Logistic regression

Professor Siwei Lyu
Computer Science
University at Albany, State University of New York
Logistic regression: binary classification

- Given a set of training data \((x_1, y_1), \cdots, (x_n, y_n)\), with \(x_i \in \mathbb{R}^d\) and \(y_i \in \{-1, +1\}\), we aim to find a linear classifier with parameter \((w, b)\) in the form of \(\hat{y} = \text{sign}(w^T x + b)\)

- The choice of binary label is arbitrary, for any classifier outputs \(\pm 1\), we can convert it to the output of \(\{0,1\}\), and vice versa: \(\frac{y + 1}{2} : \{-1, +1\} \mapsto \{0,1\}\), and \(2y - 1 : \{0,1\} \mapsto \{-1, +1\}\)

- We usually use homogeneous coordinates to eliminate the constant \(x \mapsto (x, 1)^T\), \(w \mapsto (w, b)^T\), and we work with \(\hat{y} = \text{sign}(w^T x)\), and we can check \(yw^T x\)
Training logistic regression

- Logistic loss function: \(\min_w \sum_{i=1}^{n} \log(1 + e^{-y_i w^T x_i}) \)

 - Individual loss function \(\ell(x, y; w) = \log(1 + e^{-yw^T x}) \)

 - \(yw^T x > 0 \): predicted label and ground truth have the same sign, \(\ell(x, y; w) \leq \log 2 \)

 - \(yw^T x < 0 \): predicted label and ground truth have different sign, \(\ell(x, y; w) \geq \log 2 \)

 - Logistic function \(h(z) = \log(1 + e^{-z}) \)
Optimization

- \(h(z) = \log(1 + e^{-z}) \),
- \(h'(z) = -e^{-z}(1 + e^{-z})^{-1} < 0 \), function decreasing
- Define sigmoid function \(\sigma(z) = (1 + e^{-z})^{-1} \)

- therefore, \(h'(z) = \sigma(z) - 1 \), and also
 \(h''(z) = \sigma'(z) = (1 - \sigma(z))\sigma(z) > 0 \), so this function is a convex function
Gradient & Hessian matrix

- Objective function \(L(w) = \sum_{i=1}^{n} h(y_i w^T x_i) \)
 - \(\nabla L(w) = \sum_{i=1}^{n} h'(y_i w^T x_i) y_i x_i = \sum_{i=1}^{n} (\sigma(y_i w^T x_i) - 1)y_i x_i \)
 - \(\nabla^2 L(w) = \sum_{i=1}^{n} h''(y_i w^T x_i) y_i^2 x_i x_i^\top = \sum_{i=1}^{n} h''(y_i w^T x_i) x_i x_i^\top \)
 - \(\nabla^2 L(w) = \sum_{i=1}^{n} \sigma(y_i w^T x_i)(1 - \sigma(y_i w^T x_i)) x_i x_i^\top \)

- Hessian matrix is positive definite, so the objective function is convex and affords a global optimum

- Optimization procedure
 - Gradient descent \(w^{(t+1)} \leftarrow w^{(t)} - \eta_t \nabla L(w^{(t)}) \)
 - Newton’s method
 \(w^{(t+1)} \leftarrow w^{(t)} - \eta_t (\nabla^2 L(w^{(t)}))^{-1} \nabla L(w^{(t)}) \)
 - \(\eta_t \) is properly chosen step size (back-tracking)
Interpretation

- \(\Pr(y = 1 \mid x) = \sigma(yw^T x) \), i.e., probability of output label is +1 if input is \(x \) and \(\Pr(y = -1 \mid x) = 1 - \sigma(yw^T x) \), i.e., probability of output label is -1 if input is \(x \).

- Cross-entropy loss:
 \[
 - \sum_i \left(\frac{1 + y_i}{2} \log \Pr(y_i = 1 \mid x_i) + \frac{1 - y_i}{2} \log \Pr(y_i = -1 \mid x_i) \right)
 \]
Stochastic gradient method

- Gradient descent method
 - Compute gradient $\nabla L(w) = \sum_{i=1}^{n} h'(y_i w^T x_i)y_i x_i$
 - Update $w^{(t+1)} \leftarrow w^{(t)} - \eta_t \sum_{i=1}^{n} h'(y_i w^{(t)T} x_i)y_i x_i$
 - η_t is properly chosen step size (back-tracking)
- Stochastic gradient method: update one data point a time
 $w^{(t+1)} \leftarrow w^{(t)} - \eta_t h'(y_i w^{(t)T} x_i)y_i x_i$
 - It applies under the following situations
 - Dataset is too large to hold in memory
 - Streaming data, samples come one at a time
Stochastic gradient method

- Standard model is to assume data sample is selected randomly
- SG is not a descent method,
 - convergence is guaranteed under convex objective function, convergence is very slow
- Extremely robust

Motivation for Hybrid Methods for Smooth Problems

Stochastic vs. deterministic methods

- **Goal**: best of both worlds: linear rate with $O(1)$ iteration cost

Convex Functions

Smooth Optimization

Non-Smooth Optimization

Stochastic Optimization

Stochastic gradient method uses the iteration $x + d$, where d is an unbiased estimator of $r_f(x)$, so $E[d] = r_f(x)$.

Often using averaging over x or d.

As in subgradient method, we require $d > 0$ (but better in practice with constant step size).

Batch gradient descent:

$\mathbf{\theta}_t = \mathbf{\theta}_{t-1} - \frac{\gamma}{n} \sum_{i=1}^n f_i(\mathbf{\theta}_{t-1})$

Stochastic gradient descent:

$\mathbf{\theta}_t = \mathbf{\theta}_{t-1} - \frac{\gamma}{n} \sum_{i=1}^n f_i(\mathbf{\theta}_{t-1})$

Minimizing $g(\mathbf{\theta}) = \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{\theta})$ with $f_i(\mathbf{\theta}) = y_i \mathbf{\theta} - \langle x_i, \mathbf{\theta} \rangle + \mu(\mathbf{\theta})$.

Batch gradient descent:

$\mathbf{\theta}_t = \mathbf{\theta}_t - \frac{\gamma}{n} \sum_{i=1}^n f_i(\mathbf{\theta}_t)$

Stochastic gradient descent:

$\mathbf{\theta}_t = \mathbf{\theta}_t - \frac{\gamma}{n} \sum_{i=1}^n f_i(\mathbf{\theta}_t)$

$\mathbf{\theta}_t = \mathbf{\theta}_t - \frac{\gamma}{n} \sum_{i=1}^n f_i(\mathbf{\theta}_t)$

$\mathbf{\theta}_t = \mathbf{\theta}_t - \frac{\gamma}{n} \sum_{i=1}^n f_i(\mathbf{\theta}_t)$

$\mathbf{\theta}_t = \mathbf{\theta}_t - \frac{\gamma}{n} \sum_{i=1}^n f_i(\mathbf{\theta}_t)$