
AirLab: Consistency, Fidelity and Privacy in Wireless
Measurements

Vinod Kone, Mariya Zheleva, Mike Wittie,
Ben Y. Zhao, Elizabeth M. Belding, Haitao Zheng, Kevin C. Almeroth

Department of Computer Science
University of California, Santa Barbara

{vinod, mariya, mwittie, ravenben, ebelding, htzheng, almeroth}@cs.ucsb.edu

This article is an editorial note submitted to CCR. It has NOT been peer reviewed. The author takes full responsibility for this
article’s technical content. Comments can be posted through CCR Online.

ABSTRACT
Accurate measurements of deployed wireless networks are vital
for researchers to perform realistic evaluation of proposed systems.
Unfortunately, the difficulty of performing detailed measurements
limits the consistency in parameters and methodology of current
datasets. Using different datasets, multiple research studies can ar-
rive at conflicting conclusions about the performance of wireless
systems. Correcting this situation requires consistent and compara-
ble wireless traces collected from a variety of deployment environ-
ments. In this paper, we describe AirLab, a distributed wireless data
collection infrastructure that uses uniformly instrumented measure-
ment nodes at heterogeneous locations to collect consistent traces
of both standardized and user-defined experiments. We identify
four challenges in the AirLab platform, consistency, fidelity, pri-
vacy, security, and describe our approaches to address them.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions—Network Monitoring; C.4 [Computer Systems Organiza-
tion]: Performance of Systems—Measurement Techniques

General Terms
Measurement, Performance

Keywords
Wireless measurements, Airlab

1. INTRODUCTION
Accurate measurements of existing wireless networks are vital

for researchers to perform realistic evaluation of proposed systems,
and to identify and address their limitations. Given the expense
and effort required to develop a data collection platform, deploy it
in a network, and collect wireless measurements, most researchers
form conclusions by relying on observations made from only a
small number of (often only one) measurement traces. As a result,
observations are often inconsistent across different networks, lead-
ing different researchers to draw potentially conflicting conclusions
across their studies.

Significant progress has been made in improving the availability
of wireless traces. The Community Resource for Archiving Wire-
less Data at Dartmouth (CRAWDAD) project1 has made notable
1http://crawdad.cs.dartmouth.edu/

headway in the gathering of data sets collected from functional
wireless deployments. Currently, the archive contains over 60 data
sets from a wide variety of networks, including university cam-
puses, conferences, academic departments, buses, cars, hotspots
and testbeds. The data contains measurements of 802.11 networks,
as well as Bluetooth, 802.15.4, and CDMA 1x EVDO.

While this wealth of information has become an invaluable re-
source to the wireless networking community, the inherent usability
of CRAWDAD data is fundamentally limited by the lack of consis-
tency in measurement parameters and measurement methodology
across traces. Should a researcher want to confirm the presence of
an observation in her measurement trace, it is extremely difficult,
if not impossible, to find one (or more) similar traces gathered on
a comparable type of network using a desired set of parameters.
Even if the researcher manages to locate such a trace, it is likely
that the desired metric of interest is missing from the second trace,
thereby preventing any meaningful cross-comparison of network
deployments. Hence, while each of these traces is useful in their
own right, it is difficult, if not impossible, to draw any conclusions
about the comparative operation of the networks. For example, of
the 60 CRAWDAD datasets we examined in October 2009, 10 in-
cluded data on indoor 802.11x networks. Of these 10 datasets, only
2 (NIIT/biterrors and Rutgers/capture) provide data on packet loss
rates. But even these two are not comparable, given significant dif-
ferences in drivers used (Prism II vs. MadWifi) and measurement
methodology (driver modification vs. external sniffer).

To facilitate meaningful analysis of wireless networks, we need a
way to collect measurement traces across a wide variety of network
deployments, all using a consistent set of measurement metrics.
The metrics should encompass a broad range of measurement types
to maximize their utility to wireless researchers in different sub-
fields. It is only through collection of a broad set of metrics from a
variety of network deployments that we, as researchers, can deepen
our knowledge of the operation of these networks.

A widespread multi-faceted data collection will provide multi-
ple viewpoints of similar networks, enabling deeper understanding
of network characteristics such as self- and exterior- interference
properties, spectrum usage, and network traffic loads. Further, data
collected across a variety of heterogeneous network types and traf-
fic loads, such as university, corporate, and home environments,
will facilitate cross-comparison of observed network phenomena
within each of these settings.

To address the critical need for comparable, consistent wire-
less measurement traces, we propose AirLab, a distributed infras-

ACM SIGCOMM Computer Communication Review 60 Volume 41, Number 1, January 2011



AirLab Central

Query/
Search

User
Scripts

AirLab
Nodes

Local Users

DB Scheduler

Figure 1: AirLab Architecture. AirLab includes measurement
nodes located at member sites that perform local measurements
and send traces back to AirLab Central. Users can query the
collected data, as well as schedule customized measurement
tasks written as scripts calling AirLab’s measurement API.

tructure for wireless measurements. AirLab is an effort to deploy
uniformly instrumented wireless measurement nodes spanning the
globe at multiple educational and research institutions, as well as
private homes. Each AirLab site runs one or more AirLab nodes,
each a standalone wireless-enabled mini PC running Linux and a
customized wireless measurement API stack. All nodes perform a
core set of ongoing periodic passive measurements to study long-
term wireless properties. Collected data is streamed to AirLab Cen-
tral, a central data repository and management facility. In addi-
tion to standardized ongoing measurements, AirLab Central allows
partners to implement, schedule, and perform customized measure-
ment experiments across multiple sites using high level measure-
ment scripts.

In designing the AirLab architecture, we focus on achieving four
critical goals:

1. Consistency. To ensure comparability of data traces collected
from multiple locations, all AirLab nodes run uniform soft-
ware stacks from the OS to the measurement API, and use
identical wireless cards.

2. Fidelity. We want to maximize the number of simultane-
ous user-scheduled experiments performed by AirLab with-
out sacrificing measurement fidelity.

3. Privacy. AirLab partner sites ensure that measurement data
sent to AirLab Central does not compromise the privacy of
local wireless users or their data transmissions.

4. Security. Since AirLab supports user-written measurement
scripts, it protects against accidental or intentional misuse of
the platform.

We have completed the high level design of the AirLab archi-
tecture, and are currently developing and testing the software mea-
surement stack for AirLab measurement nodes. We began local site
deployment and measurement tests at UCSB in January 2010, with
planned deployment to external partner sites in US and UK in fall
2010.

In the remainder of this paper, we describe the AirLab architec-
ture, challenges, and mechanisms.

2. AIRLAB ARCHITECTURE
AirLab is designed as a distributed measurement platform with

wireless measurement nodes deployed at participating institutions

distributed around the globe. It aims to produce a reliable, dis-
tributed platform for gathering consistent wireless measurements
from heterogeneous deployment settings. The AirLab infrastruc-
ture is organized as a loose confederation of remote measurement
sites, all controlled and managed through a central site (AirLab
Central) located at UC Santa Barbara. Like the PlanetLab Inter-
net testbed [7], each participating site hosts at least one AirLab
measurement node. Unlike PlanetLab which allows users to ex-
ecute arbitrary programs, AirLab restricts experiments to passive
and active measurements of the local wireless environment through
controlled interpretation of user scripts. A high level picture of the
AirLab architecture is shown in Figure 1.

Deployment. Uniformity and consistency across measurement
results are ensured because all AirLab measurement nodes in our
initial deployment share the same hardware and software config-
urations. Each node is a mini PC with three 802.11 radios and a
customized software stack (Section 4). Nodes use each wireless in-
terface to search for local 802.11 networks, and monitor different
channels within each network. We initially focus on 802.11 be-
cause of its ubiquity. Once the platform has matured, however, we
plan to explore integration of more advanced hardware platforms
such as USRP GNU Radios. We expect to deploy AirLab nodes in
a variety of wireless settings, including university departments, re-
search labs, and private homes. Most sites will deploy nodes within
buildings, while the rest might deploy nodes in open air environ-
ments (e.g. covered parking garages). Sites will vary significantly
in AP density, interference levels, and traffic volume.

Access Control and User Management. Like PlanetLab, mem-
bership is managed on a per-site basis. Local PIs at each deployed
site have the ability to create and manage a fixed number of user
accounts. Unlike PlanetLab, however, AirLab is not a full experi-
mental testbed. Users do not have remote login access to AirLab
nodes. This restriction allows administrators to maintain greater
control over scheduling and admission control, leading to improved
stability and resource utilization.

Functionality. AirLab nodes support both continuous passive
measurements of a set of baseline metrics, as well as user-defined
measurement metrics. We define a set of measurements that col-
lect baseline traces of interesting wireless channels in local envi-
ronments. User-defined measurement scripts are uploaded from
AirLab Central to remote measurement nodes and executed locally.
Resulting data traces are uploaded to AirLab Central, imported into
a central database, and processed to generate user-defined statistics.
Users can perform queries on anonymized traces and statistics.

3. MEASUREMENT FRAMEWORK
AirLab provides a distributed infrastructure for consistent and

comparable wireless measurement experiments. At a high level,
AirLab supports both baseline and user-defined measurements.

Baseline Measurements. Baseline measurements at AirLab nodes
are a key contribution to the AirLab framework. The goal of base-
line measurements is to continuously and passively monitor the
local wireless network for extended periods of time. Such mon-
itoring will help researchers to analyze and understand the short-
term and long-term network dynamics of a wide-variety of wireless
deploymnets. Large-scale analysis of different networks and their
evolution is not possible without uniformly collected traces. In ad-
dition to the collection of raw traces, we also compute and store a
predefined set of baseline metrics useful to researchers. Our initial
set of metrics include channel load, number of active access points
and users, packet loss, control traffic overhead and average RSSI

ACM SIGCOMM Computer Communication Review 61 Volume 41, Number 1, January 2011



Figure 2: Baseline experiment visualization. The node scans
active channels 1, 6 and 11 and picks the highest utilized chan-
nel 11 for recording baseline data.

values. These baseline metrics will continue to evolve throughout
the course of the project based on the needs of our participating
partners and users.

One of the challenges in our baseline measurement collection
will be ensuring collection of “interesting” data sets. Configured
naı̈vely, our AirLab measurement nodes could initialize to a de-
fault channel, and proceed to collect data on that channel regard-
less of its utilization. Instead, we are exploring a simple alternative
where our measurement nodes scan all available channels, and col-
lect data on the channel with the highest utilization. Figure 2 illus-
trates our baseline measurement process at a high level. The x-axis
shows time and the y-axis shows a baseline metric, here channel
load, averaged over one second buckets. The distinct lines show
the radio moving across multiple channels, scanning each for sev-
eral seconds to detect short term utilization. In this case, channel
11 shows the highest load, and is selected for longer observation.
Thus all baseline metrics will be collected on channel 11 for the
next measurement period, until the next periodic scan. To adapt to
the network dynamics, AirLab nodes periodically scan the network
every hour and monitor the highest loaded channel. To avoid being
interrupted by user-defined measurements, one of the three radio
interfaces on each AirLab measurement node is always dedicated
for baseline measurements.

User-defined Measurements. In addition to the baseline passive
measurements, AirLab provides users with the ability to design and
execute their own passive or active measurements, which can be
scheduled either for a specific time or to be triggered by specific
events or wireless conditions. Instead of users logging in locally
and loading their own code on each measurement node, AirLab
provides a Core Measurement API (Section 4) that users can utilize
to compose their measurements. We provide users the flexibility to
write their measurement experiments in any scripting language2,
submit it to AirLab Central’s scheduler and receive results asyn-
chronously when they complete. Since one interface is dedicated
to baseline measurements, user-defined measurements can only ac-
cess two of the three interfaces.

In return for constraining user measurement tasks, AirLab gains
several key advantages. First, because measurement tasks are sched-
uled, AirLab can use admission control to ensure that each mea-
surement task is allocated its minimum required time slice, and
to eliminate resource conflicts between multiple tasks. Second,

2Our current codebase supports Python, with support for other lan-
guages en route.

Figure 3: AirLab Measurement Node.

we believe most user-defined tasks only need to perform measure-
ments on a periodic or as-needed basis. Scheduling allows AirLab
to co-schedule compatible measurement tasks together on the same
nodes, thus maximizing node utilization through time-based mul-
tiplexing. For example, one task performing channel sensing and
another task measuring link loss on the same channel can inter-
leave their measurements without causing conflicts. Finally, since
users cannot log in or modify software, this greatly simplifies the
task of securing AirLab nodes and helps to improve their stability
and availability. We discuss the security and privacy issues in more
detail in Section 5.

User Interface. Users interact with AirLab via a Web interface to
manage experiments and the data they collect. To create an exper-
iment, a user selects a measurement script, configuration options,
and metrics. Configuration options declare whether the experiment
is active or passive, specify radio interface and channel, as well as
experiment start time, or trigger and experiment duration. Finally,
the user selects measurement nodes, on which the experiment is to
be scheduled.

Each experiment is associated with one or more metrics. AirLab
offers several common metrics of interest in baseline experiments.
Users can define their own metrics using either tshark statistics
via the -z option, or use custom scripts that compute metrics from
a pcap file.

4. IMPLEMENTATION

4.1 AirLab Central
AirLab Central is served by a DELL PowerEdge R510 with 12GB

of memory running CentOS, initially configured with 12TBs of
RAID 1 storage for collected traffic traces and computed metrics.
Initial estimates suggest this amount of storage can support base-
line experiments in the initial deployment of 20 nodes for at least
12 months. Beyond this, we have plans to expand storage capacity
and to assure data persistence via off-site backups.

Collected data, calculated metrics, and all user and experiment
settings are stored in a MySQL database. A Python-based Django
Web application server handles user requests from the Web in-
terface as well as remote interactions from AirLab measurement
nodes. To assure security of raw packet captures, trace files are
send from measurement nodes to AirLab Central over encrypted
connections and are anonymized immediately upon arrival using
PktAnon [4]. Tshark, or user-defined scripts are then used to
calculate metrics from the anonymized traffic. These metrics are
stored in the database then displayed on AirLab Central Web inter-
face via Multi-Router Traffic Grapher (MRTG) plots.

4.2 Measurement Nodes
The core of an Airlab measurement node is Twitter-31270A, a

custom embedded network platform from Hacom [1], with 1.6 GHz
Intel Atom CPU, 1 GB RAM, and a 32 GB Compact Flash and 160

ACM SIGCOMM Computer Communication Review 62 Volume 41, Number 1, January 2011



GB Hard Drive for storage. The platform also includes two Mini-
PCI Express slots where we installed two 802.11 a/b/g/n cards, and
one Mini-PCI with a 802.11 a/b/g card installed. All NICs are con-
nected to dual-band rubber duck external antennae for improved
communication (See Figure 3). We chose this specific platform for
its small-foot print, manageability and support for multiple wireless
NICs.

Hardware Limitations. We conducted multiple in-lab experi-
ments to test the capability of our multi-radio platform. Our exper-
iments were designed to answer four questions:

• Can the wireless NICs capture all the traffic when the wire-
less channel is saturated with traffic at 54 Mbps?

• Are the signal strength measurements reported by the cards
stable and consistent?

• What is the impact of crosstalk on the closely spaced wireless
NICs?

• What is the impact of heterogenous wireless interfaces, PCI
vs PCI-Express?

In our experiments, we configured four laptops as two pairs of
adhoc links communicating on orthogonal and isolated 802.11a
channels (Channels 48 and 64). The two transmitters used iperf to
continously send UDP traffic at a constant rate to their respective
receivers. The AirLab node was placed nearby the two transmitters
and had line of sight with all 4 laptops. Each of the 3 wireless NICs
of the AirLab node was either monitoring channel 48 or monitoring
channel 64 or powered down. We tested with several combinations
of interfaces and monitoring states and analyzed the traces. The
take-away results from our analysis are as follows:

First, all three interfaces can simultaneously capture wireless
traffic even when their respective channels are saturated. With 54
Mbps traffic, PCI-Express cards captured 99% and PCI card cap-
tured 97% of all the traffic. We believe the slightly worse perfor-
mance of PCI is due its slower bus speed compared to PCI express.

Second, RSSI values reported by the cards are not impacted when
the cards are monitoring different channels. But, when two or more
cards are operating on the same channel, we observed fluctuations
in the RSSI, in some of our experiments. This implies that crosstalk
impacts the NICs when operating on the same channel.

Third, all wireless interfaces reported stable RSSIs, though the
absolute values differed from NIC to NIC. We found that this was
due to the sensitivity of hardware to slight orientations of antennae
and connector cables between the external antennae and the NICs.

Consequently, we made the following design decisions

• The PCI interface is dedicated for baseline measurements,
and the PCI-Express interfaces are dedicated for user-defined
measurements.

• No two interfaces are allowed to operate on the same channel
at the same time.

• If an active measurement is running on an interface, the other
two interfaces should not run any measurements for the du-
ration of the active experiment.

• RSSI measurements need to be calibrated once the nodes are
deployed at remote sites to account for hardware sensitivity.

Software Stack. All AirLab nodes run the desktop edition of
Ubuntu 10.04 Linux with a custom software stack shown in Fig-
ure 4. The AirLab measurement library makes use of multiple

802.11a/b/g/n NICs
Linux + Atheros Drivers

AirLab Measurement Library

Script
Scheduler

User Scripts Baseline 
Measurements

libpcap libnet

CAPI

Figure 4: AirLab Software Stack. Each node has a measure-
ment library on top of MadWifi Atheros drivers. A scheduler
receives user scripts from AirLab Central, schedules measure-
ments and uploads traces. User scripts are executed alongside
AirLab’s basesline measurements.

libraries such as libpcap, libnet, and the MadWifi drivers
(ath5k and ath9k) for interacting with wireless devices and com-
municating with the local WiFi network. The Script scheduler is
a core component of the AirLab node, which is responsible for
scheduling measurements and communicating with AirLab Central
to upload traces and receive new measurements.

Core Measurement API. AirLab includes a Core measurement
API (CAPI), exposed by the measurement library, to support pas-
sive or active user-generated measurement experiments. CAPI al-
lows users to configure and perform customized passive and active
measurement tasks, using a standard API across all AirLab nodes.
CAPI provides AirLab users with a high-level and easy-to-use in-
terface, shielding them from the complexity of the underlying radio
hardware. Users can design measurements on specific channels, in-
terfaces and time periods, and use timers or conditional events to
trigger measurements.

For passive measurements, AirLab nodes behave like sniffers
that monitor and collect network information. CAPI makes AirLab
nodes significantly different from conventional sniffers by allowing
AirLab users to configure customized measurement tasks, and by
allowing multiple measurement tasks to execute concurrently. For
passive transmissions, AirLab produces the measurement dataset
by using libpcap to capture packet headers from each ongoing
measurement.

In addition to being able to passively monitor a network, AirLab
nodes can inject test (or application) packets into a network to mea-
sure the service obtained from the network. For these active mea-
surements, CAPI uses libnet to generate and send custom traffic
generated by the user. Currently, AirLab supports sending TCP,
UDP and Ping packets. Additionally, CAPI interfaces with popular
traffic generator tools like iperf, netperf and httperf to give users the
flexibility to generate bulk traffic. For active measurements, CAPI
sets the corresponding wireless interface into Station mode and
connects to one of the APs in the neighborhood. A custom network
manager scans all the nearby APs, and connects to an AP for which
it has access credentials.

4.3 Scheduling
With both passive and active measurements running on AirLab,

we must carefully schedule their execution to a) maximize the num-
ber of experiments supported by a fixed AirLab infrastructure, b)
minimize overhead on local networks imposed by measurements,
and c) provide flexibility for users to specify their experiment con-
ditions.

ACM SIGCOMM Computer Communication Review 63 Volume 41, Number 1, January 2011



As noted earlier, users can schedule data collection experiments
as either time-based or event-triggered. Time-based scheduling can
provide information relevant to daily usage patterns. To schedule a
time-based measurement task, a user specifies the start time period
T and duration D for which the experiment should run. On the
other hand, event-triggered collection occurs when user-specified
network conditions are met. One example of such an event is:
“when the channel load of the network is at least 2 Mbps, collect
traces for time period D.”

Scheduling in AirLab is divided between AirLab Central (Cen-
tral Scheduler) and measurement nodes (Script Scheduler). The
central scheduler is responsible for selecting and coordinating mea-
surements across different measurement nodes. Once the required
nodes are identified, the central scheduler pushes the measurement
scripts to those nodes. Only a selected subset of nodes to which the
measurement scripts are pushed might be informed to actually run
the experiments. This is useful for event-triggered measurement
tasks for which the feasibility of schedulability cannot be deter-
mined beforehand. For time-based experiments, the central sched-
uler can deny a new user-defined measurement if it cannot find a
place for the experiment in its schedule. The Central Scheduler re-
lies on proactive updates from measurement nodes to maintain a
consistent schedule of all measurement nodes in its database.

The responsibility of a local script scheduler is to schedule mea-
surements pushed to its node, execute them and upload the result-
ing traces back to AirLab Central. It creates and maintains a local
schedule for each local wireless interface. When the scheduler re-
ceives a new time-based experiment, it schedules the experiment
if doing so does not introduce conflicts with previously scheduled
experiments. If conflicts arise, the measurement is rejected and a
report sent back to AirLab Central. In contrast, an event-triggered
experiment is put on a wait list, and periodically checked to see if
its trigger conditions are satisfied. The scheduler maintains a ta-
ble of statistics for all the 32 channels (11 for 2.4GHz and 21 for
5GHz bands) in the network. These statistics are updated periodi-
cally from traces of user-defined and baseline measurements. This
table is checked periodically and event-triggered tasks whose pre-
requisites are satisfied are moved into the schedule. Any update
to the local schedule triggers a synchronization exchange to update
the schedule at AirLab central.

The script scheduler is also responsible for periodically (every
30 min) uploading the collected traces to AirLab Central through
an encrypted SSH tunnel. Finally, since the measurement nodes
are likely behind NATs, the scheduler performs NAT hole-punching
and makes AirLab Central aware of its publicly routable IP address.

5. SECURITY AND PRIVACY IN AIRLAB
Providing security and data privacy on the AirLab platform is the

most difficult challenge we face. In particular, we must design poli-
cies and mechanisms that do their best to deliver data requested by
AirLab users, while protecting the privacy of users near AirLab de-
ployments. This is a challenging and open research problem which
we will tackle while leveraging the expertise and active research of
collaborators in the community.

Security of AirLab nodes. Even with our restrictive user access
model for AirLab nodes, it is still possible for active user measure-
ments to burden or overwhelm local networks with extra traffic.
Worse yet, compromised user accounts can be used to perform De-
nial of Service (DoS) attacks on local networks near AirLab nodes.

To prevent against accidental and intentional misuse of AirLab
nodes, we use a two-pronged approach. First, we set an upper
bound on the amount of outgoing traffic per time that can be sent

by each AirLab node. We employ a stringent static analysis tool
at AirLab central that parses user scripts at submission time, and
determines whether it is possible for a script to exceed our trans-
mit rate limits. Scripts that can potentially exceed our rate limits
are returned to the submitting user for review and editing. Second,
because static analysis can under-report the traffic generated by an
experiment, we deploy a run-time traffic monitoring mechanism on
each AirLab node that monitors outgoing traffic volume. In ad-
dition to enforcing our own rate limits, the run-time monitor also
observes existing traffic volume on the same channel, and delays or
terminates any experiment that imposes significant congestion or
delay on the local network.

Finally, the measurement library is compiled as an executable,
and language specific wrappers are used to interface with user scripts.
The rationale for building an executable is that the library can be
exclusively given root privileges to interact with device drivers,
whereas the user script is still run under normal user privileges.
This makes it hard for malicious user scripts to compromise the
system integrity of AirLab nodes.

Data Collection and Privacy. User privacy of user communi-
cations is a critical component necessary for the successful adop-
tion of AirLab. During passive measurements, an AirLab node acts
as a sniffer that monitors the wireless network without interfering
with local transmissions. In addition to data frames, nodes can
capture management frames such as beacons, authentication and
RTS/CTS/ACK frames in 802.11.

We recognize that data privacy is an extremely difficult chal-
lenge, and that perfect data anonymization may not be possible. As
a starting point, we utilize the PktAnon package from the Uni-
versity of Karlsruhe, which uses flexible anonymization profiles
to customize anonymization for a wide range of network proto-
cols at varying levels of security, using techniques ranging from
prefix anonymization to byte-level hashing and bit-level noise in-
fusion. We will also consider and analyze the security properties
of available anonymization techniques, including tcpmkpub [22],
TCPdpriv3, PktAnon [4], and the system proposed by [14]. As
we begin to deploy AirLab nodes, we are beginning collaboration
and discussions with researchers at the NetSANI project4.

While anonymization can thwart many types of attacks, existing
work has also shown that significant data can be inferred even from
anonymized traces [10, 14, 22]. Beyond anonymization, we design
the data communication and storage mechanisms in AirLab to pro-
tect against accidental information leakage. Since AirLab nodes
have limited processing power, collected data is offloaded at short
intervals (30 min) over a SSH tunnel to AirLab Central, where it
is anonymized immediately upon arrival using a hash key unique
to each experiment. Finally, anonymized data at AirLab Central
is available only to the user that created the corresponding experi-
ment and to collaborators, who are granted access to specific exper-
iments. In time, experiment data can be made public to all AirLab
users.

6. RELATED WORK
Related work on wireless measurements can be classified as fol-

lows: (i) measurement studies of indoor production 802.11 net-
works, which have covered a variety of environments, including
university departments [12, 13, 19], corporate enterprises [21], neigh-
borhood networks [15], and conference and professional meetings [17,

3TCPdpriv is written by Greg Minshall and available at http:
//ita.ee.lbl.gov/html/contrib/tcpdpriv.html.
4NetSANI: http://www.ists.dartmouth.edu/
projects/NetSANI.html.

ACM SIGCOMM Computer Communication Review 64 Volume 41, Number 1, January 2011



20]; (ii) measurement studies of outdoor mesh and WiFi networks [2,
3, 11]; (iii) measurement studies of vehicular and mobile networks [6,
30]; and (iv) measurement studies of mesh network testbeds [18,
25]. Many of these measurement traces are available from CRAW-
DAD, a central wireless measurement depository.

AirLab is similar to Harvard’s MoteLab project [27]. But where
MoteLab is a centralized testbed with full user access to motes,
AirLab focuses on distributing measurements across heterogeneous
locations with stronger restrictions on user access.

The most relevant work in wired network measurements is NETI [26],
a distributed approach to collecting end-to-end network performance
measurements among Internet users. This work uses passive mea-
surements and only collects measurements in a single protocol layer
(i.e. UDP/TCP). Similarly, DOME [28] is another distributed ap-
proach for passive network measurement. This work assumes pre-
determined measurement tasks, and only supports active measure-
ment. Other wired network testbeds include VINI [8] and Plan-
etLab [7]. Wireless measurements differ significantly from wired
data because the wireless medium is physically dispersed, and the
usage patterns are much more diverse due to mobility and the pro-
liferation of new devices. Hence while we can learn from the
methodologies employed in wired networks, new solutions are re-
quired to understand the properties of the wireless physical medium.

The analysis of collected data sets has resulted in a wide vari-
ety of network characterization studies by both the data collectors
themselves as well as the general research community when the
traces have been made public. A small sampling includes charac-
terization and analysis of wireless networks and networking proto-
cols [5, 11, 15, 18], traffic and usage patterns [16, 17, 19], detec-
tion of performance anomalies [13, 12, 24], network troubleshoot-
ing [23], analysis of the performance of deployed services [2], and
design of network protocols [9, 29]. While each of these studies has
contributed to the understanding of the operation and usage of wire-
less networks, each is an isolated study of a specific deployment.
The lack of a data set collected using a homogeneous methodol-
ogy from multiple network deployments has prevented the cross-
correlation of observed phenomena between networks. Hence, it
is difficult to discern whether observed behaviors are specific to a
particular network deployment or are intrinsic to the protocols in
use or the wireless medium itself.

7. CONCLUSION
The effective design of next generation wireless protocols and

systems requires deep understanding of wireless properties across a
wide variety of operating environments. This in turn depends on the
availability of consistent and comparable wireless measurements.
To address this need, we propose AirLab, a wide-area wireless
measurement infrastructure that supports both a core set of ongoing
passive measurements as well as user-scheduled, user-generated
wireless experiments implemented using a restricted measurement
programming interface.

We are currently developing and testing AirLab software through
local experiments at UCSB, and will begin deployment to a small
group of partner sites in the coming year. As AirLab grows and
matures, we hope to expand AirLab sites to numerous locations
around the globe, thereby increasing capacity for user-driven mea-
surements while making an increasing volume of consistent and
comparable datasets available to the research community at large.
We welcome participation from the wireless research community,
and institutions interested in joining AirLab can contact the authors
for more information.

8. REFERENCES
[1] http://www.hacom.net.
[2] AFANASYEV, M., CHEN, T., VOELKER, G. M., AND SNOEREN,

A. C. Analysis of a mixed-use urban wifi network: When
metropolitan becomes neapolitan. In Proc. of IMC (October 2008).

[3] AGUAYO, D., ET AL. Link-level measurements from an 802.11b
mesh network. In Proc. of ACM SIGCOMM (September 2004).

[4] AGUILAR, J. Packet trace anonymization with pktanon. Hack a day,
July 2008. http://hackaday.com/2008/07/11/
packet-trace-anonymization-with-pktanon.

[5] AKELLA, A., JUDD, G., SESHAN, S., AND STEENKISTE, P.
Self-management in chaotic wireless deployments. In Proc. of
MobiCom (2005).

[6] BALASUBRAMANIAN, A., ET AL. Interactive WiFi Connectivity for
Moving Vehicles. In Proc. SIGCOMM (Aug. 2008).

[7] BAVIER, A., ET AL. Operating system support for planetary-scale
network services. In Proc. of NSDI (March 2004).

[8] BAVIER, A., ET AL. In vini veritas: realistic and controlled network
experimentation. SIGCOMM CCR 36, 4 (2006).

[9] BROUSTIS, I., ET AL. Mdg: Measurement-driven guidelines for
802.11 wlan design. In Proc. of Mobicom (Sept. 2007).

[10] BURKHART, M., ET AL. The role of network trace anonymization
under attack. SIGCOMM CCR 40, 1 (January 2010), 5–11.

[11] CAMP, J., ET AL. A measurement study of multiplicative overhead
effects in wireless networks. In Proc. of INFOCOM (April 2008).

[12] CHENG, Y.-C., ET AL. Jigsaw: solving the puzzle of enterprise
802.11 analysis. SIGCOMM CCR 36, 4 (2006).

[13] CHENG, Y.-C., ET AL. Automating cross-layer diagnosis of
enterprise wireless networks. SIGCOMM CCR 37, 4 (2007).

[14] FAN, J., XU, J., AMMAR, M. H., AND MOON, S. B.
Prefix-preserving IP address anonymization: measurement-based
security evaluation and a new cryptography-based scheme. Computer
Networks 46, 2 (October 2004), 253–272.

[15] HAN, D., ET AL. Mark-and-sweep: Getting the ”inside” scoop on
neighborhood networks. In Proc. of IMC (Oct. 2008).

[16] HENDERSON, T., KOTZ, D., AND ABYZOV, I. The changing usage
of a mature campus-wide wireless network. In ACM MobiCom (Sept.
2004).

[17] JARDOSH, A. P., ET AL. Understanding congestion in ieee 802.11b
wireless networks. In Proc. of IMC (Oct. 2005).

[18] JUDD, G., AND STEENKISTE, P. Using emulation to understand and
improve wireless networks and applications. In Proc. of NSDI (2005).

[19] KOTZ, D., AND ESSIEN, K. Analysis of a campus-wide wireless
network. In ACM MobiCom (September 2002).

[20] MAHAJAN, R., ET AL. Analyzing the mac-level behavior of wireless
networks in the wild. SIGCOMM CCR 36, 4 (2006).

[21] MURTY, R., ET AL. Designing high performance enterprise wi-fi
networks. In Proc. of NSDI (2008).

[22] PANG, R., ALLMAN, M., PAXSON, V., AND LEE, J. The devil and
packet trace anonymization. SIGCOMM CCR 36, 1 (2006), 29–38.

[23] QIU, L., BAHL, P., RAO, A., AND ZHOU, L. Troubleshooting
multihop wireless networks. In Proc. of SIGMETRICS (2005).

[24] RAGHAVENDRA, R., ET AL. Unwanted link layer traffic in large
IEEE 802.11 wireless networks. In Proc. of IMC (Oct. 2007).

[25] RAYCHAUDHURI, D., ET AL. Overview of the orbit radio grid
testbed for evaluation of next-generation wireless network protocols.
In Proc. of WCNC (2005).

[26] SIMPSON, JR., C. R., AND RILEY, G. F. NETI@home: A
distributed approach to collecting end-to-end network performance
measurements. In Proc. of PAM (April 2004).

[27] WERNER-ALLEN, G., SWIESKOWSKI, P., AND WELSH, M.
Motelab: A wireless sensor network testbed. In Proc. of IPSN (April
2005).

[28] WOLF, T., ET AL. An architecture for distributed real-time passive
network measurement. In Proc. of MASCOTS (2006).

[29] YANG, L., CAO, L., ZHENG, H., AND BELDING, E. Traffic-aware
dynamic spectrum access. In Proc. of WICON’08 (November 2008).

[30] ZHANG, X., ET AL. Study of a bus-based disruption tolerant
network: Mobility modeling and impact on routing. In Proc. of
Mobicom (Sept. 2007).

ACM SIGCOMM Computer Communication Review 65 Volume 41, Number 1, January 2011


