CSI 436/536
Introduction to Machine Learning

SVM theory

Professor Siwei Lyu
Computer Science
University at Albany, State University of New York
Support vector machines

• Support vector machines (SVM) is one of the most widely used ML algorithms today
 • Theoretical foundation (statistical learning theory) developed in 1960s by Vapnik & Chervonenkis
 • Algorithm first introduced by Vapnik et.al. in 1992
 • Aims to replace NN as a more provable method to alleviate overfitting
 • Many successful applications (computer vision, text, bioinformatics)
Key components of SVM

• Large-margin learning
 • theoretical guarantee of good performance in generalization
 • Efficiency in model: reducing training data to SVs

• Quadratic programming optimization
 • efficient optimization and unique global solution

• The “Kernel tricks”
 • extension to nonlinear prediction functions and models without explicit feature mapping
SVM for binary classification

- Characteristics
 - training to maximize classification *margin*
 - decision function specified by a subset of training examples known as the *support vectors*
- we study the following cases
 - Linear SVM: separable case
 - Linear SVM: non-separable case
 - Nonlinear SVM
Linear SVM: separable case

- Uses linear prediction function $f(x, \{w, b\}) = \text{sign}(w \cdot x + b)$.
- Assume separable data:
 - There exist a linear function that can perfectly separate the two classes of data.
 - If there is one linear function that can separate the two classes of data, then there are infinite number of linear functions that can do the same (Hausdorff separation theorem).
- The question is: which one is the optimal.
- This is an ill-posed problem.
Linear SVM: separable case

- choosing an optimal linear classifier for separable training data is an ill-posed problem
- Extra requirement: the classifier needs to generalize to unseen data
- Idea of SVM
 - Find linear classifier with the maximal classification margin
 - Margin measures the size of the open space between the two classes given a classifier
Why seek larger-margin?

- Large margin gives less chance for future errors
- Large margin guarantees generalization of the learned model
Large margin and generalization

- We can try to learn $f(x, \alpha)$ by choosing a function that performs well on training data:

$$R_{emp}(\alpha) = \frac{1}{m} \sum_{i=1}^{m} \ell(f(x_i, \alpha), y_i) = \text{Training Error}$$

where ℓ is the zero-one loss function, $\ell(y, \hat{y}) = 1$, if $y \neq \hat{y}$, and 0 otherwise. R_{emp} is called the empirical risk.

- By doing this we are trying to minimize the overall risk:

$$R(\alpha) = \int \ell(f(x, \alpha), y) dP(x, y) = \text{Test Error}$$

where $P(x,y)$ is the (unknown) joint distribution function of x and y.
No free lunch theorem

- training data alone are not enough to choose which function is better
- if \(f(x) \) allows all function from \(X \) to \(\{\pm 1\} \)

Training set \((x_1, y_1), \ldots, (x_m, y_m) \in X \times \{\pm 1\} \)

Test set \(\bar{x}_1, \ldots, \bar{x}_m \in X \),

such that the two sets do not intersect.

For any \(f \) there exists \(f^* \):

1. \(f^*(x_i) = f(x_i) \) for all \(i \)
2. \(f^*(x_j) \neq f(x_j) \) for all \(j \)
Controlling the flexibility

• NFL theorem says that we cannot use the whole function family for learning as it will easily lead to overfitting

• When all things equal, we should choose a model family that is not “too flexible”

• How do we quantify a model family’s flexibility
Shattering

- A decision function mapping $X \rightarrow \{-1,+1\}$ limited to a training set of m samples is equivalent to a complete bipartite graph.
 - One set of nodes correspond to m training data.
 - The other correspond to $\{-1,+1\}$ label.
- The total number of such mapping is 2^m.
- A function family shatters a data set means that all such mappings can be obtained from one member from that family.
The VC dimension

- The Vapnik-Chervonenkis (VC) dimension
 - A combinatorial entity controlling the flexibility of a function family, the more phenomena explained by f, the higher the VC-dim
 - It is the *maximum number* of points that can be shattered in all possible ways by a member of the function family

Lines

Circles
Some VC-dims

• For a finite family, VC-dim(H) ≤ log_2|H|
• hyper-plane in d-dims space has VC-dim d+1
• Neural network with n nodes and E edges has VC-dim O(nE)
• Norm-limited hyper-planes

Consider hyperplanes \((w \cdot x) = 0\) where \(w\) is normalized w.r.t a set of points \(X^*\) such that: \(\min_i |w \cdot x_i| = 1\).

The set of decision functions \(f_w(x) = \text{sign}(w \cdot x)\) defined on \(X^*\) such that \(||w|| \leq A\) has a VC dimension satisfying

\[
h \leq R^2 A^2.
\]

where \(R\) is the radius of the smallest sphere around the origin containing \(X^*\).
VC-dim and generalization

- Vapnik & Chervonenkis in the 1960s showed that
 - For any function family with VC-dim \(\leq h \)
 - For any training set of size \(m \)
 - For any number \(\eta \in (0,1) \), with probability larger than \(1-\eta \), we have

\[
R(\alpha) \leq R_{emp}(\alpha) + \sqrt{\frac{h \left(\log \left(\frac{2m}{h} + 1 \right) - \log \left(\frac{\eta}{4} \right) \right)}{m}}
\]

or simply, with high probability,

\[
\text{Test Error} \leq \text{Training Error} + \text{Complexity of set of Models}
\]
Interpreting the inequality

- It is probabilistic: so there is a chance, albeit small, that it does not hold true
- It is a bound: so even we minimize the RHS, the true risk may still be large
- It is for a family of functions, so it is not really that useful for individual model
- It works for all data distributions, so it may not give the best on the data we interested
- Its asymptotic behavior is good but not useful
How to understand this

- With high probability, we have \(\text{test error} \leq \text{training error} + \text{model complexity}\)
 a high capacity set of functions get low training error but may ”overfit”

- a simple set of models have low complexity, but will get high training error ”under-fit”

- We can understand it as \(\text{test error} \leq \text{training error} + \text{VC-dimension}\)
Large margin \implies low VC dim

- For most models, we cannot compute VC-dim, but for linear classifiers $w^T x$ we can bound its VC-dim with the norm of w.

- The norm of w is related with classification margin.
Large margin -> low VC dim

- Large margin -> upper bound norm of w -> related with the VC dim of norm bounded linear functions

Note:

\[
<w, x_1> + b = +1 \\
<w, x_2> + b = -1 \\
\Rightarrow <w, (x_1 - x_2)> = 2 \\
\Rightarrow \frac{w}{||w||}, (x_1 - x_2) = \frac{2}{||w||}
\]
From low complexity to larger margin

- Large margin \rightarrow upper bound norm of w \rightarrow related with the VC dim of norm bounded linear functions
- Using the VC-inequality, we would like to minimize the upper-bound of test error
 \[\text{test error} \leq \text{training error} + \text{VC-dimension} \]
- For linear model, we use the result that for the family of linear functions determined by w, $f(x) = w^T x + b$ (varying b), VC-dim $< O(||w||)$, so for linear model, we have (roughly)
 \[\text{test error} \leq \text{training error} + ||w||^2 \]
That function before was a little difficult to minimize because of the step function in $\ell(y, \hat{y})$ (either 1 or 0).

Let’s assume we can separate the data perfectly. Then we can optimize the following:

Minimize $||w||^2$, subject to:

$$(w \cdot x_i + b) \geq 1, \text{ if } y_i = 1$$

$$(w \cdot x_i + b) \leq -1, \text{ if } y_i = -1$$

The last two constraints can be compacted to:

$$y_i(w \cdot x_i + b) \geq 1$$
Linear SVM: non-separable case

- Introducing slack variables to measure the error

- SVs are those data points that support the hyperplane and in the margin area
Linear SVM: non-separable case

Minimize: w and b

$$||w||^2 + C \sum_{i=1}^{m} \xi_i$$

subject to:

$$y_i (w \cdot x_i + b) \geq 1 - \xi_i, \quad \xi_i \geq 0$$

This is just the same as the original objective:

$$C \frac{1}{m} \sum_{i=1}^{m} \ell(w \cdot x_i + b, y_i) + ||w||^2$$

except ℓ is no longer the zero-one loss, but is called the ”hinge-loss”:

$$\ell(y, \hat{y}) = \max(0, 1 - y\hat{y}).$$

This is still a quadratic program!
Why hinge loss

- We can use other types of losses

\[
C \frac{1}{m} \sum_{i=1}^{m} \ell(w \cdot x_i + b, y_i) + \|w\|^2
\]

- If we use least squares loss, this is Tikhonov-regularized binary classification

- We can also use logistic loss, then it is Tikhonov-regularized logistic regression

- Hinge loss gives sparsity

 - Optimal solution is going to be a linear combination of training data, hinge loss makes sure we only need a small set of them

- Important for nonlinear SVM