the task is to map a given set of measurements to a set
of tracks (or objects). Probabilistic data association (PDA)
is a type of data association technique that uses similar-
ity functions to create data association hypotheses together
with association scores [2, 3]. In tracking applications, each
hypothesis would represent a mapping of measurements to
tracks.

PDA is an important task with many applications in di-
verse domains. As mentioned, a major target of PDA is the
area of tracking and surveillance applications such as visual
tracking where the task is to track people (or objects) in
video streams [2], ocean surveillance (tracking of ships and
submarines), and air defense and traffic control systems [3].
Document classification and topic intensity tracking is also
an application of PDA where each document (e.g., e-mail)
is classified into topics and the evolution of topic trends are
of interest [1]. Yet another interesting application is found
in the domain of law enforcement where the task is to as-
sociate crime incidents committed by the same individuals
or group of individuals based on suspect traits and crime
similarities [27].

PDA is often cited as one of the biggest challenges in track-
ing applications [19] and has long been a topic of interest.
However, despite its importance and wide applicability in a
variety of applications, it has largely been ignored by the
event-processing community. In this paper, we explore the
PDA problem from the perspective of probabilistic query
processing [16]. Specifically, we consider the PDA problem
as a constrained probabilistic ranking problem with possible
worlds semantics [6, 7].

In the possible worlds semantics, relations are defined to
be uncertain: an uncertain relation represents a set of pos-
sible relation instances. In most cases, this is achieved by
adding an existence probability / confidence field to each re-
lation. This added field represents the membership proba-
bility of a tuple in a relation. Based on this definition of un-
certain relations, a probabilistic database is defined as a set
of uncertain relations and can be viewed as a probability dis-
tribution over database instances. There is a close relation-
ship between the data association problem and the possible
worlds semantics: the PDA problem can be defined over an
uncertain relation consisting of tuples describing data associ-
ations together with association scores. In this formulation,

each possible world instance represented by the uncertain
relation would be a separate data association hypothesis.

We apply the above formulation to represent the PDA
problem. Assuming a continuous influx of tuples that repre-
sent data associations and the probabilities of these associ-
ations, we consider the PDA query whose goal is to find the
maximum probability possible world among those that can
be defined according to the input tuples. We also present
two efficient query execution methods that both emphasize
efficient partial-exploration of the underlying possible worlds
in the presence of association constraints. The first one is
based on Constraint Programming (CP) [23] and leverages
existing powerful constraint solvers [22] for efficiency and
generality. The second approach is a form of Ranked Search
that efficiently explores only the high-probability possible
worlds, selectively pruning them with constraint elimina-
tion methods. The latter has the benefit of solving the PDA
problem with low computational overhead.

Since exploring all possible worlds is intractable, our solu-
tions use a top-k approximation approach which maintains
only the k possible worlds with the highest probabilities.
This approach has the benefit of limiting the constraint
space and avoiding the decline of data association speed.
In contrast to previous solutions that relied on pre-defined,
fixed k values [2, 3], our solutions adjust the value of k to
effectively balance processing overhead and association ac-
curacy. These solutions tackle the challenges of detecting
possible worlds that make limited contributions to associ-
ation accuracy, as well as improving association accuracy
while negligibly increasing computational overhead.

We illustrate these solutions using a running example, vi-
sual tracking, throughout the paper. While we heavily use
visual tracking to explain our techniques with concrete ex-
amples and to demonstrate their potential impact in a real-
world application, our goal is not to specifically solve this
tracking problem per se. In what we describe below, the only
application-specific component is the “cooking” functional-
ity that processes the raw data (i.e., images in our example
application) to extract the data on which our techniques op-
erate. As such, our techniques are quite general and readily
applicable to other PDA applications.

We note that our solutions go beyond the existing results
on probabilistic query processing research in two aspects.
First, probabilistic databases have limited support for the
specification and efficient execution of domain constraints,
which play a central role in PDA. Second, continuous PDA
is fundamentally a stream processing problem as it involves
temporal sequences. Prior work studied mostly static data
and one-time queries (e.g., [7, 14]). To effectively support
real-time tracking of moving objects, our solution has a time
threshold that bounds the time to be spent on processing
incoming data and strives to produce most accurate results
within this time limit.

The paper makes the following contributions:

(i) Our high-level contribution is the first use of contin-
uous, probabilistic query processing techniques on an
important class of applications that involve PDA and
that have so far remained outside the scope of the
event-processing community.

(ii) We integrate efficient constraint resolution methods
into probabilistic query evaluation. We first describe
how we can use a constraint solver for this purpose.

This is important in that a class of constraints that
are already efficiently supported by existing solvers
can be immediately used. Next, we propose a gen-
eral search-based method for the resolution of generic
constraints and then present methods to integrate effi-
cient constraint resolution techniques into the solution.
We also discuss the computational complexity of these
methods.

(iii) We describe an adaptive parameter tuning technique
that can be used to trade off processing overhead with
association accuracy. With additional optimizations,
we show that processing times can be significantly re-
duced with only modest accuracy losses.

(iv) We use a real-world PDA application, a visual track-
ing application that we deployed locally, for experi-
mentally evaluating our techniques. The results reveal
that our approach outperforms a widely cited generic
solution for PDA [3]. (Our claim concerns the solution
of the generic PDA problem and not the heavily op-
timized, specialized PDA solutions that exist for the
tracking application.)

In the rest of the paper, we first describe the PDA prob-
lem in Section 2. Then, we present our solutions to the
PDA problem in Section 3. Constraints for PDA and re-
solving these constraints are described in Section 4. Section
5 presents our technique for balancing accuracy and execu-
tion time. An experimental evaluation of our techniques is
given in Section 6. Related work is in Section 7 and we
conclude the paper in Section 8.

2. THE PDA PROBLEM
In this section, we first discuss and formulate the PDA

problem, using a generic PDA application context. Next,
we discuss the complexity of the PDA problem and its re-
lationship with the PDA constraints. Finally, we present
the visual tracking application which is used as the running
example throughout the paper.

2.1 Generic PDA Application Model
We consider a generic PDA application in terms of the

following main components: (i) data items, (ii) high-level
objects and (iii) similarity functions. Data items are the
basic units between which we would like to establish associ-
ations (i.e., links). In general, each object represents a set of
associated data items and is uniquely identified by an object
id. However, the complete semantics of objects, their rep-
resentation and management (i.e., object creation/deletion)
are application dependent. In a tracking application, each
object could represent a person, with its data items iden-
tifying the appearances of the person. Similarly, in a doc-
ument classification system objects and items could repre-
sent a list of topics and documents, respectively. In addi-
tion, applications could either choose to perform their own
object management (e.g., by defining a priori a set of ob-
jects, such as a fixed set of document topics) or allow the
system to self-manage the objects. In system-based object
management, new objects are automatically created for the
received data items and object deletion is performed when
no item is assigned to an object for a user-specified time
interval. For now we assume that there exists a fixed set of
objects. Finally, a similarity function computes a similarity

value between a given object and a data item. Then, within
this general setup, the primary goal of a PDA application
is to find the maximum score associations, represented via
objects, between data items based on the results obtained
from the similarity functions.

2.2 Problem Definition
First, we consider the PDA problem on a non-streaming

(i.e., traditional) probabilistic database. Later, we general-
ize it to the streaming scenario. In the non-streaming case,
the input to the system is an uncertain relation U (see Fig-
ure 1) consisting of tuples of the form < item id, object id,
probability >. Each tuple of the relation U represents the
association of a data item and an object together with a
probability. Tuple probabilities are derived from the com-
puted similarity values by normalization.

Figure 1: An example uncertain relation, U , represent-
ing the associations between two data items and two ob-
jects given for the non-streaming PDA problem

Each tuple is also part of a mutual exclusion group (MEG)
[10, 15]. A MEG is a set of tuples from which only one can
exist in a database instance. A separate MEG is formed
for each data item to represent the basic constraint that
each item is to be associated exactly with a single object.
Then, the PDA problem is equivalent to finding the maxi-
mum probability possible world, W , represented by the re-
lation U . Observe that W consists of a single assignment
for each data item and represents the set of assignments for
which the overall probability is maximized. Data items are
associated with each other if they are assigned to the same
object. In Figure 1, all of the possible worlds and their prob-
abilities are listed for the given uncertain relation. In this
case, the possible world {t2, t4}, which assigns both items
to object 2 is the maximum probability possible world.

Current probabilistic databases allow a tuple to be part
of only a single mutual exclusion group [10, 15] and as far as
we know not much research has been done on the interplay
of constraints and probabilistic databases. In this scenario
(i.e., when each tuple is part of a single MEG and there are
no additional constraints), the problem is solvable in lin-
ear time (in the number of tuples) by selecting the tuple
with the maximum probability for each MEG. However, in
many PDA applications, there is a number of additional con-
straints restricting the space of valid data associations and
the complexity of the PDA problem depends on the given
set of constraints. We discuss the problem complexity in
Section 2.3 and present example constraints in the context
of the visual tracking application in Section 2.4. With addi-
tional constraints, the PDA problem becomes a constraint
optimization problem which can be formalized as follows:
PDA Problem (non-streaming): Given an uncertain relation
U representing the associations between n data items and
m objects,

maximize
∏

C[i][Xi]

s.t. Xi ∈ Di, constraint list

where Xi is a variable that represents the ith data item from
U and has the domain Di = {1, 2, . . . ,m}, and C[i][j] is the
probability of the assignment of the ith data item to the jth

object.
The solution to the constraint problem is a list of assign-

ments of the form Xi = xi for 1 ≤ i ≤ n. The assignment
Xi = xi assigns the ith data item to the xth

i object. Hence,
the solution also encodes the maximum score possible world
that satisfies the given list of constraints.

In our system, we support generic boolean constraints on
the set of assignments and user-defined function-based con-
straints as part of the constraint list. For instance, a simple
example constraint is X1 $= X2 which disallows assigning
items 1 and 2 to the same object. We discuss the set of
supported constraints, constraint resolution techniques and
example constraints for the visual tracking application in
Section 4.
PDA Problem (streaming): Now, we consider the same
problem in the context of probabilistic data streams. The
streaming PDA problem is mainly a continuous / iterative
version of the non-streaming PDA problem. We assume that
a high-level PDA application continuously receives new data
items. Moreover, upon the receipt of each set of new items,
the high-level application computes the similarity values be-
tween all pairs of new items and existing objects.

In the streaming probabilistic data scenario, the tuples
of the uncertain relation U are modified to be of the form
< time point, item id, object id, probability >. The new at-
tribute time point is used to represent the iteration number
(i.e., the points at which new tuples are appended to the
database). For instance, in a visual tracking application,
the video frame number could be used as the time point at-
tribute. In this way, all of the data items extracted from the
same frame would be identified with the same time point
value. Finally, we can now define the streaming PDA prob-
lem as the problem of computing the set of maximum score
assignments at each point in time for all of the received data
items across all points in time.

2.3 Complexity of the PDA Problem
In Section 2.2, we showed that the PDA problem can be

expressed as a constraint optimization problem. In this sec-
tion, we discuss the complexity of the PDA problem based
on the constraint optimization formulation. Constraint op-
timization problems (hence, also the PDA problems) are
equivalent to constraint satisfaction problems (CSP) [28]
to which an additional set of “soft” constraints (i.e., prefer-
ential constraints which need not be satisfied) are added to
represent the score functions. A CSP is defined as a triple
(X,D,C), where X is a set of variables, D is a set of do-
mains and C is a set of constraints and the goal is to find
an assignment for all of the variables that satisfy the given
set of constraints.

CSPs are in general NP-complete and tractable only for
a few very restricted cases such as the well-known 2SAT
case, where the variables are all binary-valued and all of the
constraints are binary (i.e., defined over 2 variables) [28].
Generally, constraint solvers apply search-based methods,
such as the branch-and-bound algorithms, backtracking al-
gorithms and heuristic methods [29] to solve the CSPs.
In our constraint-programming based solution to the PDA
problem (Section 3.2.1), we employ a constraint solver to
demonstrate this approach. The exact complexity of a PDA

problem mostly depends on the given set of constraints.
Therefore, it is essential to use efficient constraint resolu-
tion techniques whenever applicable. For this purpose, in
our second solution to the PDA problem, the Ranked Search
method (Section 3.2.2), we allow the integrated use of spe-
cific constraint resolution techniques. This is discussed in
more detail in Section 4.

2.4 Running Example: Visual Tracking Ap-
plication

In this section, we describe the visual tracking applica-
tion which is used as the running example in the rest of
the paper. In the visual tracking application, we consider
the tracking of people and image features (e.g., corner fea-
tures [21]) extracted from video streams. In the case of
tracking people, using similarity functions based on image
processing techniques, we compute the similarity score of a
blob and a person. A blob is defined as a connected region
of foreground pixels in an image and a person is represented
as a series of blobs and related information. Therefore, the
task of tracking people (i.e., high-level objects) reduces to
the act of associating blobs (i.e., data items) across images.
This process is illustrated in Figure 2 where blobs are de-
noted with rectangles and blob associations are shown with
arrows. Tracking features is a similar task but performed
on image features instead of blobs. Further information on
the detection of blobs and features, and the camera network
setup used in collection of video streams for experimentation
are provided in Section 6.

Figure 2: Illustration of tracking and data association
using a video captured with our local camera network.
Solid lines indicate the correct data associations.

We can represent the tracking application as shown in
Figure 3. We identify each frame and person using a frame
number (Frame#) and person id (PersonID). The blobs ex-
tracted from the same frame are assigned unique ids (Blo-
bID). Each tuple describes the score (MatchScore) of associ-
ating a blob and a person. The association score is computed
using similarity functions (discussed in Section 6). Also, we
assigned each tuple with a unique TupleID for illustration
purposes. Observe that, the Frame#, BlobID, PersonID
and MatchScore fields correspond to the time point, item id,
object id and probability fields discussed in Section 2.2, re-
spectively. Within this setup, for each possible world derived
from the given data stream, the probability of that possible
world can be computed. For instance, in the possible world
{t2, t3}, the first blob in frame 1 is person 2 and the second
blob is person 1. The scores of tuples in the same mutual
exclusion groups can generally be used to derive probabili-
ties. In this example, we do not perform this step since it is
not necessary for the PDA query. As mentioned before, the
score of a possible world is defined to be the product of the
scores of its assignments.

The data stream in Figure 3 is ordered according to the
key (Frame#, BlobID, PersonID). This ordering occurs in-

Figure 3: Representation of a single-camera tracking
application as a probabilistic data stream

herently as frames are received in-order from a camera and
the processing follows the same order. A possible world for
a given snapshot of the input stream at a frame number f ,
represents a complete data association for all of the received
frames (from 1 to f). When a new frame, f+1, is received, a
new possible world, including associations for frame f+1, is
to be formed. Figure 3 represents a single-camera scenario.
In the multiple-camera case, the input stream is augmented
with a CameraID field, and the processing is done in terms
of synchronized sets of frames.

In the above example, the mutual exclusion groups defined
on Frame# and BlobID, are used to specify the underlying
assumption that each blob is to be assigned to only a single
person (e.g., t1 ∨ t2). However, a number of other addi-
tional constraints could be specified as part of a tracking
application. For instance, we could require a person (i) to
be assigned at most one blob in a frame and (ii) not to be
assigned blobs in cameras with non-overlapping views. Sup-
porting such constraints efficiently is discussed in Section 4.

3. PDA QUERY EXECUTION
The PDA query is the database specification of the

streaming PDA problem defined in Section 2.2. Hence, the
goal of the PDA query is to continuously compute and out-
put the most likely possible world (i.e., the data association
hypothesis with the highest score) at each point in time.
Each output possible world must represent a complete data
association hypothesis covering all of the query points in
time.

In the tracking application, the task is to track all of the
people (or features) observable by the cameras. As dis-
cussed in Section 2.4, this task corresponds to a continu-
ous data association problem on a probabilistic data stream
(see Figure 3). In the context of the tracking application, we
use the PDA query to perform the association between the
people/features detected in the camera network. As men-
tioned before, we assume that all of the tuples with the same
Frame# / time point, called a frame set, are appended to
the input data stream. In the rest of the paper, we use the
PDA query mainly within the tracking application frame-
work to easily express our execution methods and related
optimizations.

Finally, the PDA query supports a range of constraints
which are commonly used in PDA applications. These in-
clude pairwise inequality constraints on association items,
unique assignment constraints and other user-defined con-
straints; all supported through a single interface. Con-
straints and their enforcement are discussed in Section 4.

3.1 Top-k Approximation
A naive method to execute the PDA query would be to

repeatedly enumerate all of the possible worlds from the

input stream and output the possible world with the max-
imum probability that satisfies the given set of constraints
as the answer upon the arrival of each new frame set (or in
a generic PDA application, upon the arrival of the tuples
of a new point in time). However, the number of possible
worlds is exponential in the number of association items, and
thereby prohibits the naive enumeration approach. In addi-
tion, each possible world represents a complete data associ-
ation hypothesis for all of the received frames. Therefore,
the hypothesis space keeps growing exponentially as more
frames (and consequently more data items) are received.

A more practical, but inexact (i.e., approximate) approach
to executing the PDA query would be to incrementally pro-
duce the output hypothesis (i.e., possible world) at each
frame set by extending the output hypothesis for the pre-
vious frame set. More specifically, at each frame set we
would expand the previous output hypothesis with associa-
tions for the newly received data items. While this approach
would be efficient, it would not be optimal to only build
upon the single best hypothesis at each frame, because a
lower ranking hypothesis may end up ranking higher as new
“evidence” (i.e., frames) is observed. As the best hypothesis
for a frame set may be significantly different from the previ-
ous best hypothesis, computing multiple hypotheses makes
it more likely to find the best hypotheses in the next frame
sets. In other words, keeping multiple hypotheses enables
some degree of error recovery in the data associations of
the earlier frames. Finally, another reason for computing
multiple hypotheses is that the ranking results are based on
uncertain information and therefore the distinction between
the top ranked possible worlds is not absolute.

As such, the Multi-Hypothesis Tracking (MHT) model [2,
3, 4] has been the most widely adopted approach to real-time
PDA. While multiple realizations of this model are possi-
ble, the common idea is to keep track of k-best hypotheses,
where k is decided (often in an ad-hoc manner) subject to
real-time processing constraints. We also adopt this pop-
ular and practical top-k approximation model as the basis
of our solution; however, as we describe below, we extend
and significantly improve upon the existing solutions. At
each point in time, we incrementally compute the k-best hy-
potheses based on the most recent k-best hypotheses. Each
hypothesis is formed from a combination of a previous hy-
pothesis with a set of assignments for the most recent point
in time.

3.2 Execution Methods
In this section, we discuss different top-k based execution

methods for the PDA query. In each case, we assume that
we are given a set of data associations corresponding to the
most recent point in time, together with the previous k-best
possible worlds to start with. Given this input, the expected
output of the query is the new top-k possible worlds and
their scores.

3.2.1 Constraint Programming
Our first solution is based on a constraint programming

(CP) [23] formulation of the PDA problem. The main ad-
vantage of a CP-based approach is that it enables the use
of existing powerful constraint solvers [22] to solve the PDA
problem. In addition, a variety of constraint types, already
efficiently supported by the constraint solvers, are immedi-
ately available for use. Given m objects (all of the objects

belonging to a possible world) and n association items (blobs
or features) received at this point in time, we define a CP
for the PDA problem as follows:
CP for PDA problem:

maximize
∏

C[i][Xi]

s.t. Xi ∈ Di, constraint list

where X1, X2, . . . Xn are variables with domains Di =
{1, 2, . . .m}∪ {m+ i} (1 ≤ i ≤ n) and C[i][j] is the score of
assigning the ith item to the jth object.

This formulation is very similar to the constraint program
given in Section 2.2 except for the variable domain defini-
tions. In this case, the first m objects are previously existing
objects, whereas the (m+ i)th object represents the creation
of a new object for the ith data item. For the tracking ap-
plication, new objects represent the possibility that a new
person enters the camera view. The solution to the CP, an
assignment for each Xi, specifies a complete assignment for
the items at this point in time.

Given the previous k-best possible worlds (i.e., parent pos-
sible worlds), our CP-based method initially creates k sep-
arate CPs, one for each parent possible world. All of these
CPs are then solved to obtain k new possible worlds, where
each possible world is the best solution based on its parent
possible world. More specifically, each CP is formed by com-
bining the corresponding parent possible world and the new
data associations obtained after the parent possible worlds
are constructed. Then, these CPs and their solutions are
inserted into a priority queue. Using the queue, we obtain
a new set of k-best possible worlds. Our CP-based method
bears some similarity to Murty’s algorithm [5]. The key dif-
ference of our method is that it can effectively prune the
search space, as explained below, using constraint resolu-
tion.

Algorithm 1 CP-based algorithm for PDA problem

1. state ← {(cp1, soln1), . . . , (cpk, solnk)}
2. topk ← ∅
3. while |topk| ≤ k do
4. (cp, s)← state.pop()
5. topk.insert(s)
6. cpnew ← cp.update(s)
7. snew ← cpnew .solve()
8. state.insert(cpnew , snew)

Algorithm 1 shows the overall operation of our CP-based
method. The priority queue mentioned above is denoted as
state (see line 1). At each iteration of the while-loop (lines 3-
8), the current best solution is taken from the priority queue
(state) and added to the results list (topk). Furthermore, the
CP of the best solution is modified to obtain the next best
solution, which is then added to the priority queue. If the
solution is a set of assignments Xi = ji for 1 ≤ i ≤ n and
ji ∈ 1, . . . ,m+ n, then the modification to the CP consists
of adding a new constraint, ∨Xi $= ji, to remove the current
solution from the solution space.

As mentioned before, a constraint solver performs an ef-
ficient search on the space specified by the domains of the
problem variables [22]. Hence, our CP method can be viewed
as a search-based MHT implementation with embedded con-
straint resolution techniques. For comparison, we also im-
plemented a search-based MHT algorithm as outlined in [4]

Figure 4: Example execution of Ranked Search

which performs a breadth-first search on the set of assign-
ments using score-based bounds for pruning. However, in
our experiments it was outperformed by our CP solution.
Therefore, we do not provide the results for the previous
search-based method in this paper.

3.2.2 Ranked Search
Consider the case where each tuple belongs to a single

mutual exclusion group (MEG) and there are no additional
constraints. Then, the possible world with the highest score
consists of the maximum score assignment of a data item to
an object for each MEG. If we sort the tuples for each MEG
by score, the 0th-index tuple (i.e., the highest scoring tuple)
in each group will constitute the maximum score possible
world. In this case, the solution is found immediately after
sorting. Therefore, the run-time complexity of finding that
solution is O(nm logm), where n is the number of items at
the current point in time and m is the number of objects.
{0, 0, 0} in Figure 4 (i) represents the maximum score pos-
sible world which consists of the 0th tuple for each of three
3 MEGs.

Given the above possible world, the next best possible
world must consist of the 1st tuple for one of the three MEGs
and the 0th tuple for the other MEGs. As Figure 4 (ii) shows,
such a possible world has a single 1 together with 0s in its
set of indices. Figures 4 (iii) and (iv) illustrate the process of
finding the 3rd and 4th best possible worlds by incrementing
one of the values in the index set.

In Figure 4, the possible world with the next highest score
(denoted with a * sign) is added to the top-k list. The
newly added world is also expanded using index increments
to obtain a set of next possible worlds. In the figure, each
index-set has a pointer to its leftmost modified index (see
the up arrows). During each expansion, only the indices
before the index pointer can be modified. This restriction
guarantees the distinctness of the possible worlds that are
examined. In other words, each branch of the search tree
explores a distinct sub-space.

The expansion process mentioned above has the following
properties:

(i) Let the sum of the values of an index-set be s. Then,
the index-set is at level s of the tree and is reachable
in s steps.

(ii) All possible values of the index-set are reachable from
the root of the search and no value is produced more
than once (based on the property that only the modi-
fications before the index-pointer are allowed).

(iii) All ancestors of an index-set have less or equal values
at each index position and therefore have higher score
values.

The run-time complexity of our Ranked Search algorithm
is O(nm logm+ n(k − 1)). The second term represents the
worst case scenario for the number of nodes expanded dur-
ing the search process. The search tree in Figure 4 is used
for illustration purposes only. In practice, a priority queue,
enabling immediate access to the possible world with the
best score, is used. The described Ranked Search algorithm
only works for the case in which there is a single parent pos-
sible world at the previous point in time (i.e., k = 1). To
handle the more general case with multiple possible worlds,
we only need to modify the algorithm (i) to generate a sepa-
rate root index-set for each parent possible world and (ii) to
make index increments aware of the parent possible world by
skipping the indices of the tuples not belonging to the par-
ent possible world. The rest of the algorithm is unchanged
and each index-set, regardless of its parent possible world,
is inserted into the same priority queue.

Finally, constraints and their evaluation constitute an im-
portant part of the Ranked Search method. To support the
use of constraints, we modify the algorithm so that it adds
a possible world to the top-k list if and only if that possible
world satisfies the constraints. As discussed before, in this
case the complexity of the problem depends on the given
set of constraints. We discuss how to efficiently resolve con-
straints using constraint-based pruning strategies in Section
4.

4. PDA CONSTRAINTS
We consider a variety of commonly used constraints in

PDA applications. We support generic boolean constraints
on data associations, and user-defined function-based con-
straints. In Section 4.1, we present generic constraint resolu-
tion techniques for boolean and function-based constraints.
Then in Section 4.2, we discuss how to utilize existing spe-
cific constraint resolution techniques using as example a bi-
partite matching [25] algorithm for efficiently supporting a
commonly used unique assignment constraint.

4.1 Generic Constraint Resolution
In the CP-based method, boolean constraints on assign-

ments are embedded in the CPs. For instance, based on the
physical locations of the cameras, we might know that two
items, X1 and X2, cannot be the same object: X1 $= X2.
This is called a pairwise inequality constraint. On the other
hand, the user-defined function-based constraints cannot be
handled in this way. Such constraints are evaluated sepa-
rately: each possible world, obtained as the solution to a
CP, is checked for satisfying the function-based constraints.
If the constraints are not satisfied, the CP is modified as
described in Section 3.2.1 to obtain the next best solution.

In the Ranked Search method, both boolean and function-
based constraints are evaluated together on possible worlds
before being added to the top-k list. In the case where a
possible world fails a boolean constraint, we only need to
consider modifying the variables that are part of the con-
straint to obtain a solution. Therefore, during the expansion
process in Section 3.2.2, the index incrementing operation is
only performed on the variables of the failed constraint(s).
For instance, in the case of the pairwise inequality constraint
X1 $= X2, the index incrementing operation will only change
the variables X1 andX2. The other child possible worlds are
pruned, without being formed, since it is certain that they
cannot satisfy the constraints. To handle the user-defined

function-based constraints, we provide an interface that al-
lows functions to return the set of assignments to change for
satisfying the constraints. Given this information, function-
based constraints can be handled similarly.

4.2 Specific Constraint Resolution
We observe that not all constraints can be handled effi-

ciently using the generic constraint resolution methods de-
scribed in Section 4.1. Specifically, in the cases where the
violation of a constraint is caused by a large subset (or all)
of the assignment items, the generic methods may take a
long time for resolving the constraints. For this kind of con-
straints, it can be more efficient to use specific constraint
resolution techniques. In this section, we discuss how we
can utilize existing efficient solutions for such constraints in
our framework.

Constraint solvers are already equipped with optimized
algorithms for resolving specific constraints including AllD-
ifferent, Range, Sequence constraints and others [22]. These
constraint resolution techniques can be utilized by embed-
ding the query constraints in the CPs. In this section, we
consider the unique assignment constraint, which specifies
that a given set of items are to be assigned to distinct ob-
jects. The unique assignment constraint can be solved ef-
ficiently using the AllDifferent constraint, which forces its
argument variables to assume different values from one an-
other. Observe that the unique assignment constraint can
also be expressed as multiple pairwise inequality constraints
in which case the solution will be much less efficient.

The Ranked Search method is ill-suited to efficiently solve
the unique assignment constraint since its solution would be
based on pairwise inequality constraints. The worst-case
scenario would be the case of bipartite matching in which
all of the variables are to be assigned different values. This
is a common constraint in the case of feature tracking in
which all of the features are to be matched against each
other. However, there is an efficient algorithm, the Hungar-
ian Method [25], that solves the bipartite matching prob-
lem in polynomial time. We can incorporate this algorithm
within the Ranked Search method by replacing the index
incrementing operation with the Hungarian method for the
cases where the unique assignment constraint is violated.
Observe that we can use this method to handle constraints
on subsets of variables by solving a subproblem in which only
the constrained variables are free and the rest of the vari-
ables are fixed. This hybrid constraint resolution technique
enables the Ranked Search method to efficiently solve com-
plex constraints using specialized algorithms. The Ranked
Search algorithm will correctly compute the set of top-k pos-
sible worlds as long as the integrated constraint resolution
methods are optimal.

5. OPTIMIZATIONS

5.1 Reducing the Computation Time
Until now, we assumed that the parameter k for a query

has a user specified and fixed value (similar to top-k queries).
In practice, however, it is not clear how to set this value. In
addition, it is likely that different k values are better fitting
for data association at different time points, thereby requir-
ing an adaptive mechanism to adjust the value of k during
runtime. The reason is that, depending on the score distri-
bution, the top possible world scores could be very similar

or really far apart. In the latter case, lower ranked possi-
ble worlds, though still within top-k, are unlikely to lead to
top-k possible worlds at the next point in time and therefore
will not contribute to the query result.

Based on this observation, we propose an adaptive mech-
anism that dynamically adjusts the k-value based on a sta-
tistical test, instead of using a fixed value, and reduces the
computation time without significantly changing the query
results. At a high level, we keep track of the change between
the scores of the top possible world and the top ith possible
world. When this change has a low probability, according to
the gathered statistics, we stop generating possible worlds
(i.e., k is set to i) and return the result.

More specifically, we define a variable CRi, the change
rate of the top ith possible world:

CRi =
pi − pi+1

p1

where pj is the score of the top jth possible world. We as-
sume that change rates are i.i.d. variables with mean µ and
variance σ2. Then based on the Chebyshev’s Inequality [18]
we have:

P (|CRi − µ| ≥ cσ) ≤ 1
c2

where c > 0 is a constant. We use a cumulative version of
this inequality:

P (|
n∑

1

CRi − nµ| ≥ c
√
nσ) ≤ 1

c2

Here,
∑n

i CRi is the cumulative change rate of the top nth

possible world and
∑n

i CRi =
p1−pn+1

p1
. Finally, we re-

move the absolute sign from the inequality to only consider
the cases where the argument has a positive value. Oth-
erwise the cumulative change rate is less than its expected
value, which means that the possible world scores are close
to each other. Therefore, given a probability threshold, 1

c2
,

our stopping condition is simply the given inequality test.
This method is used together with a timeout mechanism
or a maximum k value for the cases when the test always
passes.

5.2 Improving the Association Accuracy
In this section, we first discuss how to measure the accu-

racy of the PDA query results and then present methods to
increase accuracy without increasing the query processing
times.

5.2.1 Accuracy Metrics
Given the ground truth (GT) data association for a PDA

problem, there are various forms of accuracy metrics for data
association [26]. An intuitive metric, variations of which are
widely used by tracking applications, is the sequential ac-
curacy, in which pairs of items associated with the same
object in sequential time points / frames are identified and
compared with the GT. If the GT also has the given items
assigned to a single object, the item is said to be correctly
associated, or a true positive (TP). If the association only
exists in the query result but not in the GT, it is called a
false positive (FP). Finally, if the association exists in the
GT but not in the result, it is a false negative (FN). Then,
the well-accepted precision and recall metrics of Information
Retrieval can be applied: precision = TP

TP+FP and recall

= TP
TP+FN . Observe that, this metric focuses on individ-

ual item associations instead of continuous object tracking.

Hence, it is possible that each object is tracked correctly for
a small number of frames but a high accuracy score is ob-
tained. For instance, consider a single object video stream
of 10 frames, for which 5 different 2-frame long objects are
output as the tracking results (i.e., every two frames track-
ing fails and a new object is detected). In this case, the
sequential accuracy would have 100% precision and 50% re-
call. For this reason, we can also use an object-based metric
that compares the objects in the query result with the GT.
In this case, we compare the first detected item for the ob-
ject that an item is assigned to in the query result, with the
first detected item of the corresponding object in the GT.
TPs, FPs and FNs are defined similarly to the sequential
accuracy metric.

Our top-k approximation method is based on the assump-
tion that given relevant score assignments for data items
(i.e., not conflicting with the GT), there is a strong correla-
tion between high possible world scores and accuracy. This
relationship is demonstrated experimentally in Section 6.

5.2.2 Hypothesis Sampling
In general, we expect the accuracy of the query results

and the top possible world scores to increase with increas-
ing values of k (until the maximum score possible worlds
are obtained). Therefore, the first method of increasing ac-
curacy is to increase the k-value. However, the value of k
is limited due to computational reasons. Depending on the
specified constraints and for large values of k, both the CP-
based method and the Ranked Search method may take a
long time to find the top-k possible worlds. In the worst
case, an exponential number of possible worlds may need to
be enumerated. In addition, a lower-ranked possible world
in a frame set could lead to a high score possible world in
later frame sets as the change in scores across frame sets
is unlikely to be the same for all possible worlds. Given
a fixed k value, such possible worlds could be prematurely
eliminated. Finally, high score possible worlds tend to be
very similar in terms of their assignments, which reduces
the ability to recover from erroneous assignments.

We now add an additional sampling step to the Ranked
Search method to address the mentioned issues. After the
top-k possible worlds are found, we sample from the rest of
the already computed possible worlds. The sampled possi-
ble worlds that satisfy the constraints are added to the top-k
list. The sampling itself can be done uniformly at random or
weighted by score. As future work, we plan to explore var-
ious sampling techniques and measure their effectiveness.
Observe that the newly added possible worlds (i) are not
necessarily high-score possible worlds and (ii) increase as-
signment diversity (as they originate from different parent
possible worlds). Finally, notice that the sampling does not
notably increase the computation time as it is performed
over the already computed possible worlds; i.e., no addi-
tional iterations are performed to form new possible worlds.

6. EXPERIMENTS

6.1 Experimental Setup
In this section, we present an experimental evaluation

of our algorithms using the visual tracking application de-
scribed in Section 2.4.

6.1.1 Testbed
We have set up a 24 camera network (indoors) over a 100

Mbps wired LAN in our department as our testbed. In our
setup, each camera [8] captures 5 frames (of size 640x480
pixels) per second (fps) and continuously forwards frames to
a desktop computer in the same LAN for processing/storage.
Although we had to limit the frame rate to avoid overloading
the network, in our experiments we report processing times
(per frame) that demonstrate that our system can easily
cope with much higher data rates.

Video streams are processed by our computer vision (CV)
library which extracts blobs and other image features and
stores them in a central database. Our framework sup-
ports both real-time tracking on live videos and tracking on
recorded videos using the central database (for debugging
and retrospective analysis). For repeatability purposes, in
the experiments reported here we use previously recorded
videos. Our CV library, tracking application and all other
tools are implemented in C++. We use the VXL library [9]
for image processing and the ILOG [22] constraint solver to
solve constraint programs.

6.1.2 Cooking Images: From Raw Data to Relations
We now describe how we “cook” the images within our

visual tracking system. Notice that cooking is in general
application-specific; we simply apply common practice and
techniques and describe them for completeness and to facil-
itate repeatability.

Color-histogram and location-based matching [19] are the
two similarity functions used to compute data association
scores in this study. A color-histogram represents the color
distribution of the pixels in a given image region. Our color-
histogram implementation is a 3-dimensional histogram with
8 bins in each dimension based on the RGB color space [19].
The color-histogram matching function computes a score
based on the similarity of the color-histogram of a data
item with the color-histograms of an object. We use an
intersection-distance based function for computing the sim-
ilarity of two color-histograms. The intersection-distance
function first normalizes each color-histogram and then sums
the minimum of the values in the two histograms for each
bin. On the other hand, for the location-based matching
function, we model the motion of objects using a Kalman-
filter [17] and use its prediction results in location estima-
tion. In our experiments, matching score is computed as a
weighted combination of the color-histogram and location-
based similarity functions.

The objects considered for tracking in the experiments are
people and foreground image features. There are a variety
of image features available for tracking. In this study, we
use a corner feature [21] provided by the VXL computer
vision library. In addition, in a tracking application each
object must be represented with a model based on the in-
formation required by the similarity functions. The repre-
sentation model for objects is application dependent. In our
implementation, the object representation models consist of
a motion model and a bag of color-histograms.

In our experiments, we normalized each similarity func-
tion to return a unit value. In addition, to avoid numerical
underflows, we use the logarithm of each assignment score
and maximize the sum of the log-scores instead of the prod-
uct of the scores. The scores reported in the experiments
are log-scores unless otherwise stated.

We note that it is common practice to derive probabil-
ity values from the scores assigned by user-defined similarity
functions in many real-world applications (such as handwrit-
ing recognition, document classification, and keyword-based
Web search) in a manner similar to the way we describe it
here for visual tracking. The discussion of better probabilis-
tic models is outside the scope of this paper. Our approaches
do not make any assumptions about how the probability val-
ues are derived and thus can work with alternate interpre-
tations.

In Section 6.2, we present experiments on the relation be-
tween accuracy and possible world scores using synthetic
datasets. Then in Section 6.3 we present experimental re-
sults using real datasets.

6.2 Tracking Accuracy
In this experiment, we use a single-camera synthetic video

stream of 10 frames formed by rotating a single image 2
degrees clockwise (with respect to its upper left corner) per
frame. 42 features, extracted from the foreground pixels in
the original image, are rotated with the image. Hence, each
feature performs a circular motion with the same angular
speed. As a result, we know the exact feature locations (i.e.,
the ground truth) in all frames using which we can precisely
compute tracking accuracy. This is a common “trick” used
when evaluating tracking solutions.

(a) Accuracy and score

(b) Top score ratios

Figure 5: Score and Accuracy Relationship

We tracked the features using Ranked Search with dif-
ferent k values (from 1 to 500). The accuracy vs. score
comparison for the top possible world obtained with each
value of k is provided in Figure 5(a). The used accuracy
metric is the object-based metric described in Section 5.2.
The shown curve is the precision curve and in this case it is
the same with the recall curve as we used bipartite matching
and each false negative also caused a false positive (and vice
versa). The score values are normalized to fit in the accu-
racy interval. The general trends (i) increasing score with
increasing k value and (ii) increasing accuracy with increas-
ing score are displayed. Based on this result, in the rest of
the experiments, we use increasing score values as indicators
for increasing accuracy.

We should point out that the association accuracy re-
ported in our experiments is fundamentally a function of

the quality and resolution of the underlying raw data and
the similarity functions used. As such, the nominal accuracy
values achieved are not an indication of how well our pro-
posed algorithms work. These values should be interpreted
in a relative manner; e.g., our algorithms should not unnec-
essarily degrade the best possible accuracy achievable in our
setting in order to improve processing efficiency.

The maximum achieved object-based accuracy (≈ 48%)
is low. However, with the sequential accuracy metric, we
obtained values between 90% for k = 1 and 93% for k = 500
on the same results. The high sequential accuracy shows
that while frame-by-frame tracking is accurate, feature-to-
object mappings are less accurate. The reason is the lack
of prior information on the feature motion models. In ad-
dition, the color-histogram function was not used in this
experiment since the features across frames are identical
(the color-histogram would therefore provide certain infor-
mation).

The scores shown in Figure 5(a) and the rest of the sec-
tion are log-based. However, in Figure 5(b), we show how
the actual score value (i.e., not log-based) changes with k-
value for the same results in Figure 5(a). The values are
normalized using the best score.

6.3 Tracking Methods and Performance

6.3.1 CP-based method vs Ranked Search
In this experiment, we compare PDA query execution

methods using a video stream of 268 frames from 3 video
cameras (804 total frames). In this case, we are tracking
2 people walking towards each other, crossing paths and
leaving the camera views in separate directions. The query
execution times for each method is shown in Figure 6(a). A
uniqueness constraint (i.e., blobs in the same camera are
assigned to different objects) is enforced. As mentioned
in Section 3.2.1, our CP-based solution can be viewed as
a search-based MHT implementation with embedded con-
straint resolution techniques. In contrast to previous MHT
implementations [2, 3, 4, 5], our CP-based solution effec-
tively prunes its search space using constraint resolution.

The CP-based method, despite using the AllDifferent con-
struct (Section 4.2), is unable to handle large values of k
and requires seconds for processing k values greater than
50. The Ranked Search method (without the constraint res-
olution techniques) performs much better. The best per-
formance is obtained with the Ranked Search method using
the constraint resolution (Ranked Search + CR) techniques.
Observe that, while the Ranked Search method in general
requires longer execution times for the larger k values, in
some cases it can take longer times for smaller values of k as
well. The reason is the lack of CR techniques which makes
the execution time mainly dependent on the constraint in-
stances. While there are only 2 people in this video, there
are also noise blobs being observed due to imperfect detec-
tion of foreground pixels which makes the problem harder.
The query results obtained with all the execution methods
are the same and we show the best score obtained with each
value of k in Figure 6(b).

6.3.2 Constraint Resolution
I. Generic Constraint Resolution: In this experiment, we
analyze how the query execution times change with (i) the
number of tracked objects and (ii) different levels and types

(a) Query algorithms - time (b) Query algorithms - score (c) Pairwise inequality

(d) Unique assignment (e) Bipartite matching - time (f) Bipartite matching - score

Figure 6: Comparison of PDA query execution methods and constraint resolution techniques

of constraints using a fixed value of k = 10 and generic con-
straint resolution techniques (Section 4.1). The test video
contains 20 frames from a single camera.
Local Constraints: Local constraints are constraints that af-
fect only a small subset of the variables [23]. As a lo-
cal constraint example, we consider the pairwise inequality
constraint (Section 4.1) (affects only 2 variables). In Fig-
ure 6(c), we show the average query execution times (per
frame) for tracking different number of features (15, 28, 37,
53 and 65) under different constraint levels. The constraint
level specifies the ratio of the features on which pairwise in-
equality constraints are placed. The results show that the
increase in the number of features for low constraint lev-
els does not notably affect the execution time. However,
the execution time becomes more sensitive to the number of
features as the constraint level increases.
Global Constraints: Now we consider the unique assignment
constraint (Section 4.2) which is a global constraint (affects
all variables). In Figure 6(d), we show the execution times
for tracking different number of features with varying
levels of the unique assignment constraint. In this case,
the constraint level specifies the ratio of the features on
which a unique assignment constraint is placed. When
the constraint level is 1, the problem is equivalent to the
bipartite matching problem. The results show that it is
much harder to solve the unique assignment constraint with
the generic constraint resolution methods. We can only
obtain the full range of results for the case with 15 features.
With a larger number of features, we ran out of memory
before we could find the top-10 possible worlds.

II. Specific Constraint Resolution - Bipartite Matching: In
this experiment, we focus on the specific constraint reso-
lution techniques within the context of bipartite matching
(i.e., one-to-one matching of features to objects Section 4.2).
The test video contains 23 frames with an average number
of 38 features per frame. We execute feature tracking for dif-
ferent k values (from 1 to 500). The average query execution
times are given in Figure 6(e). The execution time increases
linearly with the value of k. We were unable to compute the
top-10 possible worlds using generic CR techniques for more

than 15 features and level-1 unique assignment constraint.
With specific CR techniques, however, we could obtain these
results for k = 500. In addition, we show the score curve for
the best score obtained with each value of k in Figure 6(f).

6.3.3 Adaptive-k Processing

In this experiment, we analyze the effects of the adaptive-k
mechanism using different threshold values and frame pro-
cessing time limits, described in Section 5.1, on the score
and execution time performance of the Ranked Search algo-
rithm. We track the people in a video of 23 frames using the
Ranked Search algorithm with the adaptive-k setting. The
time limit specifies the maximum time allowed for processing
a single frame, which is used to time out processing when
the adaptive-k test is unable to stop processing. Average
per frame query execution times are shown in Figure 7(a)
for different values of the threshold and the time limit.

With a 250ms time limit, the adaptive-k mechanism is
unable to notably reduce the computation time even with
the larger values of the threshold. As discussed in Sec-
tion 5.1, the threshold indirectly specifies the maximum cu-
mulative drop in possible world scores before processing is
stopped. The fact that the adaptive-k mechanism is unable
to stop processing means that the possible worlds gener-
ated in 250ms are all within the score limits specified by the
threshold.

For larger values of the time limit, the adaptive-k mech-
anism is able to reduce the average frame processing time.
However, this is possible due to a trade-off between score
and processing time. The score values obtained in the ex-
periment are shown in Figure 7(b). For a 750ms time limit,
we can use a threshold value of 0.05, to reduce the average
computation time by 142ms (≈ 19%) and still obtain a simi-
lar top possible world score. Similarly with 500ms time limit,
we can use a threshold of 0.075 and reduce the average com-
putation time by 57ms (≈ 11%) without a significant loss
in the best-score. The vertical lines in Figure 7(a) indicate
this reduction in computation for these accuracy-cut based
threshold values. For larger threshold values, the achieved
best-score is smaller. The reason is that the possible worlds

(a) Adaptive-k vs. time

(b) Adaptive-k vs. score

Figure 7: Ranked Search with Adaptive-k

that generate these best-scores are prematurely eliminated
during processing.

6.3.4 Hypothesis Sampling

In this experiment, we focused on the effects of sampling
on per frame average execution time and score performance
of the Ranked Search algorithm. For comparability pur-
poses, we used the same 23-frame video with the Adaptive-k
experiment (Section 6.3.3). There are three different dimen-
sions for the algorithm settings used in this experiment: (i)
frame processing time limit (250ms and 500ms) (ii) adaptive-
k mechanism (used with a threshold of 0.05 or not used) and
(iii) uniform sampling with different rates. The sampling
is done as an additional step as discussed in Section 5.2.2.
The experiment results for all combinations are shown in
Figures 8(a) and 8(b).

The sampling rates, 0, 1 and 2, specify the ratio of sam-
pled possible worlds to the already computed top-k possible
worlds. For instance, with a sampling rate of 1, if top-10
possible worlds are computed using the Ranked Search algo-
rithm, then 10 additional possible worlds are sampled from
the rest of the computed possible worlds. In Figure 8(a),
as predicted in Section 5.2.2, we show that sampling does
not increase the execution time of the tracking algorithm.
In Figure 8(b) we compare the best-score obtained for each
setting of the tracking algorithm. The results show that in
all cases a higher score is obtained with a larger time limit.
However, it is still possible to improve the achieved score
using sampling. For the sampling rate 2, the score is im-
proved significantly for the 250ms time limit, approaching
the score obtained with the 500ms time limit, both with the
adaptive-k mechanism and without it. The relative score
improvement for the 500ms case is less. Yet with a sam-
pling rate of 2, a score of −610 is achieved, which is the
best observed score in this case, and beats all non-sampling
based scores and the scores achieved with 750ms time limit
shown in the adaptive-k experiment.

(a) Sampling - time

(b) Sampling - score

Figure 8: Hypothesis sampling

7. RELATED WORK
Multi-Hypothesis Tracking (MHT) [2, 3, 4] is a widely

used data association model with many applications, that
forms multiple hypotheses for object tracking. Similar to
our work, in MHT implementations [2, 5] a top-k approxima-
tion is used for finding high score data association hypothe-
ses. In [5], an MHT implementation based on the bipar-
tite matching algorithm is provided applying to one-to-one
matching problems only. As in our CP-based method, the
problem is repeatedly divided into separate problems which
are solved optimally till top-k solutions are found. However,
our techniques for improving the efficiency and accuracy, as
well as our integrated constraint resolution framework, are
novel and, as we demonstrated experimentally, provide sig-
nificant benefits enabling real-time PDA with high accuracy.

Other data association methods include the Global Near-
est Neighbors (GNN) [19] method, in which each data item
is assigned to the object it most likely belongs to. However,
in GNN items are assigned independently and without any
constraints. In addition, GNN is unable to recover from erro-
neous assignments. Another data association method is the
Joint Probabilistic Data Association Filter (JPDAF) [20],
which unlike MHT and GNN is an object-based approach.
In JPDAF, multiple items could be assigned to an object
and each object model is updated based on a weighted com-
bination of the data items assigned to it. Observe that,
in JPDAF there is no specific data association, instead an
object-based view, describing the model of each object, is
provided to the user.

A top-k query on uncertain data computes the best k re-
sults according to a given rank function. In prior research
on probabilistic databases, top-k queries were extensively
studied [6, 10, 11, 13] and there has been different formu-
lations of top-k queries targeting different applications. For
instance, in [6], definition for two types of top-k queries are
given: U-Topk and U-k Ranks. The U-Topk query returns k
tuples which has the highest probability of being the top-k
tuples in all possible worlds. In the U-k Ranks query, the

result is a list of k tuples where the ith tuple has the high-
est probability for being the ith ranked tuple in all possible
worlds. The PDA query introduced in this paper involves
a top-k approximation and can be viewed as a continuous
top-k query. However, our main goal is to find high score
possible worlds at each frame instead of finding the best-k
hypotheses for a single frame. In addition, the PDA query
results are complete possible worlds, not partial assignments
obtained from possible worlds.

In [12], authors consider the duplicate detection problem
for data integration and cleaning. The proposed solution is
to view the dirty database as a probabilistic database and
the clean database is then defined as one of the instances of
the probabilistic database. While this definition is similar to
our formulation of the PDA problem, their goal (to answer
queries over the clean database without computing it) and
methods (involving query rewriting techniques) are different.

8. CONCLUSIONS
Continuous probabilistic data association is a data-driven

stream processing challenge that arises in a variety of real-
world applications. We described how continuous query pro-
cessing techniques can support PDA, showing experimental
evidence that they can improve upon the existing solutions
in terms of generality and performance.

Our primary contributions include algorithms for prob-
abilistic constrained ranking over data streams and a
resource-aware tuning approach that produces real-time re-
sults with modest losses in accuracy. We use a visual track-
ing application over a smart camera network to evaluate our
solutions.

There are several open directions for future work on PDA.
In addition to live PDA, many applications would like to ex-
tract data associations over stored, historical data. Such a
functionality can greatly benefit from standard tools such as
indexing, as well as novel execution strategies that look for
associations at different spatio-temporal granularities. An-
other promising direction is the integration of the cooking
process with PDA processing over the relational representa-
tion, which was the topic of this paper. In our model, cook-
ing is handled independently and separately by application-
specific logic, after which our PDA algorithms kick in. Here,
there are opportunities for new cross-layer optimizations by,
for example, using on-demand computation of the similarity
scores, i.e., by extracting only those image features required
by the PDA algorithm.

9. REFERENCES
[1] Krause, A., et al. Data Association for Topic Intensity

Tracking. ICML, 497-504, 2006.
[2] Cox, I. J. and Hingorani, S. L. An Efficient

Implementation of Reid’s Multiple Hypothesis
Tracking Algorithm and Its Evaluation for the
Purpose of Visual Tracking. Pattern Anal. Mach.
Intell. 18(2), 1996.

[3] Reid D.B. An Algorithm for Tracking Multiple
Targets. IEEE Trans. on Automatic Control 24(6),
843-854, 1979.

[4] Blackman, S. Multiple Hypothesis Tracking for
Multiple Target Tracking. IEEE A & E Systems
Magazine 19, 2004.

[5] Murty, K. G. An Algorithm for Ranking All the
Assignments in Order of Increasing Cost. Operations
Research 16, 1968.

[6] Soliman, M. A., Ilyas, Ihab F., and Chang, K. C.
Top-k Query Processing in Uncertain Databases.
ICDE, 896-905, 2007.

[7] Dalvi, N. and Suciu, D. Efficient Query Evaluation on
Probabilistic Databases. The VLDB Journal 16, 2007.

[8] DCS-900 Camera.
http://www.dlink.com/products/?pid=270.

[9] Vision-X Libraries. http://vxl.sourceforge.net.
[10] Hua, M., Pei, J., Zhang, W., and Lin, X. Ranking

Queries on Uncertain Data: A Probabilistic Threshold
Approach. SIGMOD, 673-686, 2008.

[11] Re, C., Dalvi, N. N., and Suciu, D. Efficient Top-k
Query Evaluation on Probabilistic Data. ICDE,
886-895, 2007.

[12] Andritsos, P., Fuxman, A., and Miller, R. J. Clean
Answers over Dirty Databases: A Probabilistic
Approach. ICDE, 2006.

[13] Ge, T., Zdonik, S., and Madden, S. Top-k Queries on
Uncertain Data: On Score Distribution and Typical
Answers. SIGMOD, 375-388, 2009.

[14] J. Widom. Trio: A System for Integrated Management
of Data, Accuracy, and Lineage. CIDR, 262-276, 2005.

[15] Benjelloun, O., et al. Databases with Uncertainty and
Lineage. VLDB Journal 17(2), 243-264, 2008.

[16] Suciu, D., et al. Probabilistic Databases. Morgan &
Claypool Publishers, 2011.

[17] Kalman, R. E. A New Approach to Linear Filtering
and Prediction Problems. Transactions of the ASME
82(D), 35-45, 1960.

[18] Ross, S. A First Course in Probability. Prentice Hall,
2008.

[19] Forsyth, D. A. and Ponce, J. Computer Vision: A
Modern Approach. Prentice Hall, 2002.

[20] Bar-Shalom, Y. Tracking and Data Association.
Academic Press Professional, 1987.

[21] Smith, P., Sinclair., D. et al. Effective Corner
Matching. BMVC, 1-12, 1998.

[22] IBM ILOG CP Optimizer. www.ilog.com
[23] Marriott, K., and Stuckey, P. J. Programming with

Constraints: An Introduction. MIT Press, 1998.
[24] Kanagal, B. and Deshpande, A. Online Filtering,

Smoothing and Probabilistic Modeling of Streaming
Data. ICDE, 1160-1169, 2008.

[25] Papadimitriou, C. H., et al. Combinatorial
Optimization: Algorithms and Complexity.
Prentice-Hall, 1998.

[26] Manohar, V. et al. Performance Evaluation of Object
Detection and Tracking in Video. ACCV, 151-161,
2006.

[27] Brown, D. E. and Hagen, S. Data Association
Methods with Applications to Law Enforcement.
Decision Support Systems 34(4), 369-378, 2003.

[28] Apt, K. Principles of Constraint Programming.
Cambridge University Press, 2003.

[29] Kumar, V. Algorithms for Constraint-Satisfaction
Problems: A Survey. AI Magazine, 1992.

