CSI 436/536
Introduction to Machine Learning

Review of Linear Algebra (1)

Professor Siwei Lyu
Computer Science
University at Albany, State University of New York
Importance of linear algebra

• Linear algebra
 • provides superior notations (algebra)
 • many topics can be understood better with vector-matrix-space idea (e.g., Fourier)
 • has a consistent intuition (geometry)
 • what is true for low dimensional space is usually also true for high dimensional space
 • not usually the case in general
 • computes efficiently (numerical algorithms)
 • Almost all numerical computation requires support of linear algebra
 • LAPACK is the backbone of Matlab, NumPy, R
Algebra

• Fourier transform

\[DFT(FFT): \]
\[X(k) = \sum_{n=0}^{N-1} x(n) \cdot e^{-j \left(\frac{2\pi}{N} \right) n k} \quad (k = 0, 1, \ldots, N-1) \]

\[IDFT(IFFT): \]
\[x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) \cdot e^{j \left(\frac{2\pi}{N} \right) n k} \quad (n = 0, 1, \ldots, N-1) \]

• FT provide eigenvectors for circulant matrix (discrete case) or LTI operator (continuous case)

• proof of the fundamental convolution theorem (and its continuous version) becomes very easy
curse of dimensionality

- sphere inscribed in cube

\[\text{as } d \to \infty. \]

- Gaussian distribution in high dimension

\[\text{as } d \to \infty. \]
Numerical linear algebra

- NLA is behind the majority of numerical procedures for machine learning
 - The majority of ML algorithms are optimization problems [there is a small fraction is about integration instead of optimization]
 - All optimization problems are practically solved as a sequence of quadratic optimization problems
 - All quadratic optimization problems are solved as linear equations or eigenvalues
Overview

• Objects in linear algebra
 • vectors, linear spaces, matrices, linear transforms
• Problems in linear algebra
 • linear equation $Ax = b$
 • eigenvalue equation $Ax = \lambda x$
• Techniques in linear algebra
 • Matrix factorizations: LU decomposition, eigen decomposition, QR decomposition, etc
• Mostly we will work with
 • Symmetric positive (semi)definite matrices
Vernors, space and transforms

- Vectors are list of numbers over a field (real space)
 - Geometrically correspond to points
 - We use column vector by default
 - Vector can add/subtract/scale
- Linear space is the set of vectors closed under addition and scalar product
- Subspace is a subset of a space including zero
- A space can be spanned by a set of vectors
 for $\alpha_1, \cdots, \alpha_k \in \mathbb{R}$, $\sum_{i=1}^k \alpha_i \mathbf{x}_i$
- A linear transform is a mapping between points in two spaces that keeps linearity
linear independence of vectors

- a set of vectors is linear independent if for any \(\vec{u}_i \) is not in \(\text{span}(\vec{u}_1, \ldots, \vec{u}_{i-1}, \vec{u}_{i+1}, \ldots, \vec{u}_n) \)

- A set of bases of a space \(V \) is a set of independent vectors that also span it
 - Canonical basis is the basis that are orthonormal
 - Coordinates are coefficients on basis
 - the max number of vectors that are linearly independent in a space is its dimension

- Dimension of a space may not be the same as the dimension of an individual vector in it
additional structures of space

- distance between two vectors: **metric**
 - metric space
- length of a vector: **norm**
 - norm space
- angle between two vectors: **inner product**
 - inner product space (Hilbert space)
- parallelogram by two vectors: **exterior product**
 - Grassmann space
Vector metrics (distance)

- **L2 (Euclidean) metric**
 \[
 \|x - y\|_2 = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}
 \]

- **L1 (Manhattan) metric**
 \[
 \|x - y\|_1 = \sum_{i=1}^{n} |x_i - y_i|
 \]

- **L∞ (Chebyshev) metric**
 \[
 \|x - y\|_\infty = \max_i |x_i - y_i|
 \]

- **Lp metric (p ≥ 1)**
 \[
 \|x - y\|_p = \left(\sum_{i=1}^{n} (x_i - y_i)^p\right)^{1/p}
 \]

- All metrics satisfy
 - symmetric: \(d(x,y) = d(y,x)\)
 - non-negativity: \(d(x,x) \geq 0\)
 - triangle inequality:
 \[d(x,y) + d(y,z) \geq d(x,z)\]
Norms

• L2 (Euclidean) norm, L1 (Manhattan) norm, L∞ norm, Lp norm (p ≥ 1)

• All norms satisfy
 • non-negativity: |x| ≥ 0
 • triangle inequality: |x| + |y| ≥ |x+y|

• Normalization to unit vectors (w.r.t. to a norm)
 • Projections onto unit spheres (w.r.t. to a norm)

• Given a norm, we can define metric (distance) as the norm of the different vector

• due norm: \(|x|\) = max{\(s^Tx\) | ||s||_p ≤ 1}, L2 is self-dual, L1 is dual of L∞
Vector products

- inner (scalar) product: \((\mathbf{v}, \mathbf{v}) \rightarrow \) a number
 \[\mathbf{x}^T \mathbf{y} = \sum_{i=1}^{n} x_i y_i \]
 - geometrically related with angles
 - Cauchy-Schwartz inequality
 \[|\langle \mathbf{u}, \mathbf{v} \rangle| \leq \|\mathbf{u}\| \|\mathbf{v}\| \]
 - \(\langle \mathbf{u}, \mathbf{v} \rangle = 0 \) iff \(\mathbf{u} \) and \(\mathbf{v} \) orthogonal

- rect (Dirac) product: \((\mathbf{v}, \mathbf{v}) \rightarrow \) a vector

- exterior (cross/wedge) product: \((\mathbf{v}, \mathbf{v}) \rightarrow \) a vector

- outer (tensor) product: \((\mathbf{v}, \mathbf{v}) \rightarrow \) a matrix (actually a tensor)

\[
\mathbf{x} \odot \mathbf{y} = \begin{pmatrix}
x_1 \cdot y_1 \\
x_2 \cdot y_2 \\
\vdots \\
x_n \cdot y_n
\end{pmatrix}
\]

\[
\mathbf{x} \mathbf{y}^T = \begin{pmatrix}
x_1 \cdot y_1 & x_1 \cdot y_2 & \cdots & x_1 \cdot y_m \\
x_2 \cdot y_1 & x_2 \cdot y_2 & \cdots & x_2 \cdot y_m \\
\vdots & \vdots & \ddots & \vdots \\
x_n \cdot y_1 & x_n \cdot y_2 & \cdots & x_n \cdot y_m
\end{pmatrix}
\]
matrix

- matrix is 2D table of numbers
 - all matrices of the same dim form a vector space
- the transpose of a matrix A, denoted A^\top, is the matrix whose (i,j) entry equals the (j,i) entry of A
- Matrix multiplication
- non communicative multiplication, $AB \neq BA$ usually

\[
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{bmatrix}
\times
\begin{bmatrix}
7 & 8 \\
9 & 10 \\
11 & 12
\end{bmatrix} =
\begin{bmatrix}
58
\end{bmatrix}
\]
Matrix multiplication

- as outer product of “inner products”

\[
\begin{pmatrix}
-a_1^T & - \\
-a_2^T & - \\
-a_3^T & - \\
\end{pmatrix}
\begin{pmatrix}
b_1 & b_2 & b_3 \\
\end{pmatrix}
=
\begin{pmatrix}
a_1^T b_1 & a_1^T b_2 & a_1^T b_3 \\
a_2^T b_1 & a_2^T b_2 & a_2^T b_3 \\
a_3^T b_1 & a_3^T b_2 & a_3^T b_3 \\
\end{pmatrix}
\]

- as inner product of “outer products”

\[
\begin{pmatrix}
b_1 & b_2 & b_3 \\
\end{pmatrix}
\begin{pmatrix}
-a_1^T & - \\
-a_2^T & - \\
-a_3^T & - \\
\end{pmatrix}
= b_1 a_1^T + b_2 a_2^T + b_3 a_3^T
Some special matrices

• Square and rectangular matrices
• Diagonal and identity matrices
 \[
 \begin{pmatrix}
 1 & 0 \\
 0 & 4
 \end{pmatrix}
 \quad \begin{pmatrix}
 1 & 0 \\
 0 & 1
 \end{pmatrix}
 \]
• Upper and lower triangular matrices
 \[
 \begin{pmatrix}
 1 & 0 \\
 2 & 4
 \end{pmatrix}
 \quad \begin{pmatrix}
 1 & 2 \\
 0 & 4
 \end{pmatrix}
 \]
• Symmetric matrices \(A^T = A\)
• skew-symmetric matrices \(A^T = -A\)
• Matrix inverse \(A^{-1}A = AA^{-1} = I\)
• orthogonal matrices: \(A^TA = AA^T = I\), or \(A^T = A^{-1}\)
Solving linear equations

• The most important problem in LA is solving the linear equation: $Ax = b$, b is a known vector (dim n), x is unknown vector (dim m)

• A is a matrix (dim n x m): collection of m vectors

\[
A = \begin{pmatrix}
| & & & | \\
| a_1 & a_2 & \cdots & a_m | \\
| & & & |
\end{pmatrix} = \text{col}(a_1a_2\cdots, a_m)
\]

• Ax represents all vectors in the **column space** of A

\[Ax = x_1a_1 + x_2a_2 + \cdots + x_ma_m\]

• $Ax = 0$ is the **null space** of A, with $x = 0$ always in it

• Column space determines the existence of the solution, null space determines the uniqueness of the solution
Geometric interpretation

• To solve $Ax = b$ is equivalent to find a representation of b in the column space of A

$$Ax = x_1a_1 + x_2a_2 + \cdots + x_m a_m = b$$

• If b is in $\text{col}(A)$, solution exists

• If $\text{null}(A) = \{0\}$, solution is unique
Solve $Ax = b$

- **case 1:** matrix A is square and full ranked
 $n = m$, # of equations = # of unknowns
 \Rightarrow complete problem \Rightarrow unique solution

- **case 2:** matrix X is tall & thin
 $n > m$, # of equations > # of unknowns
 \Rightarrow over-complete problem \Rightarrow no solution

- **case 3:** matrix A is short & fat
 $n < m$, # of equations < # of unknowns
 \Rightarrow under-complete problem \Rightarrow non-unique solution
matrix inverse

- for **square matrix** A, if $\det(A) \neq 0$, then A^{-1} is defined as the matrix satisfying $A^{-1}A = AA^{-1} = I$
- matrix A is invertible, otherwise, it is singular
- For a 2×2 matrix, inverses can be computed as

$$B = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \quad \text{If } AD - BC \neq 0, \text{ then } B \text{ has an inverse, denoted } B^{-1}$$

$$B^{-1} = \frac{1}{AD - BC} \begin{bmatrix} D & -B \\ -C & A \end{bmatrix}$$

- for **rectangular matrix** A
 - its **left** Moore-Penrose pseudo inverse $(A^TA)^{-1}A^T$
 - its **right** Moore-Penrose pseudo inverse $A^T(AA^T)^{-1}$
Matrix trace & determinant

• trace
 • property: \(\text{tr}(AB) = \text{tr}(BA^T) \)
• determinant
 • computation involves Levi-Civita tensor

\[
\begin{vmatrix}
3 & 8 & 5 \\
6 & -2 & 7 \\
3 & 4 & 1 \\
\end{vmatrix}
\]

\[\text{trace} = 3 + (-2) + 1 = 2\]

\[
\begin{bmatrix}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3 \\
\end{bmatrix}
\]

\[\det A = (a_1 b_2 c_3 + b_1 c_2 a_3 + c_1 a_2 b_3) - (a_3 b_2 c_1 + b_3 c_2 a_1 + c_3 a_2 b_1)\]

• \(\det(aA) = a^n \det(A) \), \(\det(AB) = \det(A) \det(B) \), \(\det(A^{-1}) = \det(A)^{-1} \)
• A not invertible, then \(\det(A) = 0 \), and vice versa
Solve $Ax = b$ using matrix inverse

- for square matrix A, if $\det(A) \neq 0$, then A^{-1} is defined as the matrix satisfying $A^{-1}A = AA^{-1} = I$
- matrix A is invertible, otherwise, it is singular

\[
\begin{align*}
2x + 3y &= 6 \\
4x + 9y &= 15
\end{align*}
\Rightarrow \begin{bmatrix} 2 & 3 \\ 4 & 9 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 6 \\ 15 \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = A^{-1} \begin{bmatrix} 6 \\ 15 \end{bmatrix}
\]

- Why is this not a good way to solve linear equation
 - Running time is $O(n^3)$
 - Numerically unstable
 - Lose of good structure in A, e.g., sparsity
- On modern computers, for matrix smaller than 1000 dimension, direct inverse is feasible.
Solve $Ax = b$ using decomposition

- We can decompose a square matrix $A = LDU$, where L and U are a lower triangular and upper matrices with diagonal 1, and D is a diagonal matrix with pivots.
- If A is not invertible, then one of the pivot is zero.
- Solving $Ax = b$ becomes $LDUx = b$, then two steps $Ly = b$ (forward elimination), $DUx = y$ (backward elimination).
 - This is known as Gaussian elimination.
 - Solution time is $O(n^2)$, and numerically it is very stable (caveat: if the pivots are chosen right).
 - It is numerically stable (only divide by pivot).
Projection

- for col(X) as a 2D subspace of the 3D space
- least squares problem is equivalent to finding the projection of vector y in col(X)

The transform $\Pi_X(y)$ is known as the projection of y on X. The geometrical interpretation of $\Pi_X(y)$ is that it is the vector in col(X) that has the minimum ℓ_2 distance to y.

$$\Pi_X(y) = X(X^TX)^{-1}X^Ty$$

- idempotent $\Pi_X(x) = x$, for $x \in \text{col}(X)$
- orthogonality $y - \Pi_X(y) \perp X$
- Householder transform mirror reflection
 $$H(y) = 2 \ \Pi_X(y) - y$$
Positive definite matrix

- A is a square matrix, for any \(x \neq 0 \), we form a quadratic form using A and x, \(x^TAx \), then if:
 - \(x^TAx > 0 \), A is a positive definite matrix
 - \(x^TAx < 0 \), A is a negative definite matrix
 - \(x^TAx \geq 0 \), A is a positive semi-definite matrix
 - \(x^TAx \leq 0 \), A is a negative semi-definite matrix
 - otherwise, A is indefinite

- Geometrical interpretation
- Symmetric positive (semi)definite matrices play a very important role in machine learning and optimization
Matrix inversion lemma

- Woodsbury identity: when A and D are invertible
 \[(A + BDC^T)^{-1} = A^{-1} - A^{-1}C(D^{-1} + CA^{-1}B^T)^{-1}B^TA^{-1}\]
- Proof: multiply the matrix on both sides
- important special case
 - $B=C=z$, a vector, $D=I$
 \[(A + zz^T)^{-1} = A^{-1} - (A^{-1}zz^TA^{-1})/(1 + z^TA^{-1}z)\]
 - $B=-C=z$, a vector, $D=I$
 \[(A - zz^T)^{-1} = A^{-1} + (A^{-1}zz^TA^{-1})/(1 - z^TA^{-1}z)\]
- caching A^{-1} and computing the inversion recursively, typical inversion will take $O(n^3)$, while this special case it is $O(n)$