CSI 436/536
Introduction to Machine Learning

SVM algorithm

Professor Siwei Lyu
Computer Science
University at Albany, State University of New York
Solving SVM: separable case

• SVM in separable case is to

\[
\text{Minimize } \|w\|^2, \text{ subject to: } y_i (w \cdot x_i + b) \geq 1
\]

• How do we solve this quadratic programming problem numerically?
constrained optimization

- to solve $\min_x f(x)$ s.t., $g(x) \leq 0$
 - general idea: convert to unconstrained problem
 - three types of general methods
 - the barrier method, e.g.,
 $\min_x f(x) + \log(-g(x))$: always feasible
 - the penalty method, e.g.,
 $\min_x f(x) + \max(0, g(x))$: can be infeasible
 - primal-dual method, using Lagrangian duality
constrained optimization

• Lagrangian and Lagrangian multipliers for the **primal problem**
 \[
 \min_x f(x) \text{ s.t., } g(x) \leq 0
 \]
• introduce multiplier \(0 \leq \lambda \) and form Lagrangian
 \[
 L(x, \lambda) = f(x) + \lambda g(x)
 \]
• for any feasible \(x \), \(L(x,\lambda) \leq f(x) \), i.e., a lower bound

• dual problem
 • first, find \(x^*(\lambda) = \arg\min_x L(x,\lambda) \)
 • dual function: \(h(\lambda) = L(x^*(\lambda),\lambda) \) is **concave**
 • \(\max_{\lambda} h(\lambda), \text{ s.t., } 0 \leq \lambda \) is the **dual problem**
weak & strong duality

- \(f^* \) = optimal value of the primal problem
 \[
 \min_x f(x) \text{ s.t., } g(x) \leq 0
 \]

- \(h^* \) = optimal value of the dual problem
 \[
 \max_\lambda h(\lambda), \text{ s.t., } 0 \leq \lambda
 \]

- with very loose conditions, we always have
 \[h^* \leq f^* \]
 this is known as the weak duality

- with more assumptions (e.g., primal problem is convex), we have
 \[h^* = f^* \]
 this is known as the strong duality

- many problem can be solved easily in the dual form
KKT condition

• Karush-Kuhn-Tucker condition
 • gradient of Lagrangian has to be zero
 \[\nabla f(x) + \lambda \nabla g(x) = 0 \]
 • primal feasibility: \(g(x) \leq 0 \)
 • dual feasibility: \(\lambda \geq 0 \)
 • complementary slackness: \(\lambda g(x) = 0 \)
• counterpart of the optimal condition of \(\nabla f(x) = 0 \) for unconstrained optimization
understanding the KKT condition

- Two cases

- Case 1: optimal solution inside feasible region
 \[\nabla f(x) = 0, \lambda = 0, g(x) < 0 \]

- Case 2: optimal solution on boundary
 \[\nabla f(x) \propto -\nabla g(x), \lambda > 0, g(x) = 0 \]
understanding the KKT condition

- optimal solution
 - inside the feasible region
 - gradient of objective function is zero
 - on the boundary of the feasible region
 - gradient of objective function is orthogonal to the linear constraint form the boundary
- which case is indicated by the Lagrangian multiplier $\lambda \geq 0$
 - $\lambda = 0$: inside feasible region
 - $\lambda > 0$: on the boundary of feasible region
Example

- \(\min_{x,y} f(x,y) = x^2 + 2y^2 \), s.t., \(x+y \geq 1 \)
solving SVM: separable case

Primary problem

$$\min_{w, b} \frac{1}{2} \|w\|^2$$

s.t. $$y_i(w^T x_i + b) \geq 1$$ for $$i = 1, \ldots, n$$

Introducing multipliers $$\alpha_i \geq 0$$ and forming Lagrangian

$$L(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{n} \alpha_i y_i(w^T x_i + b) + \sum_{i=1}^{n} \alpha_i.$$
solving SVM: separable case

• We can solve the primary problem directly
 • Solution always exist when data are separable
 • But some elegant geometry is buried in the solution
• We instead solve the dual problem after removing primal variables because
 • KKT condition requires many multipliers to take zero values
 • training examples whose corresponding multiplier take nonzero values are the support vectors
solving SVM: separable case

Eliminate primal variables w and b

\[\frac{\partial L(w, b, \alpha)}{\partial w} = w - \sum_{i=1}^{n} \alpha_i y_i x_i = 0 \]
\[\frac{\partial L(w, b, \alpha)}{\partial b} = \sum_{i=1}^{n} \alpha_i y_i = 0 \]

From the first condition, we have $w = \sum_{i=1}^{n} \alpha_i y_i x_i$.
From the second condition, we have $\sum_{i=1}^{n} \alpha_i y_i = 0$.
Complementary slackness (from KKT condition)
\[\alpha_i (y_i (w^T x_i + b) - 1) = 0. \]
solving SVM: separable case

Eliminate primal variables \mathbf{w} and b with $\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$ and $\sum_{i=1}^{n} \alpha_i y_i = 0$, the dual problem becomes

$$
\max_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j
$$

s.t. $\sum_{i=1}^{n} \alpha_i y_i = 0, \alpha_i \geq 0.$
Support vectors

Moving a support vector moves the decision boundary

Moving the other vectors has no effect

Maximizing the margin

We want a classifier with as big margin as possible. Recall the distance from a point \((x_0, y_0)\) to a line:

\[
Ax + By + c = 0 \quad \text{is} \quad \frac{|Ax_0 + By_0 + c|}{\sqrt{A^2 + B^2}}
\]

The distance between \(H\) and \(H_1\) is:

\[
\frac{|w^T x_i + b|}{||w||} = \frac{1}{||w||}
\]

The distance between \(H_1\) and \(H_2\) is: \(2/||w||\)

In order to maximize the margin, we need to minimize \(||w||\). With the condition that there are no datapoints between \(H_1\) and \(H_2\):

\[
x_i \begin{cases} \leq 0 & \text{when } y_i = +1 \\ \geq 1 & \text{when } y_i = -1 \end{cases}
\]

Can be combined into:

\[
y_i (w^T x + b) \geq 1
\]
solving SVM: non-separable case

Minimize:

$$\|w\|^2 + C \sum_{i=1}^{m} \xi_i$$

subject to:

$$y_i (w \cdot x_i + b) \geq 1 - \xi_i, \quad \xi_i \geq 0$$

Dual form:

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j$$

s.t. $$\sum_{i=1}^{n} \alpha_i y_i = 0, \quad 0 \leq \alpha_i \leq C$$
Solving SVM

- The quadratic programming problem for either separable and non-separable cases can be solved efficiently using off-the-shelf packages.
- We introduce however a particularly simple optimization scheme known as sequential minimization optimization (SMO) based on the paper of John Platt in 1996.
 - This is the SVM algorithm I implemented in C.
- Idea: coordinate descent.
SMO for SVM

\[
\begin{align*}
\max_\alpha & \quad \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j \\
\text{s.t.} & \quad \sum_{i=1}^{n} \alpha_i y_i = 0, \quad 0 \leq \alpha_i \leq C
\end{align*}
\]

- Coordinate ascent: updating each element individually to reduce the optimization problem to a sequence of low-dim optimization problems
- however, for SVM, this does not work [Why?]
SMO for SVM

- each time optimize w.r.t. a pair of variables and reduce the problem to

$$\max_{\alpha} \quad W(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y^{(i)} y^{(j)} \alpha_i \alpha_j \langle x^{(i)}, x^{(j)} \rangle.$$

s.t.

$$0 \leq \alpha_i \leq C, \quad i = 1, \ldots, m$$

$$\sum_{i=1}^{m} \alpha_i y^{(i)} = 0.$$

$$\alpha_1 y^{(1)} + \alpha_2 y^{(2)} = -\sum_{i=3}^{m} \alpha_i y^{(i)}.$$

$$\alpha_1 y^{(1)} + \alpha_2 y^{(2)} = \zeta. \quad \alpha_1 = (\zeta - \alpha_2 y^{(2)}) y^{(1)}.$$

$$W(\alpha_1, \alpha_2, \ldots, \alpha_m) = W((\zeta - \alpha_2 y^{(2)}) y^{(1)}, \alpha_2, \ldots, \alpha_m)$$
SMO for SVM

- Each time minimize a simple quadratic function with two variables and box constraints

\[W(\alpha_1, \alpha_2, \ldots, \alpha_m) = W((\zeta - \alpha_2 y^{(2)})y^{(1)}, \alpha_2, \ldots, \alpha_m) \]
SMO for SVM

Repeat till convergence {

1. Select some pair α_i and α_j to update next (using a heuristic that tries to pick the two that will allow us to make the biggest progress towards the global maximum).

2. Reoptimize $W(\alpha)$ with respect to α_i and α_j, while holding all the other α_k’s ($k \neq i, j$) fixed.

}"
SVM solvers

• Many SVM solvers for python and other languages
 • Scikit-learn
 • LibSVM
 • SVM-light
 • SVM-torch
 • Matlab ML toolkit