CSI 436/536
Introduction to Machine Learning

Spectral clustering

Professor Siwei Lyu
Computer Science
University at Albany, State University of New York
Spectral clustering

- K-means clustering focuses on the closeness of elements **within** the same cluster
- Spectral clustering focuses on distinctiveness of elements **across** different clusters
 - represents relation between data using an undirected weighted graph (similarity graph)
 - weights on the graph correspond to data similarities

\[W_{ij} = \exp(-d(x_i, x_j)^2/\sigma^2) \]
Spectral clustering for two clusters

- use a binary indicator v_i for each vertex, $v_i = 1$ if vertex i is in cluster 1, $v_i = 0$ if vertex i is in cluster 2
- for any edge connecting vertex i and vertex j, $W_{ij}(v_i - v_j)^2$ measures the cost of putting them into different cluster
Spectral clustering for two clusters

- total cost of a bi-section (cut) of the graph is then
 \[\text{cut}(C_1, C_2) = \frac{1}{2} \sum_{i,j} W_{ij} (v_i - v_j)^2 \]

- two vertices in the same cluster has no cost

- we aim to minimize this cost by searching optimal assignments for \(v_i \)

- this is a NP-hard problem if solved precisely
Spectral clustering for two clusters

- Expand the min-cut cost
\[
\frac{1}{2} \sum_{i,j} W_{ij}(v_i - v_j)^2 = \frac{1}{2} \left(\sum_{i,j} W_{ij}v_i^2 - 2 \sum_{i,j} W_{ij}v_i v_j + \sum_{i,j} W_{ij}v_j^2 \right) = \sum_i v_i^2 \sum_j W_{ij} - \sum_{i,j} W_{ij}v_i v_j
\]

- Introduce \(\nu = (\nu_1, \ldots, \nu_n) \) and a diagonal matrix
\[
D = \text{diag}(W1) \quad \text{as} \quad D_{ii} = \sum_j W_{ij}
\]

- The min-cut cost becomes
\[
\min \nu^T L \nu, \quad \text{s.t.} \quad \nu_i \in \{0,1\}
\]
- where \(L = D - W \) is the graph Laplacian matrix
- an integer-programming problem
- we find \emph{approximate} solution by \emph{relaxation}
Graph Laplacian

- Definition \(L = \text{diag}(W1) - W \) Where 1 is the all one vector, it has the following properties
 - L is symmetric and positive definite
 - any constant vector is an eigenvector with eigenvalue zero

- Graph Laplacian can be understood as the differential operator for functions on a graph
 - It is a very useful tool for graph data analysis
 - # of zero eigenvalues = # of connected components in a graph
 - smallest non-zero eigenvalue is known as the Fiedler number of the graph (spectral gap)
Relaxation of the min-cut problem

• Original problem $\min_\nu \nu^\top L \nu$, s.t. $\nu_i \in \{0,1\}$ is intractable (exponential number of possible solutions)

• Approximation by relaxation

 • Solve $\min_\nu \nu^\top L \nu$, s.t. $\|\nu\| = 1, \nu \neq 1$

 • Thresholding the obtained ν into binary vector

 • The approximate solution is an upper-bound of the actual objective
Solving the relaxed objective

• This is a constrained optimization

\[\min_{\nu} \nu^T L \nu, \quad \text{s.t.} \quad \|\nu\| = 1, \nu \neq 1 \]

• Solve it by introducing Lagrangian multiplier

\[0 = \frac{\partial}{\partial \nu}(\nu^T L \nu - 2\lambda (\nu^T \nu - 1)) \Rightarrow L \nu = \lambda \nu \]

• So optimal solution is necessarily an eigenvector of matrix L

• Selecting the eigenvector corresponding to the smallest non-zero eigenvalue (Fiedler number) to be the optimal \(\nu \)