CSI 436/536
Introduction to Machine Learning

LLSE Ranking

Professor Siwei Lyu
Computer Science
University at Albany, State University of New York
Pairwise ranking problem

• Based on paper “A graph interpretation of the least squares ranking method” by Laszlo Csato

• Problem of ranking
 • Get n items and we would like to rank them based on some pairwise comparisons, not all pairs are compared
Problem setting

- **Objective function** $\min_r \sum_{ij} m_{ij}(r_i - r_j - q_{ij})^2$

 - $q_{ij} = -q_{ji}$, for items i and j, as their comparative scores, we denote the set of all such pairs as S.

 - $m_{ij} = 1$ if $(i,j) \in S$, and 0 if $(i,j) \notin S$.

 - If there is no comparison, don’t care the error

 - r_i is the rank of the ith item

 - We denote $M_{ij} = q_{ij}$ if $(i,j) \in S$, and 0 if $(i,j) \notin S$.

 - Matrix M is anti-symmetric, i.e., $M^T = -M$
Derivation

- Expand the objective function
 \[\sum_{i,j} m_{ij}(r_i - r_j - q_{ij})^2 = \sum_{i,j} m_{ij}(r_i - r_j)^2 - 2 \sum_{i,j} M_{ij}(r_i - r_j) \]

- First term
 \[\sum_{i,j} m_{ij}(r_i - r_j)^2 = \sum_{i,j} m_{ij}r_i^2 - 2 \sum_{i,j} m_{ij}r_ir_j + \sum_{i,j} m_{ij}r_j^2 = 2 \sum_i r_i^2 \sum_j m_{ij} - 2 \sum_{i,j} m_{ij}r_ir_j \]

- Introduce a diagonal matrix \(D \) with \(D_{ii} = \sum_j m_{ij} \)

- Matrix \(A_{ij} = m_{ij} \)

- Then this becomes \(2r^T(D - A)r \)

- The second term (using anti-symmetry of \(M \))
 \[2 \sum_{i,j} M_{ij}(r_i - r_j) = 2 \sum_{i,j} M_{ij}r_i - 2 \sum_{i,j} M_{ij}r_j = 2(1^T M^Tr - 1^T Mr) = 4 \cdot 1^T M^Tr \]

- The objective function becomes \(2r^T(D - A)r - 4 \cdot 1^T M^Tr \)
LLSE ranking algorithm

- Minimizing $2r^T(D - A)r - 4 \cdot 1^T M^T r$, ignoring constants, we get solution given by $(D - A)r - M1 = 0$

- The relative ranking vector r is given by solving $(D - A)r = M1$

- We can derive a linear ranking function $f(x) = w^T x$, the corresponding problem becomes
 $$\min_w \sum_{ij} m_{ij} (w^T x_i - w^T x_j - q_{ij})^2$$

- The vector version of the objective is then
 $$\min_w 2w^T X(D - A)X^T w - 4w^T XM1$$
 and the solution is given by $X(D - A)X^T w = XM1$

- This is known as LLSE ranking solution
Graph interpretation

- Construct a graph G with each data point a node
- If there is a comparison between node (i,j) then we put a pair of directed edges between them
- The weights on the edges are given by q_{ij}
 - Matrix A is the adjacency matrix of this graph
 - Every weighted undirected graph is determined uniquely by a matrix
- Matrix $L = D - A$ is the graph Laplacian of G
- There is an intimate relation between graph theory and linear algebra
 - We seem more of this for spectral clustering