
SQUISH: An Online Approach for GPS Trajectory
Compression

Jonathan Muckell
Dept. of Informatics

University at Albany–SUNY
Albany, NY 12222

jonmuckell@gmail.com

Vikram Patil
Dept. of Computer Science
University at Albany–SUNY

Albany, NY 12222
vp322396@albany.edu

Fan Ping
Dept. of Computer Science
University at Albany–SUNY

Albany, NY 12222
apping@cs.albany.edu

Jeong-Hyon Hwang
Dept. of Computer Science
University at Albany–SUNY

Albany, NY 12222
jhh@cs.albany.edu

Catherine T. Lawson
Dept. of Geography &

Planning
University at Albany–SUNY

Albany, NY 12222
lawsonc@albany.edu

S. S. Ravi
Dept. of Computer Science
University at Albany–SUNY

Albany, NY 12222
ravi@cs.albany.edu

ABSTRACT
GPS-equipped mobile devices such as smart phones and in-
car navigation units are collecting enormous amounts spa-
tial and temporal information that traces a moving object’s
path. The popularity of these devices has led to an expo-
nential increase in the amount of GPS trajectory data gen-
erated. The size of this data makes it difficult to transmit
it over a mobile network and to analyze it to extract use-
ful patterns. Numerous compression algorithms have been
proposed to reduce the size of trajectory data sets; however
these methods often lose important information essential to
location-based applications such as object’s position, time
and speed. This paper describes the Spatial QUalIty Sim-
plification Heuristic (SQUISH) method that demonstrates
improved performance when compressing up to roughly 10%
of the original data size, and preserves speed information
at a much higher accuracy under aggressive compression.
Performance is evaluated by comparison with three compet-
ing trajectory compression algorithms: Uniform Sampling,
Douglas-Peucker and Dead Reckoning.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Applications—
Spatial databases and GIS

General Terms
Algorithms and Applications

Keywords
GPS, Trajectories, Compression

1. INTRODUCTION
A trajectory is defined as a series of 3-tuple records con-

sisting of the position (Latitude, Longitude), along with the
temporal information (when the moving object was at the
location). The stream of points defines a path or trajectory
of a moving object over a period of time. The enormous
prevalence and popularity of GPS devices has led to a growth
market called Location-based services. These applications,
often developed for mobile devices, utilize location informa-
tion, such as the location of the person accessing the appli-
cation, and commonly the location patterns of other users.
Location-based service is an active area of research, encom-
passing applications such as supply-chain management, lo-
cation detection and traffic modeling [11, 6, 8, 15, 9].

Three major problems currently exist in location-based
applications that use trajectory data: storing, transmitting
and processing the data. Storing the data is difficult because
the shear volumes of data can quickly overwhelm available
data storage. For instance, if data is collected at 10 second
intervals, a calculation due to Meratnia and de By [10] shows
that without any data compression, 1 Gb of storage capacity
is required to store just over 4, 000 objects for a single day.

The cost of transmitting GPS data from mobile devices is
the second main problem highlighting the need to compress
GPS trajectory data. Sending a large amount of data can
often be expensive and problematic. To illustrate this dif-
ficultly imagine a large fleet of vehicles equipped with both
a GPS device and a transmission mechanism for sending
the information. Typical transmission mechanisms include
cellular transmission and/or satellite communication. Satel-
lite transmission is more expensive, but has the advantage
of not having coverage gaps which are inherent in cellular
networks. The cost of sending large volume of data over
remote networks can be prohibitively expensive, typically
ranging from $5 to $7 per megabyte [14]. Therefore, track-
ing a fleet of 4, 000 vehicles for a single day would incur
a cost of $5,000 to $7,000, or approximately $1,800,000 to
$2,500,000 annually. Compression algorithms that reduce
the size of the data can significantly reduce this incremental
cost.

Applications that detect patterns from trajectory data are

increasingly popular. However, the computational complex-
ity of these algorithms makes it difficult to generate useful
patterns when the data size is very large. Reducing the
size of the input data has the potential to improve the run-
ning time without significantly hindering performance [5].
In essence, this involves compressing the data as a pre-
processing step prior to running computationally expensive
algorithms. Many applications require online processing and
transmission of GPS trajectory data.

Finding solutions to the problems of storing, transmit-
ting and processing GPS trajectories utilizing compression
methods is an active area of research [1, 2, 20, 10, 12]. The
most trivial compression method is Uniform Samplng which
simply takes every ith point in the trajectory. Uniform
sampling can reduce the storage requirements, but often re-
sults in significant information loss. Another common al-
gorithm for compressing trajectories is the Douglas-Peucker
algorithm [3] which is often used in cartographic and com-
puter graphics applications. However, this method runs in
batch mode, and therefore cannot be used in mobile applica-
tions that require processing GPS points as a data stream.
Another algorithm compared in this study is called Dead
Reckoning [16]. Unlike Douglas-Peucker, Dead Reckoning is
an online method that runs in linear time. However, often
times, applications require more precise approximations of
the original trajectory than is achieved using Dead Reckon-
ing.

In this study, we introduce a new method that prioritizes
the most important points in a trajectory stream. This Spa-
tial QUalIty Simplification Heuristic or SQUISH, is based of
the priority queue data structure [17, 4]. Since SQUISH is an
online method, it uses local optimization to select the best
subset of points and permanently removes redundant or in-
significant points from the original GPS trajectory. Drastic
improvement in performance is observed in small to medium-
sized compression ratios (e.g. containing 10% or more of the
original points). We carry out a performance comparison be-
tween SQUISH and three other methods (Uniform Sampling,
Douglas-Peucker and Dead Reckoning) using 1300 GPS tra-
jectories derived from the Microsoft GeoLife data set [18,
19].

To summarize, our main contributions include:

• A new online compression algorithm SQUISH that of-
fers improved performance across multiple error met-
rics at small to medium compression ratios.

• Performance evaluation is compared to popular algo-
rithms for trajectory compression: Uniform Sampling,
Douglas-Peucker and Dead Reckoning.

• Suggestions regarding how future algorithms could be
developed to improve performance.

The next section describes previous work for compress-
ing trajectories, along with error metrics for evaluating the
amount of information lost in compressing the data. In sec-
tion 3, the SQUISH method is described in detail. The eval-
uation of SQUISH and other algorithms is described in sec-
tion 4. Recommendations for future work and conclusions
are provided in section 5.

Algorithm Running Time (Batch or Online)

Uniform Sampling O(n) Online
Dead Reckoning O(n) Online
Douglas-Peucker O(n logn) Batch
SQUISH O(n log(β)) Online

Table 1: Summary of GPS Trajectory Algorithms
(β is the buffer size used by SQUISH)

2. PREVIOUS WORK
In this paper, four algorithms are compared, three of which

have been previously introduced in the literature. This sec-
tion discusses the three previously developed algorithms (Uni-
form Sampling, Douglas-Peucker and Dead-Reckoning), as
well as error metrics that have been defined specifically to
determine the effectiveness of spatio-temporal trajectory data.

Compression strategies can be classified into two forms,
namely lossless and lossy compression. Lossless compression
enables an exact reconstruction of the original data; that is,
no information is lost due to compression. In contrast, lossy
compression introduces inaccuracies when compared to the
original data. The primary advantage of lossy compression
is that it can often drastically reduce the storage require-
ments while maintaining an acceptable degree of error. All
four algorithm described in this work are lossy compression
algorithms. Furthermore, all four algorithms use line seg-
ments consisting of a subset of the points that exist in the
original trajectory.

Various algorithms exist in the literature to balance the
tradeoff between accuracy and storage size. These algo-
rithms can be logically grouped based on criteria such as
batch vs. online processing and the computational com-
plexity. Table 1 depicts whether the algorithms are batch or
online, as well as the computational complexity. The algo-
rithms used in this study were selected as a representative
sample of GPS trajectory compression algorithms. Uniform
sampling is a simple and fast method; Douglas-Peucker is a
popular batch algorithm used for line simplification; while
Dead Reckoning is an online algorithm that incorporates
spatio-temporal information into the compression strategy.

2.1 Uniform Sampling Algorithm
The most native method of lossy compression, namely uni-

form sampling, offers the advantages of time efficiency and
reduced storage requirements for geo-spatial data. This ap-
proach down-samples a stream of GPS data at fixed time
intervals; that is, from the original data consisting of a se-
ries of time-stamped points (x, y, t), every ith point is kept
in the compressed version, for some suitable integer i. The
primary advantage of Uniform Sampling is that it runs in
linear time, and is trivial to implement. The major disad-
vantage is drastic changes in speed and direction are not
stored if the change occurs between sampled points.

2.2 Dead Reckoning Algorithm
Dead Reckoning is based on an approach that has been

used in navigation for hundreds of years. The basic goal
is to estimate a future position p′ at time t′ using the ob-
ject’s current position and velocity. The Dead Reckoning
Algorithm used in this study was based on the work devel-
oped by Trajcevski and Cao [16]. This implementation of
Dead Reckoning takes a single tolerance θ, that specifies the

Figure 1: The Dead Reckoning algorithm estimates
the future location of an object based on the current
position and velocity.

maximum distance a future position can deviate from the
estimated position. Let εi denote the distance of any point
Pi on the original trajectory from its predicted location. If
εi > θ, than Pi in the GPS stream is included in the com-
pressed representation.

Figure 1 illustrates the processing of the Dead Reckon-
ing algorithm. On the left, the original trajectory is shown,
while on the right the compressed trajectory is shown us-
ing solid lines. In this algorithm, the GPS ray is projected
out based on the current position and velocity of the GPS
point. For instance the current location and velocity at P1

is used to predict the future path of the trajectory, shown as
the dashed arrow. Each subsequent point, P2, P3, etc. . . is
compared with projected ray until the distance between the
future point and the projected ray is beyond the user de-
fined error threshold θ. Point P5 is the first point beyond
this error threshold, since ε > θ. When a point is beyond
the user defined error tolerance, the point just before that
location is added into the compressed representation. In the
figure, point P4 was included, since point P5 violated the
error condition. This process continues until each for all
subsequent points. For instance, point P7 distance is also
beyond the error threshold and therefore P6 is also included
in the compression.

The computational complexity is O(n), where n is the
number of points in the trajectory. This complexity is due
to the fact that the algorithm linearly processes each point;
consecutively comparing each point to the predicted loca-
tion. A major advantage of this algorithm is that it runs
in online mode, unlike the Douglas-Peucker discussed next.
The primary disadvantage is that Dead Reckoning is unable
to set a specific error rate. Although Dead Reckoning typ-
ically performs better compared to Uniform Sampling and
Douglas-Peucker, it is still susceptible to large worst-case
sed and speed errors (As shown in section 4).

2.3 Douglas-Peucker Algorithm
The Douglas-Peucker Algorithm [3] is a popular heuristic,

commonly used to fit a series of line segments to a curve,
thereby reducing storage requirements. Often implemented
in computer graphics applications, the Douglas-Peucker al-
gorithm is applicable in a variety of geospatial applications.

A common application is in reducing the number of points
required to store state and county boundaries.

Douglas-Peucker is a line generalization algorithm, that
recursively selects points from the original set of GPS trajec-
tory points. A series of line segments is fitted to the original
curve based on new points that are selected. The execution
of the algorithm proceeds along the following steps. Initially,
the first and last points in the trajectory are stored in the
compressed version. Figure 2 shows Douglas-Peucker over
four different time steps. At time t0, the original trajectory
is shown consisting of six points P1 − P6. The dotted lines
indicate the original trajectory. The first step is to connect
the end points A and P6 together using a single line seg-
ment, shown at time t1 as the solid line. The point with the
greatest distance between the original trajectory and the line
segment is included in the compression. For instance, point
P3 has the greatest distance at time t1. Therefore, point
P3 is added to the compression. Three points or two line
segments now exist in the compressed representation.

Douglas-Peucker is a recursive algorithm, repeating the
process of adding the point that lies the maximum distance
from the original line for each line segment. The process
stops once the maximum distance for each line segment
is less then some user defined error tolerance (i.e. ε <
Tolerance). Therefore, at time t2 point P2 is not added
since the maximum distance is not greater than the user
provided tolerance parameter. However, point P5 is added
since the distance is greater than the tolerance. Time step
t3 illustrates the final compressed approximation of the tra-
jectory.

If the above algorithm is implemented in a straightfor-
ward manner, its worst-case running time is O(n2), where n
is the number of original points. The running time can be
improved to O(n logn) using a more complex approach in-
volving convex hulls [7]. The primary advantage of Douglas-
Peucker that the maximum error rate is bounded by some
user-specified maximum error. The main drawback regard-
ing Douglas-Peucker is that it is a batch algorithm; that
is, the entire trajectory must be stored before compression.
Therefore it is typically not suitable for mobile and real-time
applications. Additionally, the user has no ability to set the
desired compression rate.

2.4 Error Metrics
Algorithms for compressing GPS trajectories attempt to

minimize one or more of the following error metrics: spatial
distance, synchronized Euclidean distance (sed) and speed.
GPS trajectories do not consist only of spatial data (lati-
tude, longitude); crucially, the temporal component t, is also
stored along with the spatial location (x, y). The three com-
ponents define a series of time-stamped positions (x, y, t).
Therefore, when evaluating the effectiveness of each algo-
rithm, both spatial and temporal accuracy must be mea-
sured. Applications using stored GPS data, often require
the preservation of the spatial component (where was the
asset?), the temporal component (when was the asset at
that location?), as well as velocity.

One way of measuring the difference between a GPS trace
and its compressed version is to measure the perpendic-
ular distance (Figure 3). The Douglas-Peucker algorithm
attempts to minimize the maximum spatial distance error.
Since the perpendicular distance does not incorporate tem-
poral content, a more effective approach involves measuring

Figure 2: Douglas-Peucker Line Generalization Al-
gorithm recursively approximate a curve by select-
ing the point furthest away from each line segment
until the distance is below a user-specified tolerance.

Figure 3: Synchronized Euclidean Distance mea-
sures the distance between the original and com-
pressed trace at the same time. In contrast, line
generalization algorithms ignore the temporal com-
ponent and use simple perpendicular distance.

the distance at synchronized points. For instance, Figure 3
shows the distances at synchronized time points t2, t3 and
t4 (at time t3, the time synchronized distance and the per-
pendicular distance coincide).

Synchronized Euclidean distance (sed) measures the dis-
tance between two points at identical time stamps [13]. In
Figure 3, five time steps (t1 through t5) are shown. The sim-
plified line (which can be thought of as the compressed rep-
resentation of the trace) consists of only two points (Pt1 and
Pt5); thereby, it does not include points Pt2 , Pt3 and Pt4 . To
quantify the error introduced by these missing points, dis-
tance is measured at identical time steps. Since three points
were removed between Pt1 and Pt5 , the line is divided into
four equal sized line segments using the three points P ′t2 ,
P ′t3 and P ′t4 for the purposes of measuring the error. The
total error is measured as the sum of the distance between
all points at the synchronized time instants, as shown below.
(In the following expression, n represents the total number

of points considered.)

sed =

n∑
i=1

√
(xti − x′ti)2 + (yti − y′ti)2

2.5 Comparison of GPS Trajectory Compres-
sion Techniques

Previous algorithm for compressing GPS trajectories in-
cluding Douglas-Peucker, Dead Reckoning and Uniform sam-
pling each have serious limitations. These limitations are
the main motivation for development of a new algorithm
(SQUISH) that tries to overcome these limitations.

Uniform Sampling is a trivial compression strategy that
simply takes every ith point in the trajectory. It therefore
executes in linear time. However, the algorithm can easily
miss sharp changes in speed and direction if the sampling
rate is too large.

Douglas-Peucker is a popular algorithm for line generaliza-
tion and is often used in cartographic and computer graph-
ics applications. However, Douglas-Peucker is a batch algo-
rithm. Most applications that require compressing of GPS
trajectories cannot be implemented in batch-mode. This is
because the data is arriving on a portable device as a data
stream. Since portable devices have a limited amount of
space for data, it is impractical to store the entire stream
before it is compressed. Furthermore, real-time knowledge
of tracked moving objects requires periodic updates of object
locations.

Dead Reckoning has several useful advantages compared
to Uniform Sampling and Dead Reckoning. First, the algo-
rithm incorporates both spatial and temporal information
when selecting points, thereby improving performance when
evaluating sed and speed error. Also, execution time is linear
to the number of trajectory points and the algorithm is able
to run in online mode. The downside to Dead-Reckoning
is the performance is only slightly better then other algo-
rithms with respect to median synchronized Euclidean dis-
tance, and does not significantly improve the preservation
of speed data.

The shortcomings of other algorithms motivated the de-
velopment of SQUISH. This online algorithm demonstrates
impressive performance when at least 10% of the original
data points remain in the compression. The results will be
described in detail in Section 4. The next section provides
a detailed description of the SQUISH algorithm.

3. SQUISH METHOD
The main contribution of this paper is the introduction of

a new algorithm call SQUISH for compressing GPS trajec-
tory streams using a priority queue.

The algorithm requires one input parameter that defines
the size of Buffer β. Initially all incoming points are sim-
ply placed in the buffer, until the buffer is full. Once the
buffer is filled, any incoming point requires the removal of
another point inside the buffer. The goal is to remove points
that contain little or no information. Examples of trajectory
segments that contain a high degree of redundancy include
stationary points and points that are moving in a highly
predictable constant speed and direction.

Prioritization is determined based on estimating the amount
of synchronized Euclidean distance (sed) introduced into the
compression if that point was removed from the compres-

Algorithm 1: SQUISH Method(S)

1 construct a fixed size buffer B
2 for GPS point p in continuous point stream S do
3 insert p into B as the last point
4 update the SED for the second last point in B
5 if the buffer is full then
6 find the point ps in B with the smallest SED
7 remove ps from B
8 update SED for two neighbor points of ps in B

9 output B

Symbol Meaning

S the continuous GPS point stream
B the buffer to accommodate the final compressed

points
p a GPS point in the stream S
ps a GPS point in the buffer B that has the smallest

SED

Table 2: Symbols and Their Meanings

sion. Optimally assigning priorities would be computation-
ally expensive, since removal of any point in the algorithm
would require reassigning priorities to every point in the
buffer. Therefore, the prioritization algorithm uses local op-
timization instead of a more accurate global approach. For
instance, in Figure 3, assume point P3 was initially assigned
the lowest priority since removing this point would result in
the least amount of error introduced into the compression.
However, removing point P3 also increases the priority of its
neighbors, P2 and P4. This is because the neighbors now
contain some more important information that reflects, not
only their spatio-temporal information, but also additional
information from the deleted neighbor P3. A heuristic is im-
plemented to efficiently estimate the priority of the neighbor
of a deleted point.

SQUISH identifies extreme points based on local estima-
tion of sed error. Extreme point are defined as trajectory
locations that exhibit distinct deviations of predicted be-
havior, such as sharp changes in speed and direction. These
anomalies are often important to store for applications, such
as the detection of erratic driving behavior, route changes
and congestion.

Figure 4 captures three time segments of the SQUISH
method in action. The dotted box depicts which points have
currently been processed. The values next to each point
show the current estimated priority of each point. The end
point has a priority set to ∞ since ends points must remain
in the compression and cannot be removed. The priority is
set to the estimated sed error introduced into the compres-
sion if this point is removed. If the buffer becomes full, the
point with the lowest estimated sed is removed when a new
point is added into the buffer.

This small example has a buffer that can hold a maximum
of four points, shown below each trajectory. The first four
points are simply added to the buffer until the buffer is full,
shown at time step 0. At time 1, a fifth point is processed.
In order to store this incoming point, we store, then check
if the buffer is full . If the buffer is full, some point needs to
be removed from the buffer. To estimate the priority, a line

Figure 4: SQUISH estimates the lowest sed error
and removes the point with is predicted to introduce
the lowest amount of error into the compression

segment connecting the two adjacent neighbors is computed.
For instance, a line segment AC is constructed and the sed
from point B to line segment AC is computed. This process
is carried out for all non-endpoints in the buffer. In the
case of Figure 4, point B is removed since it has the lowest
estimated sed error.

When a point is removed from the buffer, priorities of
other points currently in the buffer are also affected. We
estimate the upper bound maximum sed error of removing
the two adjacent neighbors of the deleted point. This is
computed by adding the sed error of the deleted point to the
current sed error of the neighboring two points. In Figure 4,
at time 1, point C has the sed changed from 0.5 to 0.7, by
adding the priority of B to the current value at C. At time
2, point C is removed since it has the lowest sed, and hence
highest priority. The estimated sed of point D is increased
since the estimated sed of point C is added to the existing
value of D. This process continues, as each new point in the
GPS trajectory stream is added, the point with the lowest
sed is removed.

The current implementation of SQUISH utilizes a fixed
size buffer. This is useful when the amount of available stor-
fge is predetermined, such as the amount of storage allocated
on a mobile GPS collection system. However, modifications
can be made to SQUISH that vary the buffer size dynam-
ically based on global or local error metrics. For instance,
a parameter could be fed to SQUISH that states a maxi-
mum sed error that is permitted in the compression. If the
compression representation is about to surpass this maxi-
mum error, then the buffer size is allowed to grow in order
to have a more accurate representation.

Algorithm 1, describes the SQUISH process. First, a fixed

size buffer β is initialized in which the size determines the
number of points that will exist in the final compressed data.
SQUISH iterates over all the points in the GPS trajectory
stream. Each point pi is added as the last point in the buffer
β (line 3). This newly added point p allows for the calcula-
tion of the sed error for the second to last point pi−1. The
sed error of pi−1 is computed by measuring the amount of
sed error introduced if pi−1 is removed from the compressed
storage. If the buffer is full, then the point with the small-
est estimated sed error is removed. Line 6 performs the
check to find the point with the lowest sed error. If the data
structure is implemeneted as a heap, than this find oper-
ation takes O(log β) time. One the point with the lowest
estimated sed error is removed, the sed values of the two
adjacent neighbors must be adjusted (line 8). SQUISH es-
timates the upper bound sed error of the two neighbors by
adding the sed value of the deleted point to the values of the
two neighbors ps−1 and ps+1.

4. EVALUATION

4.1 Dataset Description
This study uses the Microsoft GeoLife [18, 19] dataset that

consists of 165 users over a period of two years (from April
2007 to August 2009). Various transportation modes are in-
cluded in the data set, including biking, shopping and work
travel. Each trajectory represents a complete trip from des-
tination to arrival location. The vast majority of the traces
(about 95%) have a sampling rate of about 2 - 5 seconds or
5 - 10 meters, while a small fraction have more sparsely col-
lected sampling rates. Most of the data collection occurred
around Beijing, China, with a small number of traces in-
cluding the United States and Europe.

Noise and inaccuracies are common in GPS data due to
limitations of the GPS device, atmospheric conditions and
positions of satellites. The location of the GPS device also
determines the accuracy of the position. Entering a build-
ing or tunnel (the so-called urban canyon effect), can led
to problems in obtaining an accurate GPS fix. The Geo-
Life data set contained noisy information and therefore was
cleaned prior to the analysis performed in this paper. Re-
moving noisy and grossly invalid points is important to un-
derstand the effectiveness of the algorithms without noisy
information skewing the results. The data set was cleaned
to extract long, complete trips that have little noise. A to-
tal of 1300 trips were extract from the GeoLife data set to
facilitate a clean comparison of the different algorithms.

4.2 Performance Evaluation
Four algorithms were compared in this study. Three al-

gorithms (Uniform Sampling, Douglas-Peucker and Dead
Reckoning) were previously defined in the literature and
used to gauge the effectiveness of the new algorithm SQUISH.
This section compares the algorithms across multiple perfor-
mance metrics including synchronized Euclidean distance,
speed and the ranking of best performers.

SQUISH demonstrates the best results when the compres-
sion ratio is not large (e.g. at least 10% of the original points
remain). The compression ratio is defined as the num-
ber of original points divided by the number of compressed
points stored.

Figure 5A shows the average synchronized Euclidean dis-
tance (sed) ranking from a compression ratio of 5 to 30.

SQUISH performs well for small compression ratios. For ex-
ample, at a compression ratio of 5, in which 20% of the orig-
inal trajectory points are stored, SQUISH provides roughly
half the error rate of the second most effective algorithm
Dead Reckoning and about 25% of the error rate of Uniform
Sampling and Douglas-Peucker. Performance significantly
deteriorates after compression ratio of 10, and SQUISH be-
comes the least effective after a compression ratio of 25.

For very high compression ratios, defined in this work as
about 20, the performance of the SQUISH algorithm is quite
poor. This is likely due to error propagation that stems from
the weighting of points in the buffer. Points are ranked using
a localized technique that estimates the amount of error in-
troduced when removing a point. When a point is removed
from the buffer, the remaining neighbor points are given a
higher weight by adding the amount to error introduced by
its neighbor. This technique is a good approximation; how-
ever, as more and more points are removed from the buffer,
error propagation occurs. Enhancements are needed to this
algorithm to decide how points are ranked to improve perfor-
mance at high compression rations by limiting or preventing
error propagation from occurring.

A ranking was performed that provides an ordered list
for each analyzed trace to determine which algorithm is the
best, second best, third best and worst performer. The rank-
ing was estimated based on root mean square synchronized
Euclidean distance for each trace in the Microsoft GeoLife
dataset. A ranking of 1 for a particular trace illustrates
that the algorithm had the lowest RMS sed error compared
to the other three algorithms. Similarly, if an algorithm
had a ranking of 4, the algorithm had the highest sed error
compared to the other three algorithms.

Figure 5B illustrates the average ranking of the four al-
gorithms over the entire GeoLife dataset and across various
compression ratios. On small compression ratios (≤ 10) the
SQUISH is shown to be the clear winner. In fact, for a
compression ratio of 5, about 85% of the traces in the data
set were best compressed using SQUISH. However, as the
compression ratio increase, SQUISH eventually becomes the
worst performer.

Another observation depicted in Figure 5 is that Douglas-
Peucker is shown to perform poorly compared to the other
three algorithms. This is due to the fact that Douglas-
Peucker algorithm attempts to minimize the maximum per-
pendicular distance error, and does not include spatio-temporal
information. Uniform Sampling, also does not use spatio-
temporal information. However, very large sed values are
often avoided since the amount of time between samples is
constant and free from large gaps that can occur when using
Douglas-Peucker.

In Figure 6A the median sed error is shown for the four al-
gorithms. The median error removes outliers and therefore,
best-case/worst-case compressions are not captured. Using
median sed as the error metric, SQUISH is still shown to
be the best performer for low compression ratios. However,
the comparative difference between the four algorithms is
not as drastic. Consistent with the results from the aver-
age sed error, Douglas-Peucker remains the worst performer
over small compression ratios when using median error.

SQUISH demonstrated superior performance when mea-
suring the amount of speed error. Figure 6B shows the aver-
age speed error for each algorithm over various compression
ratios. The performance of each algorithm was fairly con-

Figure 5: SQUISH method performs the best for small compression ratios. LEFT: Comparison of average
synchronized Euclidean distance (sed) across four algorithms. RIGHT: Average ranking of the algorithms.
A ranking of 1 indicates that the algorithm had the lowest sed error. Similarly, a ranking of 4 indicates that
the algorithm had the highest sed error. For compression ratios less than 10, SQUISH clearly has the best
overall ranking. This difference between SQUISH average sed results and overall ranking is due to small
numbers of outliers that skew the overall average.

sistent. The SQUISH method consistently had the small-
est amount of speed error, followed by Dead Reckoning,
Douglas-Peucker and Uniform Sampling respectively.

When comparing speed performance, SQUISH and Dead
Reckoning were the best algorithms because temporal infor-
mation is used by the algorithms in deciding which points
to select and which points to remove from the compressed
representation. Since the temporal information is essential
to preserving velocity, this likely influenced the algorithms’
performance.

The performance of each algorithm on synchronized Eu-
clidean distance and speed is poorly correlated. For in-
stance, Douglas-Peucker was comparable to the SQUISH
method for compression ratios 10 through 20 for average sed,
but the median speed error was significantly worse than the
sed error over the same compression ratios.

The cumulative distribution function is shown in Figure 7
for the four algorithms. The x-axis indicates the amount
of sed error in kilometers, while the y-axis represents the
percentile of the distribution with that amount of error. A
higher percentile corresponds to a higher error. This figure
shows the distribution of sed error at a compression ratio
of 5. The SQUISH method is shown to outperform other
algorithms by having a distribution shifted further left which
represents that the worst-case error is less using SQUISH
than other methods. Douglas-Peucker is the second best,
followed by Dead Reckoning and Uniform Sampling.

5. CONCLUSION
The SQUISH algorithm offers several advantages over pre-

vious algorithms reported in the literature. The main ad-
vantages are improved performance with respect to synchro-
nized Euclidean distance (sed) when the compression ration
is 10 or smaller using an online method. The distribution of
error demonstrates that SQUISH has smaller sed error rates
under worst-case scenarios. Additionally, speed information
is well preserved using the SQUISH method, which consis-
tently out-performs other compression algorithms even when
the trajectories are substantially compressed (i.e. 20-25% of
the original points are stored).

Future work is needed to minimize the algorithm’s draw-

Figure 7: CDF SED Distribution

backs, such as using a more accurate heuristic for estimating
the sed error of points in the queue. The local estimation of
the priority of each remaining point in the buffer is currently
incapable of handling large compression rates. The perfor-
mance of SQUISH when 10% or more of the original points
remain indicates that SQUISH could be used as a prepro-
cesing algorithm for aggressive compression. Experimental
results are needed to validate whether SQUISH is effective
as a preprocessing algorithm. Additional recommendations
for future work include determining the effectiveness of com-
pression on common spatial applications such as traffic flow
modeling, identification of congestion bottlenecks and iden-
tification of speeding violation hot-spots.

6. ACKNOWLEDGMENTS
This work is supported in part by the Research and Inno-

vative Technology Administration of the U.S. Department
of Transportation through the Region 2 - University Trans-
portation Research Centers Program and the University at
Albany through the Faculty Research Awards Program (FRAP
- A). We thank the anonymous reviewers for helpful sugges-
tions.

Figure 6: LEFT: Median synchronized Euclidean distance error across different compression ratios. RIGHT:
The average speed error for various compression rates. SQUISH approach works well in preserving speed
information, but has a high sed error on high compression ratios

7. REFERENCES
[1] M. Abdelguerfi, J. Givaudan, K. Shaw, and R. Ladner.

The 2-3tr-tree, a trajectory-oriented index structure
for fully envolving valid-time spatio-temporal datasets.
In 10th ACM-GIS, pages 29–34. ACM Press, 2002.

[2] P. K. Agarwal, L. J. Guibas, H. Edelsbrunner,
J. Erickson, M. Isard, S. HarPeled, J. Hershberger,
C. Jensen, and L. Kavraki. Algorithmic issues in
modeling motion. ACM Computing Surveys,
34:550–572, 2002.

[3] D. Douglas and T. Peucker. Algorithms for the
reduction of the number of points required to
represent a line or its caricature. The Canadian
Cartographer, 10(2):112–122, 1973.

[4] M. L. Fredman and D. E. Willard. Surpassing the
information theoretic bound with fusion trees. Journal
of Computer and System Sciences, 47(3):424 – 436,
1993.

[5] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi.
Trajectory pattern mining. In KDD ’07: Proceedings
of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 330–339,
New York, NY, USA, 2007. ACM.

[6] S. P. Greaves and M. A. Figliozzi. Commerical vehicle
tour data collection using passive gps technology:
Issues and potential applications. Transportation
Research Record, 2049:158–166, 2008.

[7] J. Hershberger and J. Snoeyink. Speeding up the
douglas-peucker line simplification algorithm, 1992.

[8] C. Jones and J. Sedor. Improving the reliability of
freight travel. Public Roads, 70(1), 2006.

[9] E. McCormack and M. E. Hallenbeck. Its devices used
to collect truck data for performance benchmarks.
Transportation Research Record, 1957:43–50, 2006.

[10] N. Meratnia and R. A. d. By. Spatiotemportal
Compression Techniques for Moving Point Objects,
volume 2992. Springer Berlin / Heidelberg, 2004.

[11] J. Muckell, Q. Cao, P. Mackenzie, D. Messier, and
J. Salvo. Toward an intelligent brokerage platform:
Mining backhaul opportunities in telematics data.
Transportation Research Record, 2097:1–8, 2009.

[12] J. Muckell, J.-H. Hwang, C. T. Lawson, and S. S.
Ravi. Algorithms for compressing gps trajectory data:

an empirical evaluation. In Proceedings of the 18th
SIGSPATIAL International Conference on Advances
in Geographic Information Systems, GIS ’10, pages
402–405, New York, NY, USA, 2010. ACM.

[13] M. Potamias, K. Patroumpas, and T. Sellis. Sampling
trajectory streams with spatiotemporal criteria. In
18th International Conference on Scientific and
Statistical Database Management (SSDBM’06), pages
275–284, 2006.

[14] M. Prior-Jones. Satellite Communications Systems
Buyer’s Guide. British Antarctic Survey, 2008.

[15] J. F. Srour and D. Newton. Freight-specific data
derived from intelligent transportation systems:
Potential uses in planning freight improvement
projects. Transportation Research Record, 1957:66–74,
2006.

[16] G. Trajcevski, H. Cao, P. Scheuermanny, O. Wolfsonz,
and D. Vaccaro. On-line data reduction and the
quality of history in moving objects databases. In
Proceedings of the 5th ACM international workshop on
Data engineering for wireless and mobile access,
MobiDE ’06, pages 19–26, New York, NY, USA, 2006.
ACM.

[17] P. van Emde Boas. Preserving order in a forest in less
than logarithmic time. In Proceedings of the 16th
Annual Symposium on Foundations of Computer
Science, pages 75–84, Washington, DC, USA, 1975.
IEEE Computer Society.

[18] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma.
Understanding mobility based on gps data. In
Proceedings of the 10th international conference on
Ubiquitous computing, UbiComp ’08, pages 312–321,
New York, NY, USA, 2008. ACM.

[19] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining
interesting locations and travel sequences from gps
trajectories. In Proceedings of the 18th international
conference on World wide web, WWW ’09, pages
791–800, New York, NY, USA, 2009. ACM.

[20] H. Zhu, J. Su, and O. H. Ibarra. Trajectory queries
and octagons in moving object databases. ACM Press,
2002.

