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Abstract—Knowledge about active radio transmitters is critical for multiple applications: spectrum regulators can use this information

to assign spectrum, licensees can identify spectrum usage patterns and provision their future needs, and dynamic spectrum access

applications can efficiently pick operating frequency. To achieve these goals we need a system that continuously senses and

characterizes the radio spectrum. Current measurement systems, however, do not scale over time, frequency and space and cannot

perform transmitter detection. We address these challenges with the Spectrum Observatory, an end-to-end system for spectrum

measurement and characterization. This paper details the design and integration of the Spectrum Observatory, and describes and

evaluates the first unsupervised method for detailed characterization of arbitrary transmitters called TxMiner. We evaluate TxMiner on

real-world spectrum measurements collected by the Spectrum Observatory between 30MHz and 6GHz and show that it identifies

transmitters robustly. Furthermore, we demonstrate the Spectrum Observatory’s capabilities to map the number of active transmitters

and their frequency and temporal characteristics, to detect rogue transmitters and identify opportunities for dynamic spectrum access.

Index Terms—Spectrum measurement, spectrum characterization, machine learning, Dynamic Spectrum Access, spectrum policy.
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1 INTRODUCTION

We are faced with an increased need for additional RF
spectrum to support the ever-growing demand for mobile
data communications. However, nearly all the RF spectrum
has been allocated for different purposes, e.g. TV, radio, cel-
lular, radars, satellites, etc. Therefore, spectrum regulators
worldwide are investigating the use of Dynamic Spectrum
Access (DSA) techniques, such as in the TV white spaces or
tiered access in 3.5 GHz of spectrum, to meet the additional
demand. Using these techniques, mobile devices can send
and receive packets over a frequency as long as they do not
interfere with the licensed user of that frequency.

To identify new spectrum for DSA, the U.S. government,
industry and spectrum regulators worldwide have endeav-
oured to create a large-scale spectrum inventory in order to
determine the longitudinal spectrum usage at different loca-
tions [1]. Based on these measurements, spectrum regulators
can open new portions of the spectrum for DSA [4], and
new DSA technologies can be designed taking into account
the characteristics of these bands. Such national spectrum
inventory should answer various questions [1] including (i)
how much spectrum is occupied/idle, (ii) how many trans-
mitters occupy a given frequency band, and (iii) are they
authorized to operate in this band. While the first question
can be approached by simple estimation of power level in a
given band, the other two questions require more elaborate
analysis of spectrum occupancy. Such analysis needs to
answer questions such as are there more than one transmitters
in a given band, and what are their received powers, operating
frequencies, bandwidth and temporal characteristics. Learning

these characteristics from raw spectrum measurements is
critical for improved policy and technological advances in
the DSA domain.

Despite the need for deep understanding of spectrum
occupancy, there does not exist a platform to create such nation-
wide spectrum usage footprint. This is primarily due to lack
of scalable infrastructure for collection and processing of
RF spectrum measurements. Traditionally, spectrum occu-
pancy is analyzed via spectrum analyzers that capture large
amounts of data. The latter poses challenges in scalable data
storage. Furthermore, the current approaches to mining and
summarizing spectrum measurements are very limited, making
it hard to evaluate the collected spectrum data.

We address both these challenges in this paper. First,
we present a novel RF measurement infrastructure dubbed
the Spectrum Observatory1 that harnesses the collective
power of the spectrum research community to collect spec-
trum measurements. Spectrum analyzers hosted by various
participants perform wideband measurements, from 10s of
MHz to a few GHz, at different resolution bandwidths. A co-
located PC processes the data and creates summaries before
uploading them to the cloud. Unlike existing cloud-based
spectrum measurement infrastructures [11, 16], our design
is unique with its open nature, allowing wide community
participation and creating a plethora of opportunities for
research in spectrum measurement and management.

The second challenge, of identifying transmitters in spec-
trum data, is non-trivial. To illustrate this, let us consider
the following trace collected by the Spectrum Observatory

1. https://observatory.microsoftspectrum.com/
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Fig. 1. Example of overlapping transmitters.

(Fig. 1). The top part of the figure plots power spectral den-
sity (PSD) measured over the course of 90 seconds between
700 and 900MHz. The bottom plot of Fig. 1 shows a maxhold
of PSD in the entire frequency range; that is the maximum
measured PSD value in each frequency bin. In some parts
of the spectrum there exist more than one transmitters that
occupy the same band in a time-division fashion. Direct
analysis of the data in time-frequency domain is prone to
errors due to the noisy nature of raw spectrum signals.
Analysis of the maxhold, on another hand, can provide
intuition of occupied fractions of this spectrum but hides
the time-frequency characteristics of the individual trans-
mitters. Thus, we need advanced spectrum characterization
that goes beyond max-hold or direct time-frequency analy-
sis. Current methods require prior knowledge of transmitter
signatures and fine-grained spectrum measurements [7, 14],
both of which are difficult to obtain in wide-band sweep-
based spectrum sensing. Others [15] provide unsupervised
separation of spectrum utilization patterns but do not cater
to detailed transmitter characterization.

For detailed spectrum characterization, we design
TxMiner, that identifies transmitters in raw spectrum mea-
surements, even when the transmitter characteristics are not
known and the spectrum sensing resolution is low. TxMiner
leverages the phenomenon that fading of non-line-of-sight
wireless signals follows a Rayleigh distribution, while noise
follows a Gaussian distribution [5]. Thus, the raw spectrum
samples can be modeled as a mixture of Rayleigh and
Gaussian distributions. Based on this observation we design
a machine learning algorithm that extracts Rayleigh and
Gaussian sub-populations from a given RF signal popula-
tion. Two challenges arise with such approach to transmitter
characterization. First, the performance of our Rayleigh-
Gaussian mixture model is dependent on the initialization
of the model. To address this challenge, we design a multi-
scale initialization scheme. Second, in order to extract fre-
quency and temporal transmitter characteristics we design
a post-processing technique. Thus, TxMiner is comprised of
three critical components: (i) multi-scale initialization (§3.4),
(ii) Rayleigh-Gaussian representation of raw spectrum mea-
surements (§3.3) and (iii) post-processing for actual trans-
mitter identification (§3.5). We evaluate TxMiner on spec-
trum measurements collected by the Spectrum Observatory,
and on several controlled transmissions, and we find that
it can accurately identify transmitters of different types
including WiMax, TV & FM broadcasts, and proprietary
DSA. We employ TxMiner to map the number of active
transmitters and their bandwidths over a wide band from
30MHz to 6GHz, recognize rogue transmitters and identify
opportunities for dynamic spectrum access.

This paper makes several key contributions: (i) we
present the design and integration of the Spectrum Ob-
servatory, (ii) we design the first of its kind mechanism,

Fig. 2. The components of the Spectrum Observatory

called TxMiner, that can identify transmitters and their char-
acteristics in raw spectrum measurements, (iii) we harness
TxMiner to create a spectrum inventory through longitudi-
nal, wideband analysis of traces collected by the Spectrum
Observatory in the course of a year between 30MHz and
6GHz, and (iv) we demonstrate TxMiner’s ability to detect
rogue transmitters in raw spectrum scans and to quantify
the opportunity for secondary access in licensed spectrum.

This paper is organized as follows. §2 presents the design
and integration of the Spectrum Observatory. In §3 we
present TxMiner. We continue with evaluation in §4. In §5
we demonstrate the Spectrum Observatory’s capability to
create a nationwide spectrum inventory. We present related
work in §6 and conclude in §7.

2 THE SPECTRUM OBSERVATORY

The Spectrum Observatory provides a distributed spectrum
monitoring platform and has been widely used by the
community. It consists of two components as shown in
Fig. 2: (i) local spectrum measurement equipment at various
locations, and (ii) the storage and analysis component in
the cloud. We note that previous work [11, 16] has de-
signed cloud-based spectrum measurement architectures.
The Spectrum Observatory is unique with its open nature,
allowing anyone to plug a measurement station and/or pull
data and spectrum usage results from the system. The inher-
ent heterogeneity of measurement stations creates a plethora
of opportunities for research in spectrum measurement and
management. In what follows, we describe the Spectrum
Observatory’s components.

2.1 Local spectrum measurements

Each measurement location consists of one or more spec-
trum analyzers, antenna(s) and a PC. The spectrum analyz-
ers are connected to a single or multiple antennas for each
frequency segment, and the PC is connected to each of the
spectrum analyzers, as shown in Fig. 2.

Heterogeneity: Since each site is operated and main-
tained by third-parties, e.g. government organizations or
universities, a key challenge is to support different measure-
ment equipment: from the expensive CRFS RFEyesto the
commonplace USRPs, to low-end RF Explorers. Each type
of equipment supports different communication APIs, sam-
pling and sweep rates, noise floors, and frequency ranges.

We support this heterogeneity by providing (i) software
plug-ins that run on the PC to communicate with different
spectrum sensors, (ii) a common XML configuration file
that is read and translated for each spectrum sensor and
(iii) a common file format for the output. We currently
support plug-ins for the RFEye, and USRP, and are working
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with other spectrum sensor vendors. The configuration file
allows the measurement station administrator to set up the
frequency range to sweep for each spectrum analyzer, the
bandwidth window to use, the sample rate, sweep algo-
rithm, and the number of samples per window. A process
runs on the PC to query each of the attached spectrum
analyzers with settings that are configured in the XML file
and gets the raw IQ data from each of them. After the
raw IQ data is loaded on the PC, the next step extracts
feature vectors and stores them in the common file format.
This format captures the hardware configuration as well
as specific feature vectors extracted from the raw IQ data.
Currently the only types of feature vectors that the file
contains are the maximum, minimum, and average power at
every frequency measured over a configured period of time.
However, the file format is extensible, and additional feature
vectors could be added in the future. For example, one can
perform transmitter tracking and modulation recognition.
We note that such advanced feature detection has privacy
and security implications that need to be addressed but are
beyond the scope of this work.

Upload bandwidth: Another challenge is the bandwidth
required to upload the data in the cloud. If every IQ sam-
ple from each spectrum analyzer over the entire scanned
spectrum is uploaded, we would need Gbps links at every
site. The bandwidth requirement at the cloud servers would
also be prohibitive. In contrast, if we only upload the power
values (as opposed to IQ) at every measurement instant, we
would need 100s of Mbps per site.

To illustrate this point, today the system is set up to
support both USRP and CRFS RFEye sensors. Our USRP
configuration uses a single PC attached to two USRP N200
RF sensors with a WBX and a SBX daughterboard. The
WBX daughterboard scans the 50MHz-2200MHz range with
a 25MHz window and 1024 samples per window, while
the SBX daughterboard scans 2200MHz-4400MHz with a
25MHz window and 1024 samples per window. The feature
vectors are aggregated over one minute with sixty of these
in a single file. With this setup a single file could end up
being approximately 61MB per hour without compression
and about 50MB with compression. This file size can be
drastically altered by changing any one or all of these
settings. If for example, the measurement station is mobile
and wants to write a file with the current GPS location
every 5 seconds, only wants to scan 200MHz-1200MHz, but
also wants higher resolution of 2048 samples per window,
then the amount of data per hour generated would be
338MB uncompressed. To allow for different use cases and
bandwidth limitations, station administrators are able to
configure the amount of time over which the feature vectors
are extracted as well as the number of these entries that are
written to a single file to be uploaded.

2.2 Cloud storage and analysis

After the data has been written to the common file format
on the local PC, a second process takes over. This process
is responsible for long term storage of data in the cloud
and managing data on the local machine. We discuss some
challenges with cloud storage in this section.

Size of data and cost: The amount of cloud stor-
age needed per measurement site is significant. For ex-

ample, one of our deployments generates approximately
60MB/hour. If we upload this data and store it for one
year, it will generate more than half TB. If we scale this
up to 100, 1000, or 10000 measurement stations, the amount
of data that needs to be stored on a yearly basis becomes
very large. To solve this problem, the data is uploaded
to blob storage instead of SQL tables. The latter reduces
the metadata overhead and allows better flexibility in file
size management. In our implementation we use Azure,
but most of the design decisions are valid for AWS, which
has mostly similar pricing and transactional limitations. By
leveraging a cloud service, e.g. Azure, instead of deploying
our own physical servers, we do not have to deal with other
requirements such as uptime, stable networking and other
basic infrastructure requirements.

Data processing and analysis: Once the data is stored
in the cloud, it needs to be acted upon. For every successful
upload of a raw data file, a message is sent to a system
running in the cloud to process the data to do further feature
vector extraction and aggregation. This system needs to be
scalable since we hope to eventually have thousands of mea-
surement stations uploading raw data files every hour. Ad-
ditionally, the processing of a single data file can take up to
15 minutes due to the amount of data being processed. With
a single station today we upload over over 32,071,680 data
points/hour. With 4350MHz of spectrum being scanned and
1024 data points per 25MHz window, we have 534,528 data
points per minute. Each new measurement station, adds a
file with a similar number of data points to be processed.
To accomplish this, the process running in the cloud is run
as a worker role in Azure. By using a worker role and a
queueing system, we are able to take advantage of the cloud
infrastructure and automatically scale the number of virtual
machines that are instantiated. The latter is based on the
length of the queue that maintains the list of the raw data
files waiting to be processed.

Another problem is the number of transactions and the
cost of those transactions. The raw data is already available
in the cloud in a blob, but to enable quicker access to
relevant data we store some of the processed data in table
formats. Since we are limited to 20,000 transactions per
second in each of our storage accounts, and we have over
32M data points/hour/measurement station, we need to
compromise. We solve this issue by keeping the raw data
that is uploaded to the cloud as compressed files stored
as blobs. We only write aggregated data or new feature
vectors out to the desired table structures. The data itself is
aggregated hourly, daily, weekly, and monthly, and another
table stores a pointer to the raw data file.

3 TXMINER DESIGN

Spectrum data collection and storage bring us half-way
through creating a spectrum inventory. In order to answer
the various questions on spectrum occupancy [1], we need
to complement spectrum measurements with robust spec-
trum analytics. To this end, we design TxMiner, the first
method for unsupervised detection of arbitrary transmitters.
Traditionally, spectrum occupancy is analyzed manually by
the use of tools, such as spectrograms of power spectral
density. While such tools are informative, they are not
very actionable. Particularly, they do not allow automated,
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Fig. 3. Probability Distributions of Power Spectral Density for different
occupancy scenarios. The figure demonstrates how differences in mea-
sured signal distributions can inform transmitter characterization.

fine-grained, long-term observation of spectrum occupancy
patterns that are needed to inform DSA system design and
policy. TxMiner tackles these problems by identifying trans-
mitters in raw Spectrum Observatory data without prior
knowledge of transmitter characteristics. Thus, it enables
several new applications including transmitter-level map-
ping of spectrum occupancy, identifying rogue transmitters,
DSA beyond TV white spaces and spectrum management.

Applications of TxMiner. The problem of spectrum
mapping and management is relevant worldwide. In the
US, there are joint initiatives involving the government,
academia and industry [1], to create a platform for spectrum
measurement and characterization. In developing countries,
spectrum regulators often do not know how spectrum is be-
ing used2. TxMiner can be applied in both scenarios for ad-
vanced mapping of spectrum occupancy, which in turn enables
effective spectrum use and regulation. Furthermore, it can
inform spectrum management by answering questions such as
(i) how many types of transmitters are using the channel?
(ii) how many transmitters of each type are present? and
(iii) what is the noise floor of the channel when these
transmissions are not present? TxMiner can also be useful
in identifying rogue transmitters by detecting discrepancies
between expected and detected transmitters in a given band.
This capability enables spectrum licensees and regulators to
identify and remove spectrum squatters.

Beyond analysis of spectrum use, TxMiner can be ap-
plied in support of DSA technologies. The concept of DSA
is often applied in the TV bands, where incumbents have
stationary transmission patterns. Frequency ranges beyond
TV bands provide vast opportunity for DSA access, how-
ever, the dynamic nature of transmitters in non-TV bands
poses challenges for the operation of secondary devices.
TxMiner can help by providing historical information of
spectrum occupancy, which can inform DSA users about the
transmission opportunity in various spectrum bands.

3.1 Key insights

The key insight behind TxMiner is that the probability dis-
tributions of measured Power Spectral Density (PSD) reveal a
lot about channel occupancy. As an illustration, we study the
probability distributions of three scans of the TV bands.
Note that these observations are valid in other bands as well.
Fig. 3 presents the probability distributions for the studied
spectrum occupancy scenarios. The top graphs present a
max-hold of PSD over a time window of 100 seconds, while
the bottom graphs present the CDF of all values measured in
this window over frequency and time. We see that the distri-
butions of one occupied and one idle TV channel (Fig. 3(a)

2. The authors have been approached by representatives of the
Kenyan, Moroccan and Philippines government asking for help with
analysis of spectrum occupancy.

Fig. 4. TxMiner workflow.

and 3(b)) are very similar in shape, however, the mean of
the occupied channel is higher than that of the idle channel.
In a frequency band, which is in part occupied and in
part idle (Fig. 3(c)), the probability distribution we observe
is bimodal, reflecting on the two spectrum activities. The
means of the two modes correspond to the mean received
power levels during the spectrum measurements.

In an urban or indoor environment, which are the preva-
lent settings where wireless communications take place, the
transmitter’s radio signal will attenuate with distance and
encounter multiple objects in the environment that produce
additional reflected, diffracted or scattered copies of the
signal known as multipath signal components. Thus, the
amplitude of the received signal can be characterized by a
Rayleigh distribution while the phase can be characterized
by a uniform distribution if we assume narrowband fading
(i.e. different multipath components are not resolvable) [5].
In mathematical notation, the amplitude of the received
signal s(t) can be characterized by Rayleigh distribution as

R(s;µ) = πs
2µ2 exp−

πs2

4µ2 , where µ is the mean of Rayleigh

distribution and 4µ2

π
is the average received power of the

signal based on the attenuation resulting from path-loss and
shadowing. Along with active transmitters, a spectrum scan
might also capture noise, which can be modeled as white
noise, and thus, follows a Gaussian distribution [5].

So far we observed that measured transmission sig-
nals follow a Rayleigh distribution, while measured noise
follows a Gaussian distribution. Thus, power values from
spectrum measurements can be modeled as a mixture of
Rayleigh distributions, one for each measured transmitter,
and a Gaussian representing the noise. Following this intu-
ition, we develop a machine learning algorithm that models
spectrum measurements as a mixture of Rayleighs and a
Gaussian distribution. We dub this method RGMM (for
Rayleigh-Gaussian Mixture Model). In what follows, we
first outline the challenges of such transmitter characteri-
zation approach. We then describe how we address these
challenges and present our RGMM algorithm in details.

3.2 Challenges

The challenges of unsupervised learning of transmitters
include (i) mixture extraction, (ii) mixture initialization and
(iii) post-processing to mine for transmitters. TxMiner ad-
dresses all these challenges as illustrated in Fig. 4. Its work-
flow takes as an input a matrix of power spectral density
(PSD) over frequency and time. The workflow begins by de-
termining the mixture initialization. It then fits a Rayleigh-
Gaussian Mixture Model over the raw data and finally runs
post-processing to characterize transmitters.

Mixture extraction. The goal of our analysis is, given
a spectrum scan over time and frequency, to identify the
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number and characteristics of transmitters that occupy the
measured spectrum. We assume no prior knowledge for our
spectrum data, thus this problem requires an unsupervised
machine learning technique. As already established in §3.1, a
population of radio signals can be represented as a mixture
of Rayleigh and Gaussian distributions, however, there does
not exist an off-the-shelf machine learning technique to fit
such a mixture over unlabeled data. Thus, we develop a cus-
tom machine learning algorithm dubbed Rayleigh-Gaussian
Mixture Model (RGMM) that fits a mixture of multiple
Rayleigh and one Gaussian distributions over unlabeled
data. We present RGMM in detail in §3.3.

Mixture initialization. While RGMM successfully mod-
els the power distribution of raw spectrum scans, obtaining
a robust fit in a large time-frequency scan is a challenge.
RGMM uses unsupervised machine learning and therefore
requires a good initialization approach to extract a repre-
sentative mixture model. To this end, we need a rough
estimation of the signal distributions in a raw spectrum
scan before running RGMM. There is a plethora of off-the-
shelf data clustering algorithms that can be helpful in this
step. TxMiner makes use of Gaussian Mixture Models for
mixture initialization. We develop two mixture initialization
techniques that are described and compared in §3.4.

Post-processing. Obtaining a robust mixture model that
represents our raw data can help answer questions such as
how many transmitters do we observe and what are their
approximate power levels. This mixture model, however,
hides time-frequency properties of the signal that answer
more challenging questions such as what is the transmitter
bandwidth and what are its temporal characteristics. In
order to answer these questions we need a post-processing
procedure that brings together the extracted mixture model
and the time-frequency characteristics of the measured
spectrum scan. We design a post-processing technique that
(i) calculates the association probability of each measured
power value with each of the distributions in the mixture
model and (ii) smooths these associations to facilitate time-
frequency analysis of the raw spectrum traces. We detail our
post-processing algorithm in §3.5.

3.3 Rayleigh-Gaussian Mixture Models

The key feature of TxMiner that enables transmitter analysis
is its ability to represent raw spectrum measurements as
a mixture of Rayleigh and Gaussian distributions. This is
enabled by our custom machine learning technique called
Rayleigh-Gaussian Mixture Model (RGMM) that repre-
sents raw spectrum measurements as a mixture of several
Rayleigh distributions – one for each sensed transmitter,
and a Gaussian for the noise. We use this approach to
identify sub-populations in the raw data that correspond
to individual transmissions. A mixture model is a represen-
tation of a probability distribution as a weighted sum of
individual probability distributions (densities). In our case,
these individual densities correspond to k Rayleigh and one
Gaussian densities. Each Rayleigh component in the mixture
model is characterized via its mean, and is associated with
a weight that captures its contribution to the mixture. The
Gaussian density has three parameters: mean, variance and

weight. Formally, the RGMM pMM (s) can be represented as

pMM (s) =
k
∑

i=1

wi ·R(s;µi) + wn ·N(s;µn, σ
2
n) (1)

Here, R(s;µ) denotes the Rayleigh density with mean µ.
Similarly, N(s;µn, σ

2
n) is the Gaussian distribution with

mean µn and variance σ2
n. The weights (w1, .., wn), means

(µ1, .., µn) and the variance σ2
n comprise the parame-

ters of the mixture model, which are discovered via the
Expectation-Maximization (EM) algorithm. EM aims to dis-
cover the parameters that maximize the likelihood of the
statistical model (i.e. the mixture) to represent the raw data.
Formally, EM is an iterative procedure that starts with a
random initial assignment of the parameters and keeps
refining them by alternating between the E and the M step.
The E and the M step for our application are defined as:

E-Step:p(s ∈ j) =
R(s;µj)

∑k
i=1 R(s;µi) +N(s;µnoise, σ

2
noise)

p(s ∈ noise) =
N(s;µnoise, σ

2
noise)

∑k
i=1 R(s;µi) +N(s;µnoise, σ

2
noise)

M-Step:µj =

∑

s s · p(s ∈ j)
∑

s p(s ∈ j)

σ2
j =

∑

s (s− µj)
2 · p(s ∈ j)

∑

s p(s ∈ j)

wj =

∑

s p(s ∈ j)

N
,

where s ∈ j refers to s belongs to signal component j.
The EM steps are repeated until convergence (change in
parameters is less than a threshold). Each EM step increases
the log likelihood of the data. Further the log-likelihood of
the data is upper-bounded, as both the Gaussian and the
Rayleigh distribution are bounded. These two conditions
guarantee [18] that the EM procedure will always converge,
at least to a local minimum. Analysis of the convergence
rate of the EM algorithm is an active area of research [12]
and out of the scope of our work.

Once we have learned the model that best represents
the raw spectrum data we can calculate the likelihood
of each original data sample to be generated by each of
the components in our learned mixture model. We call
these likelihoods association probabilities and note that they
are essential in our post-processing analysis of transmitter
characteristics (§3.5). We now explain our approach to cal-
culating these association probabilities. Let S be the matrix
of raw spectrum measurements over time and frequency.
Each element of the matrix is stf , where t is the the row
of the matrix (representing a time sample) and f is the
column (representing a frequency sample). The association
probability with each Rayleigh component Ri can be cal-
culated using the probability density function (PDF) of a

Rayleigh distribution as Ri(stf , µi) =
πstf
2µ2

i

exp−
πs2tf
4µ2

i

, where

µi is the mean of the i-th Rayleigh distribution. Similarly,
the association probability with the Gaussian component
N can be calculated using the PDF of a Gaussian distri-

bution N(stf , µN , σ2
G) =

1
σ
√
2π

exp
(stf−µN )2

2σ2 . We use the so-

calculated association probabilities in our post-processing.
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Algorithm 1: MultiScale

1 Input:S data, (nf , nt) # partitions, l level, lmax - max level
2 Output:({λi}, µn, σn) Rayleigh transmitters and noise params
3 if l = lmax then
4 ({λi}, µn, σn)←Rayleigh-Fit(D)
5 return ({λi}, µn, σn)

6 if l < lmax then
7 Λ← ∅
8 Partition S into nf × nt regions Sf,t

9 for ∀Sf,t do
10 ({λi}, µn, σn)←MultiScale(Sf,t, (nf , nt), l + 1, lmax)
11 Λ← Λ

⋃{λi}
12 {λi} ← Cluster(Λ, π)
13 if l < lmax then
14 return ({λi}, 0, 0)
15 else if l = 0 then
16 ({λi}, µn, σn)←Rayleigh-Fit(S, {λi})
17 return ({λi}, µn, σn)

3.4 Mixture initialization

Unsupervised machine learning methods such as RGMM
enable us to analyze transmitter characteristics without
prior knowledge of signatures. Obtaining a robust mixture
model to represent raw spectrum measurements, however,
is not trivial. The robustness of the Rayleigh-Gaussian Mixture
Model depends on the initialization of our RGMM algorithm.
To initialize RGMM we need a rough estimation of the
mean values in measured signal distributions. Since our
initialization goal is to simply estimate the means as op-
posed to fitting a specific distribution, any robust clustering
technique for 1-D data is appropriate. To this end we use
a generic Gaussian Mixture Models (GMM) fit to estimate
the means in the raw data. The output of GMM clustering
is a set of normal distributions characterized with a mean,
standard deviation and mixing weights. We use the means
of these distributions to initialize RGMM.

We propose two initialization techniques, both of which
are based on GMM. The first initialization technique takes
all the raw data of interest as an input, runs GMM and uses
the means of the fitted distributions to initialize our RGMM
algorithm. We dub this initialization method OnePass. The
key benefit of this initialization approach is fast calculation
of the seed values for RGMM. The drawback, however, is
that if we consider a spectrum scan that features multiple
transmitters, some of these transmitters might either be
omitted or more components than the existing transmitters
might be discovered. The reason for such deviations is that
it is harder to model data with a large number of generating
processes (i.e. transmitters).

To reduce the number of generating processes and
achieve robust initialization we design a second initializa-
tion approach, MultiScale, that calculates the initialization
in a divide-and-conquer, bottom-up fashion. MultiScale di-
vides the raw data in sub-spaces with increasing resolution.
At the highest resolution MultiScale runs GMM in each sub-
space to find the representative distributions. It then groups
the discovered distributions in decreasing resolution until it
produces a single set of initialization values.

Our multi-resolution scheme MultiScale is presented in
Alg. 1. The input to our function consists of the power
measurement data S, the number of partitions in which the
domain is to be recursively split in time nt and frequency
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overfits, even when the transmit-
ters are 10 or 15dBm apart.
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Fig. 6. MultiScale with increasing
levels and increasing transmitter
separation. MultiScale is highly-
accurate as we increase l, even
when the transmitter separation is
as low as 3dBm.

nf , the current resolution level of l originally set to 0 and the
maximum level lmax. The maximum level parameter lmax

controls the maximum resolution at which we will obtain
the initial fit. The output of MultiScale is the set of Rayleigh
parameters {λi} and the mean µn and standard deviation
σn used to initialize RGMM.

The base case of the recursion (l = lmax) corresponds
to the highest resolution of the frequency-time space (Lines
3-5). We perform a Rayleigh mixture fit with our default
initialization based on GMM (Line 4) and return the ob-
tained model parameters. The internal resolution levels are
described in Lines 6-17. We initialize a set of Rayleigh
parameters from the higher levels Λ with an empty set
(Line 7) and partition the current time-frequency space S
into nf × nt regions Sf,t uniformly in each of the two
dimensions (Line 8). Next, recursively invoke MultiScale for
each of the subspace regions while incrementing the current
level in the invocations and add the parameters of obtained
Rayleigh components to Λ (Lines 9-11). We cluster the set of
all Rayleigh parameters from the higher resolution using a
threshold-based approach that groups all components that
are less than π dBm apart (Line 12). Finally, if we are at an
internal level (i.e. non-zero level), we return the clustered
set of Rayleigh parameters (Lines 13-14), while at level 0
we perform one fit over the whole data initiating with the
aggregated parameters from higher resolutions and return
the final fit including the noise component (Lines 15-17).
The final fit with initialization over all available data (Line
16) ensures that transmitters that have been separated due
to the uniform partitioning of the space are fit based on
all their data. Informally, this last step“readjusts” learned
parameters within the whole data.

The time complexity T (t, f) of MultiScale for data of size
t× f and maximum level lmax = L, where at each level the
time-frequency block is divided in four sub-blocks, can be
expressed as T (t, f) = 4L ∗ T (t/2L, f/2L) + L. Here, the
first term captures the time necessary to perform GMM at
the highest resolution, while the second term captures the
constant time necessary to group the means at each level
(Alg. 1, Line 12). Since GMM uses the EM algorithm, the
time complexity of MultiScale can further be expressed as
T (t, f) = 4L∗TEM (t∗f/22L)+L. As we will shortly discuss,
MultiScale performs robustly in various settings even for
small lmax (Fig. 6). Thus, our method utilizes small values
of lmax (up to 4), in which case, the complexity of MultiScale
is similar to that of GMM [12].
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Fig. 7. Accuracy of MultiScale with level l and clustering threshold π.
MultiScale is accurate for a wide window of π values, indicating that
exact selection of π is not required.

We demonstrate the benefits of MultiScale on synthetic
data, generated by a mix of Rayleigh and a Gaussian distri-
butions and resembles real spectrum scans. We ensure our
generative models are realistic by informing their parame-
ters (i.e. mean and deviation) from real scans collected by
USRP-based sensors. We note that synthetic data evaluation
is necessary to allow tight control over experiment param-
eters including number of transmitters and transmitter sep-
aration. Our evaluation metric is initialization accuracy αn,
defined as the ratio of detected vs. expected transmitters.

We begin with a comparative evaluation of MultiScale
and OnePass in Fig. 5. The figure plots average over 10 runs
of αn with increasing transmitter separation ∆P . For each
run, MultiScale’s parameters l and π are set to 1 and ∆P ,
respectively. We see that MultiScale is highly-accurate even
with low transmitter separation, while OnePass persistently
finds more transmitters than expected (i.e. overfits), even
when the transmitters are 10 or 15dBm apart.

MultiScale requires the specification of two parameters:
the maximum resolution l and the clustering threshold π.
Naturally, one might ask what is an appropriate maximum
resolution and what is a good approach to set the clustering
threshold π, given that we will not have prior knowledge
of transmitter separation in real spectrum characterization.
Our following evaluation answers these questions. We begin
by evaluating the impact of level selection l on initializa-
tion accuracy αn in Fig. 6. The figure plots the average
αn over 10 runs as we increase l from 1 to 4 and the
transmitter separation ∆P from 3 to 15. This result allows
two important observations: (i) MultiScale is accurate even
when l = 1, illuminating the unique benefits of component
clustering (Alg. 1, Line 12) and (ii) MultiScale is persistently-
accurate as l increases, indicating that the accuracy of our
initialization does not hinge on exact selection of l. Further,
we study the effects of cluster threshold on initialization
accuracy in Fig. 7. For this experiment, we vary l from 1
to 4 (presented in Fig. 7(a)-7(d)) and π from 1 to 16. We
evaluate αn for four different transmitter separation values
∆P from 3 to 15dBm. We observe that as π increases to 3,
the initialization rapidly becomes accurate for all values of
l. The highest accuracy is achieved when π approaches the

transmitter separation value. We also note that MultiScale
is accurate for a fairly-large window of π values, indicating
that exact selection of π is not required.

Our evaluation of MultiScale shows that it is able to
robustly compute an initialization for RGMM. We also note
that initialization does not need to be obtained every time
TxMiner is ran, which will save computational resources.
Rather, we can use the same initialization until RGMM
obtains models with which the raw data values are poorly
associated. Such poor association will be an indicator that a
new initialization should be computed.

3.5 Post-processing

While RGMM allows mining of the number of transmit-
ters and their sensed power levels, it does not allow for
time-frequency analysis of the collected data. Such time-
frequency analysis enables characterization of other impor-
tant transmitter properties such as bandwidth and temporal
behavior. In order to mine time-frequency properties we
implement a post-processing procedure that uses the cal-
culated association probabilities (§3.3).

The association probabilities provide intuition about the
time-frequency properties of sensed transmitters, however,
the inherently noisy nature of spectrum scans makes it hard
to mine transmitter characteristics directly from the associ-
ation probability matrices. Towards this end we make the
following observation. Since transmitters occupy adjacent
time and frequency samples, transmitter scans are coherent
in the time-frequency domain. That is, adjacent values that
are of similar magnitude are likely to be due to the same
transmission. This observation allows us to apply spatial
regularization to smooth the association probabilities and
reduce the noisiness of the post-processed signal. For the
purpose of spatial regularization we use a machine learning
technique called Belief Propagation.

In the remainder of this section we detail our spatial
regularization approach and describe how we use the reg-
ularized data to extract transmitter characteristics. Along
with our methodology, in Fig. 8 we present an illustra-
tive example of mining transmitter characteristics in two
transmitter scenarios: a TV broadcast and a WiMax TDMA.
Our RGMM method has fitted two components in each
transmission: one representing the power of the transmitter
and one capturing the noise. We detail each of these figures
as we describe our post-processing technique.

Data regularization using Belief Propagation. The in-
herently noisy nature of RF signals causes our association
probability matrices to suffer from salt-pepper noise. We
can see the effect of salt-pepper noise in our example on
Fig. 8. The first column from left to right represents the
original PSD data over frequency and time. The more white
the color is, the higher the measured power. The second
column presents results before and after the regularization.
The “In Belief” plots are the association probabilities before
smoothing, while the “Out Belief” plots are the resulting
smoothed association probabilities. Darker colors represent
lower values. We see that the “In Belief” suffers from salt-
pepper noise, whereby neighboring cells differ in their val-
ues. The latter makes it hard to determine if adjacent values
belong to the same transmitter, which in turn makes it hard
to detect transmitter characteristics.
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Fig. 8. Illustrative example of TxMiner post-processing, emphasizing the importance of belief propagation in noisy (“salt-and-pepper”) signals.

We propose to alleviate this problem via spatial regu-
larization using a machine learning technique popular in
the image segmentation literature [2]. In particular, we for-
mulate an energy minimization problem where we consider
adjacent cells in the PSD matrix (both in frequency and time)
as neighbors. The goal is to determine a solution that aligns
with the mixture model available from the previous step and
is spatially smooth. Formally, let us use xi ∈ {1, ..k, noise}
to denote the index of the mixture distribution, with which
the data si is associated. Then we consider the following
form of the energy:

E(X) =
∑

i

− log pMM (si ∈ xi) +
∑

ij

V (xi, xj , si, sj). (2)

Here, pMM (si ∈ xi) is a unary term that depends upon
the output association probabilities from the mixture model.
Intuitively, this term favors assignments that are obtained
from the inference when fitting the model. The second term
considers all pairs of neighbors (i and j), and smooths
the data by using a function V (·) that depends upon the
corresponding observations si and sj in the PSD matrix S:

V (xi, xj , si, sj) =

{

− log e−β|si−sj | if xi = xj

− log[1− e−β|si−sj |] Otherwise

Note that the pairwise term favors similar assignments
to si and sj only when the values xi and xj are similar.
Intuitively, the pairwise term will favor dissimilar assign-
ments to adjacent cells only when there is a large difference
in observations in the PSD matrix.

An assignment that minimizes the above energy pro-
vides a solution that is coherent in time and frequency and
aligned with the solution provided from the mixture model
procedure. However, determining the minimum energy as-
signment for such energies has been determined to be NP-
complete. Reasonable approximation can be computed via
message passing schemes such as loopy Belief Propagation
[20]. In this paper we specifically, use the sum-product ver-
sion of loopy belief propagation, where given the mixture
model inferences, we formulate the energy and obtain a
solution via loopy message passing until convergence.

The “Out Belief” plots in Fig. 8(b) and 8(f) show the
result after running the loopy Belief Propagation. The result-

TABLE 1
Rules for determining transmitter type.

Type Rule
Broadcast σT < THRT and σF < THRF

TDMA σT > THRT and σF < THRF

FDMA σT < THRT and σF > THRF

Hopping σT > THRT and σF > THRF

ing signal is more regularized in the time-frequency domain
and does not suffer from salt-pepper noise.

Mining transmitter characteristics. The smoothed asso-
ciation probabilities obtained in the previous step enable
efficient extraction of transmitter signatures in order to
mine transmitter characteristics. In this analysis we de-
termine key transmitter properties including: bandwidth,
active time and type (including TDMA, FDMA, broadcast
and frequency hopping). Towards this end we compact the
association probabilities from the time-frequency domain
in one-dimensional space in either frequency or time. We
call these compacted probabilities temporal and frequency
transmitter signatures and denote them as P t and P f . A

temporal P t
i and frequency P f

i signature is calculated for
each Rayleigh distribution i fitted onto the raw spectrum

measurements. We calculate P t
i and P f

i as follows:

P t
i =

∑F
f Ri(sft, µi)

F
and P f

i =

∑T
t Ri(sft, µi)

T
(3)

Our illustrative example in Fig. 8 presents the time and
frequency signatures of a TV broadcast and WiMax TDMA
transmitter. Since a broadcast channel occupies all the time-
frequency samples, we see that the signatures of such trans-
mitters have low variance over time and frequency (Fig. 8(c)
and 8(d)). In contrast, a TDMA transmitter such as WiMax
occupies a fixed bandwidth, however, its active time is non-
contiguous. This is reflected in its signatures (Fig. 8(g) and
8(h)): the frequency signature has low variability, whereas
the time signature varies, capturing the intermittent pres-
ence of this transmitter over time.

We use these observations to design our detection of
transmitter bandwidth, active time and type. Specifically,
we calculate the transmitter bandwidth by determining the
span of non-zero frequency signature. Similarly, we deter-
mine the transmitter active time by calculating the span
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of non-zero time signature. Lastly, we use the variance of
transmitter signature to determine the transmitter type. Let
us denote the variance of the time signature by σT and the
variance of the frequency signature by σF . We can then
determine the transmitter type by following the rules in
Table 1. THRT and THRF denote thresholds of time and
frequency signature variance against which we decide the
type of transmitter. Since the magnitude of the variance
depends on the magnitude of the transmitter signature, we
pick a percentage of the maximum signature value as our
threshold. Of note is that the threshold can be adjusted if
we had prior knowledge about the expected transmission.
Since we assume no such knowledge, we use 20% on the
maximum signature as a threshold in our evaluation.

4 TXMINER EVALUATION

In this section we evaluate TxMiner on real-world scans
collected by the Spectrum Observatory. First, we focus on
accuracy of detecting active transmitters. We then evaluate
TxMiner’s ability to extract individual transmitter charac-
teristics such as transmitter count, bandwidth and type. We
compare TxMiner with a state-of-the-art algorithm for occu-
pancy detection called edge detection [19]. Our evaluation
shows that TxMiner outperforms edge detection in both
controlled settings as well as in real world measurements.
We show that TxMiner has high accuracy in detecting oc-
cupancy of individual transmitters and their bandwidths.
Furthermore, TxMiner is capable of detecting transmitter
count and bandwidth in multi-transmitter scenarios.

4.1 Implementation, measurement setup and data

We implement TxMiner in MATLAB, using our custom
implementation of RGMM, MathWorks’ implementation
of GMM (gmdistribution) and an implementation of
loopy Belief Propagation from [9]. We use scans collected
by Spectrum Observatory sites equipped with the CRFS
RfEye sensors. The scans were captured from 30MHz to
6GHz every 3 seconds with variable frequency resolution,
depending on the band. The sensors are equipped with a
multi-polarized receiver antenna that supports the entire
band from 25MHz to 6GHz. We use the following datasets.

Ground truth. To establish our ground truth, we use TV-
UHF spectrum scans (512-698MHz) collected by a stationary
RfEye sensor scanning the spectrum every 3 seconds with
a step of 160kHz. We establish the ground truth through
a two-step process that combines spectrum measurements
with information from several TVWS databases (FCC CDBS,
AntennaWeb, TVFool, Spectrum Bridge and iConnectiv). In
the first step we verify with the databases which channels
are allocated to broadcasters at a given sensor location.
In the second step we measure the spectrum to confirm
whether the allocated channels are actively used or not. We
found that five of all the allocated channels were in fact
idle. All of the non-allocated channels were measured as
idle. Following this two-step process we designate the active
and idle bands and use the so-established ground truth to
evaluate the accuracy of TxMiner detection.

Controlled. We utilize a few controlled transmissions
to evaluate TxMiner’s ability to detect custom transmitters.
We record traces from three modes of wide-range outdoors
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Fig. 9. (a) Occupancy and (b) bandwidth detection. TxMiner outperforms
edge detection in both occupancy and bandwidth accuracy. Edge detec-
tion fails in nearly 50% of the cases to accurately detect an occupied
channel. It often detects bandwidth where there is no active transmitter
or does not detect anything where there is an active transmitter.

WiMax transmission: one using 1.75MHz bandwidth, a sec-
ond using 3.5MHz and a third transmitting at 7MHz. We
also performed spectrum scans during on-campus wide-
range outdoor trials of FCC-certified white spaces radios
running proprietary DSA protocols. Both the WiMax and the
trial traces were collected with a stationary RfEye scanning
every 3 seconds with a frequency step of 160kHz.

Artificially mixed. We generate artificially-mixed signals
drawn from our TV-UHF ground truth. We intertwine over
the same frequency band different transmissions or alternate
transmission with idle period. By doing so we can emulate
single- or multiple-transmitter TDMA schemes, which al-
lows us to establish a ground truth set and quantitatively
evaluate TxMiner’s ability to detect multiple transmitters.

4.2 TxMiner performance

Occupancy detection. We begin our evaluation by ana-
lyzing occupancy detection. For this experiment we run
TxMiner on our ground truth data in 6MHz steps and calcu-
late the accuracy of occupancy detection. In each 6MHz bin
there are F samples, depending on the scan configuration.
For each of these samples we find if it is occupied or idle.
Our accuracy metric then captures the fraction of correctly-
detected samples divided by the total number of samples F .
Intuitively, an accuracy of 1 corresponds to correct detection
of an occupied TV channel, whereas and accuracy of 0
corresponds to a correct detection of an idle TV channel.
An accuracy between 0 and 1 indicates a failed detection.

Fig. 9(a) presents our accuracy results for occupancy
detection, where the blue markers correspond to TxMiner
and the red ones represent Edge Detection. TxMiner has a
detection accuracy of 0 or 1 and outperforms Edge Detection
in nearly 50% of the cases. For example, channel 23 is
idle but is surrounded by two low-power channels, thus
edge detection fails to recognize it, while TxMiner detects
it successfully. The reason for the poor performance of edge
detection is that it often fails to recognize a rising or falling
edge, which forces longer frequency spans to be incorrectly
recognized as idle or occupied.
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Fig. 11. Bandwidth detection in the radio FM band. TxMiner performs is
highly-accurate in detecting narrow-band transmissions.

Bandwidth detection. We evaluate TxMiner’s ability to
detect transmitters’ bandwidths. First, we run TxMiner on
our TV-UHF ground truth in 6MHz steps. At each step
we calculate the bandwidth of the detected transmitter.
Fig. 9(b) presents a comparison between TxMiner and Edge
Detection. The y-axis on the graph presents bandwidth ac-
curacy, defined as the ratio between detected and expected
bandwidth, where expected bandwidth is equal to 6MHz
(TV channel width in the US). As we can see, TxMiner
successfully detects the bandwidth of active transmissions
and detects a bandwidth of 0MHz where we have measured
no transmission or where there is no expected transmission.
At the same time Edge Detection often fails to detect the
bandwidth of active transmitters, or detects a 6MHz trans-
mitter in idle channels. The reason for the poor performance
of Edge Detection is that it often times fails to account for
a rising or falling edge, which results in larger areas being
detected as idle or occupied than there actually exist.

Next, we evaluate TxMiner’s capability to persistently
detect transmitter bandwidth. Particularly we look at the
TV-UHF band, three TDMA WiMax transmissions with
known bandwidths of 1.75MHz, 3.5MHz and 7MHz and
two proprietary TDMA DSA transmissions with band-
widths of 4MHz and 3.5MHz. For TV-UHF we present
average and standard deviation of detected bandwidth
across all the channels we identify as occupied. For all the
WiMax and DSA transmissions we present average and
standard deviation across five distinct periods from the
captured traces. All but the DSA2 scan periods are of 100s
duration. For DSA2 we use a 300s scan duration because the
TDMA nature of this transmission makes it so we cannot
capture enough transmission samples within 100s. Fig. 10
presents our results. TxMiner is persistently able to detect
the bandwidth of each transmitter type, as indicated by the
small standard deviation bars. Furthermore, the detected
bandwidths are very close to the expected bandwidths.

We also evaluate TxMiner’s performance on narrow-
band transmissions such as those in the FM-radio band.
Fig. 11 presents our results for accuracy of bandwidth
detection. In this experiment we ran TxMiner over the entire
FM band from 88MHz to 108MHz in steps of 400kHz.
The graph presents for each 400kHz chunk the bandwidth
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Fig. 12. Characterization with increasing number of transmitters.
TxMiner detects the increasing number of transmitters and outperforms
edge detection, which cannot identify more than one transmitter.

accuracy expressed as the ratio between detected bandwidth
and step size. As we can see, majority of the detected
channels have bandwidth accuracy of either 0.98 or 0.88,
which corresponds to a bandwidth of 392kHz and 352kHz,
respectively. The 392kHz bandwidths likely correspond to
HD radio transmissions, which occupy wider bands. The
352kHz transmissions correspond to stations that were
sensed with very strong signal, in which case we would see
the squelch tones as a separate peak. Finally, we see chunks
where bandwidth accuracy is lower. Those are likely to be
radio transmissions that were sensed with low power, thus
their bandwidth does not span the entire 400kHz band.

Transmitter type detection. As detailed in §3.5 we make
use of the variance of the time and frequency signatures of
a transmitter to determine its type. We now demonstrate
TxMiner’s ability to determine the transmitter type of our
ground truth transmissions. We focus on a TV broadcast
operating on channel 22 (518-524MHz). We use 20% of the
maximum signature to determine the variance thresholds.
For the TV broadcast THRF = 20 and THRT = 9.66.
The calculated variance of this transmitter’s signatures are
3.73 and 18.31 for time and frequency, respectively. Both the
variances are lower than the respective thresholds and thus
the transmitter is correctly identified as a broadcast.

Multiple transmitters. We evaluate TxMiner’s perfor-
mance with multiple active transmitters. To emulate such
scenarios we artificially mix and amplify measured signals.
Our first evaluation focuses on TxMiner’s ability to detect an
increasing number of transmitters of the same bandwidth.
For this experiment we mix over time measured signals
from the TV-UHF band and artificially amplify them by
adding 10, 15 or 20dBm. We then run TxMiner and count the
number of detected transmitters. Fig. 12 plots the number
of detected transmitters as a function of the number of
expected transmitters. We present three results for TxMiner
averaged over five runs and compare TxMiner’s perfor-
mance with Edge Detection. As we can see, TxMiner outper-
forms edge detection. The reason for the poor performance
of Edge Detection is that it only considers an average of
the measured signal and unlike TxMiner, does not take
into account the time-frequency properties of the signal.
In contrast, TxMiner is capable of detecting the number of
transmitters with high accuracy. The accuracy of TxMiner is
lower with 10dBm margin, where the algorithm sometimes
fails to differentiate between transmitters.

Next we evaluate TxMiner’s ability to extract multiple
transmitters with variable bandwidths. For this experiment
too we use artificially mixed and amplified signals. We
study two cases of spectrum occupancy presented in Fig. 13.
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Fig. 13. Multi-transmitter evaluation scenarios.

TABLE 2
Detection of multiple transmitters.

TX 1 TX 2 TX 3
E.BW
(MHz)

D.BW
(MHz)

E.BW
(MHz)

D.BW
(MHz)

E.BW
(MHz)

D.BW
(MHz)

Case1 6 5.84 3 2.84 1.4 1.26
Case2 4.375 4.26 2.34 2.68 0.78 0.63

Each of these cases includes a different configuration of
three transmitters. In case 1 we have a 25 second transmis-
sion with 6MHz bandwidth, followed by two concurrent
transmissions, one 3MHz wide and one 1.4 MHz wide
and separated by an idle zone. The second case features
three consecutive transmissions each of 25 seconds. Table 2
presents for each case and each transmitter the expected
and the detected bandwidth (E.BW and D.BW, respectively).
TxMiner successfully detects all the expected transmissions
and is also accurate in detecting their bandwidths.

4.3 Impact of scan duration

In this section we evaluate the impact of scan duration
on the accuracy of occupancy detection. The presented
results indicate how quickly can TxMiner begin detecting
transmitters after a spectrum scan is initiated. To this end,
we run TxMiner on all the channels in the TV UHF band
while changing the number of time samples we consider. We
start with a scan duration of 3 seconds, which in our setup
corresponds to two sweeps, and double the scan duration
up to 192 seconds (65 sweeps). Fig. 14 presents average and
standard deviation of accuracy (as calculated in §4.2) over all
the TV channels for each scan duration. Even for small scan
durations the average accuracy is high which indicates that
TxMiner can detect transmitters successfully even after two
frequency sweeps. Notably, the deviation across channels
for small scan times is high as well, which would not be de-
sirable for stable performance across various scenarios. This
deviation depends on how noisy the channel is: intuitively
the more noisy the channel the more samples TxMiner needs
in order to perform accurate transmitter detection. As the
scan duration increases up to 96 seconds (33 sweeps), we
see that the standard deviation becomes minimal, which in-
dicates that Txminer can persistently achieve high accuracy
in about 33 sweeps across different transmission scenarios.

5 CREATING A SPECTRUM INVENTORY

We now put together the Spectrum Observatory’s measure-
ment capabilities and TxMiner’s spectrum analytics to cre-
ate a RF inventory that gives information about transmitter
characteristics over frequency, time and space. Specifically,
we utilize data collected by the Spectrum Observatory over
a day at a single location and seek transmitter patterns. We
present results from wide-band and long-term analysis of
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Fig. 14. Accuracy with increasing scan duration. TxMiner has high detec-
tion accuracy with scan durations as short as 3 seconds (2 sweeps). The
stability of transmitter detection across different channels, regardless
how noisy they are, is guaranteed at 96 seconds duration (33 sweeps).
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Fig. 15. Number of transmitters (a) and transmitter type (b) detected over
a wide frequency range. TxMiner detects multiple transmitters in a single
1MHz chunk in bands that are characterized with narrow-band trans-
missions. It also detects wide-band transmitters by extracting a single
transmitter in each 1MHz chunk of a contiguous band. Lastly, TxMiner
identifies transmitter type in bands occupied by a single transmitter.

spectrum occupancy using TxMiner. First, we map spectrum
occupancy by analyzing the number of transmitters and
their type over wide frequency band. We then propose
a technique to detect rogue transmitters and utilize it to
detect a rogue transmitter in the Spectrum Observatory
traces. Finally, we make a case for TxMiner-based support
of DSA systems through longitudinal analysis of the DSA
opportunity in parts of the UHF band.

5.1 Mapping spectrum occupancy.

When mapping spectrum occupancy, it is important to look
at occupancy states both over a wide frequency range as
well as over long time. We now demonstrate TxMiner’s
capability to support such analysis.

Mapping number of transmitters. Our analysis of
number of transmitters focuses on two frequency bands:
30-173MHz and 700-900MHz. We choose these bands to
demonstrate TxMiner’s ability to detect the number of trans-
mitters in bands that are typically occupied by narrow-band
transmitters such as 30-173MHz and parts of 700-900MHz
and other characterized with wide-band transmitters such
as portions of 700-900MHz band. Fig. 15(a) plots the number
of transmitters detected in each 1MHz chunk. In ranges that
are characterized with narrow-band transmissions TxMiner
detects up to 4 transmitters in a single 1MHz chunk. In con-
trast, where wide-band transmitters are present, TxMiner
detects contiguous 1MHz chunks as occupied by a single
transmitter.

Transmitter type detection. Along with transmitter
count we utilize TxMiner to detect transmitter type in a
wide frequency band. Fig. 15(b) presents a bar-graph with
detected transmitter types in 1MHz chunks occupied by
a single transmitter. Each bar presents the percentage of
transmitter types detected in the two frequency bands of
interest. As we can see, majority of the transmitters in both
bands are broadcast. We observe a higher percentage of
TDMA, FDMA and frequency hopping transmitters in the
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700-900MHz band in comparison with the 30-173MHz band.
This can be explained with the nature of the incumbent
transmitters in these bands: while 30-173MHz is character-
ized with narrow-band broadcasts such as FM radio, the
700-900MHz band hosts technologies such as public safety
land mobile communications3 that are non-broadcast.

5.2 Identifying rogue transmitters

To illustrate TxMiner’s capability to detect rogue transmit-
ters we define rogue coefficients Cβ and CT that capture the
likelihood that the transmitter sensed in a time-frequency
chunk is rogue by analyzing the bandwidth β and active
time T of the detected transmitter. Towards this end we re-
quire prior knowledge of the characteristics of the transmit-
ter that is expected to operate in a given band. We note that
such prior knowledge can be obtained by considering the
previous transmitter characteristics discovered by TxMiner.
Thus, our rogue coefficients captures the difference between
the expected and the detected transmitter characteristics
as Cβ = βd/βe and CT = T /Te, where βd and βe are
the detected and expected transmitter bandwidth, while Td
and Te are the detected and expected active time. These
coefficients vary between 0 and 1, where 1 indicates that the
detected and expected transmitters are the same, 0 indicates
that there is no transmitter, where a transmitter is expected
and anything between 0 and 1 indicates that the detected
and expected transmitters are different. Of note is that this
method does not consider the time-frequency characteristics
of the sensed transmitter; that is, if a rogue transmitter has
the same active time pattern as an incumbent but transmits
at different times it will not be recognized. We leave more
robust detection of rogue transmitters as a future work.

We calculate the rogue coefficient for all TV bands and
identify that one TV channel is occupied by a non-TV trans-
mitter. The channel in question is channel 20 (506-512MHz),
for which TxMiner calculates rogue coefficients Cβ = 0.61
and CT = 0.22. While the expected transmitter here is a
TV broadcast with 6MHz bandwidth and continuous active
time, the detected transmitter exhibits different characteris-
tics as captured by the rogue coefficients. A closer look at
the occupant indicates that the transmitter has a bandwidth
of 4MHz and transmits in a TDMA fashion.

5.3 Support for DSA systems.

Dynamic spectrum access is a concept most often applied
in the context of TV White Spaces, where the primary
transmitters have stationary behavior. Thus, these bands
are well-suited for database-driven management. There are
plethora of radio bands such as radar and satellite that
are seldom used by their incumbents and provide a great
opportunity for dynamic spectrum access. However, these
bands pose challenges in operation of secondary users due
to the highly-dynamic nature of incumbents. In order for
secondary users to fully utilize the potential of these bands
they need a mechanism to evaluate the transmission oppor-
tunity in both frequency and time by assessing not only if
there is an incumbent but also how much bandwidth and
time does it occupy and whether the temporal occupancy
patterns are predictable or not. TxMiner can provide such

3. http://www.ntia.doc.gov/files/ntia/publications/4b 5 11 0.pdf
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Fig. 16. Characteristics of a single TDMA transmitter over 24 hours.
TxMiner successfully identifies transmitter bandwidth and active time
over a long period, and can thus inform DSA technologies about the
transmission opportunity in a given frequency band.

information. To illustrate how, we analyze one proprietary
DSA transmission that exhibits TDMA behavior.

Fig. 16 presents our analysis of a 6MHz band (506-
512MHz) over 24 hours. TxMiner identifies a single trans-
mitter in this band that is sensed at -94dBm (graph omitted
due to space limitations). Furthermore, this transmitter is
active for about 20% of the entire 24-hour period. We
analyze the frequency and temporal characteristics of this
transmitter in Fig. 16(a) and 16(b). In analyzing the temporal
characteristics we consider three metrics: (i) the active time
duration, (ii) the active time cycle, that is the time from the
beginning of one active period to the beginning of the next
active period, and (iii) the gap between consecutive active
times, that is the time between the end of one active period
and the beginning of the next. In Fig. 16(a) we plot a CDF
of the average active time, cycle and gap in intervals of 100s
over the 24-hour period. Since the transmitter is active only
20% of the time, 80% of the values are zero. Based on the
values that correspond to transmitter activity we can see
that the average duration has a median of 5 seconds and
does not vary much over different 100 seconds snapshot.
In contrast, the gap has a median of 9 seconds, which is
larger than the active time, and varies significantly (from
5 to 42 seconds). Lastly, the cycle has a large variation
(between 9 and 48 seconds). These temporal characteristics
indicate that the observed transmission is a-periodic and
the transmitter is inactive for a larger fraction of the time.
Finally, we analyze occupied bandwidth. Fig. 16(b) plots the
ratio of detected bandwidth vs. analyzed bandwidth (which
is 6MHz in this analysis) in each 100s period. As we can see,
the fraction of occupied bandwidth is persistently around
0.6, which indicates that 40% of the analyzed band is idle.

This analysis can inform a secondary DSA transmission
as follows. Since the incumbent is only present 20% of the
time, the secondary transmitter can use the entire band
for transmission in 80% of the day. In periods where the
incumbent is active, due to its a-periodic nature, it would
be hard to predict opportunities for secondary transmission
without real-time sensing. Depending on the sensing effi-
ciency of the secondary transmitter, it can decide whether to
opt for sensing and transmission based on the average gap
duration supplied by TxMiner. Finally, 2MHz of the 6MHz
analyzed band is persistently available, thus the secondary
transmitter can decide to utilize this portion continuously
without the need of complex sensing techniques if this
would satisfy the application requirements.
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6 RELATED WORK

Prior work on spectrum analysis can be classified into 3 cat-
egories: wide band spectrum occupancy analysis, envelope
detection for identifying unknown signals, and detecting
transmitters with known signatures.

Several studies have analysed large scale spectrum mea-
surements to identify portions of spectrum that are not
used [11, 17], or identify patterns of primary users such that
unused spectrum can be opportunistically reused [3, 10].
This body of work assumes no knowledge about the trans-
mitter. They typically apply a threshold for noise, and any
signal above this threshold is assumed to be occupied,
anything below is assumed to be free. [3] analyses spectrum
from China, and models the arrival of users in the cellular
bands. [10] analyses spectrum from 30 MHz to 6 GHz, and
studies opportunities for dynamic spectrum access in these
bands. [15] features unsupervised separation of spectrum
utilization patterns to inform efficient and adaptive spec-
trum sensing. However, none of these works share the goal
of TxMiner, and are unable to extract detailed transmitter
characteristics from a wideband spectrum trace.

Another set of techniques, which is primarily used by
practitioners, is to tease apart unknown transmissions from
known transmitters. This is frequently used to identify
interferers in the spectrum, for example, in the wireless
carrier spectrum. The most common technique is that of
envelope detection [6]. A circuit (or these days software)
tries to fit a curve around the max-hold (or mean) of signals.
Although this technique is useful in determining anomalies
in the curves, it does not provide much insight into the
distributions that make up the max-hold or mean.

Most closely related to our work are SpecNet [8], DoF [7],
AirShark [14] and DECLOAK [13]. SpecNet is a system
for large-scale spectrum measurements, which harnesses
high-end spectrum analyzers contributed by SpecNet par-
ticipants and provides basic functionality for SNR-driven
occupancy detection. In contrast, our Spectrum Observatory
makes use of lower-end spectrum sensors and incorporates
TxMiner for advanced transmitter characterization. DoF
builds cyclostationary signatures for different transmitters
in 2.4 GHz, such as Wi-Fi, Bluetooth, etc., and mines spec-
trum data for these signatures to determine the users of
the spectrum. AirShark tried to solve a similar problem,
but using commodity Wi-Fi chipsets. DECLOAK focuses
on OFDM transmissions only and uses a combination of
cyclostationary features with Gaussian Mixture Models to
extract transmitter characteristics. While all three techniques
are useful, they only work when the transmitter patterns
are known. TxMiner takes the next step, and identifies
transmitters when their patterns are not known.

7 DISCUSSION & FUTURE WORK

To summarize, this paper presents the Spectrum Observa-
tory, a system that collects, analyzes and shares spectrum
measurements from multiple locations. A key feature of
the Spectrum Observatory is its ability to perform detailed,
unsupervised transmitter characterization by the use of our
novel machine learning method called TxMiner. We use
TxMiner to create a spectrum map that features transmit-
ter count and characteristics. We demonstrate detection of
rogue transmitters and analysis of DSA opportunity in

licensed bands. Although the knowledge gleaned by the
Spectrum Observatory and TxMiner is very useful, it is
still the first step. We believe that there is a need for more
fundamental research contributions both in spectrum mea-
surement infrastructures and in spectrum characterization.
We list some of our research efforts in this direction below.

Spectrum measurement infrastructures: While station-
ary spectrum observation is intuitive first step towards
spectrum characterization, there are several limitations of
this approach, including (i) limited view of spectrum oc-
cupancy, (ii) inability to perform advanced detection (e.g.
transmitter localization) and (iii) poor scalability in achiev-
ing ubiquitous spectrum sensing and characterization. A
promising future direction we are currently exploring is
that of a hybrid fixed and mobile (dedicated or crowd-
sourced) measurement infrastructure, whereby part of the
spectrum scanners are fixed, while others are mobile. Such
measurement infrastructure addresses the above limitations
and introduces a plethora of research challenges related to
storage, processing and characterization of spectrum data
from heterogeneous sensors. Beyond sensing and character-
ization, a fully-fledged spectrum infrastructure should pro-
vide for a variety of services including policy, technology,
research and enforcement. While the Spectrum Observatory
caters to policy and research, it requires further advances
to support real-time DSA technology and enforcement. This
requires the design of APIs and flexible sensor configuration
to cater to the different timeliness requirements of these
applications.

Advanced spectrum occupancy characterization: While
TxMiner is the first method to achieve unsupervised char-
acterization of spectrum occupants, there remain multiple
research problems to be further explored. One such is
transmitter collocation. Since TxMiner looks at power profiles
of transmitters, it is unable to distinguish two collocated
transmitters with similar power profiles. In such cases the
two transmitters together will be classified as a single trans-
mitter. To this end we can incorporate prior knowledge
of the occupants’ characteristics to determine the number
of active transmitters. Second, TxMiner does not feature
detection of mobile transmitters. We note that the properties of
signal distributions can be applied to this problem as well.
Particularly, the signal distributions of mobile transmitters
are different than those of static in that they change over
time depending on the speed and direction of the transmit-
ter with respect to the RF sensor. Using this observation,
we are designing methods for identification of mobility and
speed. Lastly, TxMiner does not incorporate prior knowledge of
transmitter characteristics. Previous work [7, 14] has looked
at identifying transmitters with known temporal signatures.
TxMiner can leverage such approaches to eliminate known
transmitters from spectrum scans and focus on unknown
transmitters, thus improving detection time and accuracy.

Despite these limitations, the current implementation
of the Spectrum Observatory and TxMiner revolutionizes
spectrum mapping by allowing extraction of transmitter
count and characteristics, detection of rogue transmitters
and identification of opportunities for dynamic spectrum
access. Our future research efforts will open doors toward
efficient use and better understanding of spectrum bands.
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