CSI 436/536
Introduction to Machine Learning

Dimension reduction: MDS & ISOMAP

Professor Siwei Lyu
Computer Science
University at Albany, State University of New York
Dimension reduction

• For an input high dimensional data source $x \in \mathbb{R}^d$, find a low dimensional representation $\tilde{x} \in \mathbb{R}^m$ with $m \ll d$ that “best” approximate the original data

• Determine a pair of transforms $\phi : \mathbb{R}^d \mapsto \mathbb{R}^m$ (encoder) and $\psi : \mathbb{R}^m \mapsto \mathbb{R}^d$ (decoder) such that $\tilde{x} = \phi(x)$, and $L(x - \psi(\tilde{x})) = L(x - \psi(\phi(x)))$ is minimized, where L is a loss function

• Dimension reduction is an example of unsupervised learning problem (self-supervised learning)

• The dimensionality constraint is served as an \textit{information bottleneck}, filtering out less relevant information as discarded dimension
Nonlinear dimension reduction

- When we choose the encoder and decoder as nonlinear functions, it is nonlinear dimension reduction.
- All data in the d-dimensional space is fully represented by points in an m-dimensional space non-linearly embedded in the d-dimensional space.
- A low dimensional subspace non-linearly embedded in the high dimensional space can be modeled as a manifold, nonlinear dimension reduction aims to recover the m-dimensional subspace.
Examples of nonlinear manifolds

• Consider all images of number 4
 • Each image is treated as a point in a high-dimensional space as vectorized pixel values
 • All images of number 4 with different rotation angles are related by a smooth path, corresponding to different angles
• If we recover this intrinsic low dimensional manifold, it helps to understand the structure in this dataset
 • Synthesis: generate data of given configuration
 • denoising/projection: find closest examples on the manifold close to an input
Manifold

- A mathematical (differential geometric) entity that is locally described with linear space (tangent space)
 - Manifold is smooth (differentiable)
 - At the adjacency of any point on the manifold, it can be closely approximated by a linear space (tangent space)
- Globally it has a nonlinear structure
Manifold

• The curve corresponding to the shortest distance between any two points on a manifold is known as the **geodesic** curve
 - In a linear space, the geodesic is a straight line
 - In curved manifold, the geodesic is usually nonlinear and different from a straight-line in the ambient space
 - ex. The great arc on the surface of the earth
 - If we can recover the correct geodesic distance between any pair of points, we can recover the nonlinear manifold
 - The algorithm is known as ISOMAP [Tenebaum et.al., 2005]
ISOMAP

- ISOMAP assume a set of high dimensional data points are determined by a low dimensional nonlinear manifold.
- The basic idea of ISOMAP is to estimate the geodesic distance from a finite dataset.
- Then from all pair geodesic distance we can obtain the Gram matrix, and further recover the low dimensional data representation.
Estimating geodesic distances

- Construct a graph using the top k-nearest neighbors of every data point in the set [k is a hyper-parameter]
- The weight of each edge is the Euclidean distance between the two points
- Instead of using their direct Euclidean distance, we measure the distance between any two points using the shortest path between them
- This gives an approximation to the geodesic distance of the two points on the surface of the manifold
Floyd algorithm

- The Floyd algorithm finds the shortest paths between any pair of nodes in a weighted undirected graph with a running time of $O(n^3)$, for n being the total number of nodes in a graph

 - a dynamic programming algorithm

Initialize
for $k=1$ to n
 for $i=1$ to n
 for $j=1$ to n
 if $\text{Dist}[i,j] > \text{Dist}[i,k] + \text{Dist}[k,j]$
 then $\text{Dist}[i,j] \leftarrow \text{Dist}[i,k] + \text{Dist}[k,j]$

- The result is an n-by-n matrix containing pairwise distances for the nodes on the graph

 - This matrix is known as the *distance matrix*
MDS

• The geodesic distance between two points on the manifold corresponds to the Euclidean distance between the two points on the “flattened” manifold

• We can recover the coordinates of the points on the manifold using such pairwise distances if we assume data on the flattened manifold is centered

 • $X_1 = 0$, so $G_1 = X^TX_1 = 0$

• we use the squared distance matrix to obtain low dimensional representation, this process is known as the multi-dimensional scaling (MDS) algorithm
From distance matrix to Gram matrix

- Distance matrix: $D_{ij} = \text{squared Euclidean distance between two vectors } \mathbf{x}_i \text{ and } \mathbf{x}_j$
- Gram matrix: $G = \mathbf{X}^T \mathbf{X}$, or $G_{ij} = \mathbf{x}_i^T \mathbf{x}_j$, inner products between two vectors \mathbf{x}_i and \mathbf{x}_j
- Relation between distance matrix and Gram matrix
 \[D = \text{diag}(G) 1^T + 1 \text{diag}(G)^T - 2G \]
- Then we can obtain
 \[G = -\frac{1}{2} \left(I - \frac{1}{n} 11^T \right) D \left(I - \frac{1}{n} 11^T \right) \]
- this procedure is called double centering, i.e., it centers a matrix across both rows and columns
Derivations

- First, \(D_{ij} = (x_i - x_j)^T(x_i - x_j) = x_i^T x_i - 2x_i^T x_j + x_j^T x_j \), or \(D_{ij} = G_{ii} - 2G_{ij} + G_{jj} \), put in the form of matrices, we get

\[
D = \text{diag}(G)1^T + 1\text{diag}(G)^T - 2G \quad \text{(*)}
\]

- Multiply both sides by vector 1 and assume \(G1 = 0 \) (centered data), we have

\[
D1 = \text{diag}(G)1^T1 + 1\text{diag}(G)^T1 = nd\text{diag}(G) + \text{diag}(G)^T11
\]

- Multiply by vector 1 on the left \(1^TD1 = 2n1^T\text{diag}(G) \)

- Put this back

\[
D1 = \text{diag}(G)1^T1 + 1\text{diag}(G)^T1 = nd\text{diag}(G) + \frac{1}{2n}1^TD11
\]

- Now we have \(\text{diag}(G) = \frac{1}{n}D1 - \frac{1}{2n^2}1^TD11 \) and putting this back to (*) and with some algebraic manipulation shows the result
Obtaining low dimensional representation

• With the Gram matrix, we aim to further recover the low dimensional representation

• $G = X^T X$ is a symmetric and PSD matrix, so according to the spectral theorem, it can be decomposed as $G = U \Gamma U^T$, where U is an orthonormal matrix, Γ is a diagonal matrix containing nonnegative eigenvalues of G

• We can then recover data representation X by decomposing G as $G = U \Gamma^{\frac{1}{2}} \Gamma^{\frac{1}{2}} U^T$, so setting $X = \Gamma^{\frac{1}{2}} U^T$, we get data low dimensional representation

 • It is not unique, there are many similar decompositions

• We obtain a low dimensional representation of the data

• New data points can be projected on the manifold by interpolation
ISOMAP summary

- advantage: theoretical guarantee of performance
- drawback: sensitivity to hyper-parameter choices (degree of neighbors)