VillageLink: Wide-Area Wireless Coverage

Veljko Pejovic, David L. Johnsoh Mariya Zhelevd, Elizabeth M. Belding and Albert Lyskd
*School of Computer Science, University of Birmingham, UK
Email: v.pejovic@cs.bham.ac.uk
fCouncil for Scientific and Industrial Research, South Afric
Email: {djohnson, alyskb@csir.co.za
fUniversity of California, Santa Barbara, CA, USA
Email: {mariya, ebelding@cs.ucsb.edu

Abstract—White spaces promise to revolutionize the way wire- networks, however, operate over a very large span of frequen
less connectivity is delivered over wide areas. However,lige-scale cies, and propagation properties can vary drastically these
white space networks face the problem of allocating channglto channels. Channel assignment in such a network has toysatisf

multiple contending users in the wide white space band. To tkle flicti Is: - ful t ission b .
the issue, we first examine wireless propagation in a long-stance ONflicting goals: maximize useful transmission by prefegr

outdoor white space testbed and find that a complex combinatn ~ channels with superior propagation, and minimize interiee
of free-space loss and antenna effects impacts transmission by favoring channels that propagate over a shorter radius.
white spaces. Thus, a need arises for a strategy that goes bey Since we propose white space connectivity for impover-
simple channel utilization balancing, and uses frequencymbing  jsheq regions, we concentrate on making our solution as
to profile channels according to their propagation properties. e .
We devise VillageLink, a Gibbs sampling-based method that cost e_fflt_:lent as possible. Therefqre, We propose to reuse
optimizes channel allocation in a distributed manner with a the existing TV antennas already installed in even the most
minimum number of channel switching events. Through exten- remote rural areas. Unfortunately, this further compéeahe
sive simulations we demonstrate that VillageLink results m a  problem of channel allocation as these antennas exhibitume
significant capacity improvement over alternative solutims. and unpredictable propagation behavior over the wide white
space spectrum. Any analytical solution that provides arcle
picture of frequency quality becomes impossible, and actlire

Internet connectivity is available to merely 39% of thénference of propagation properties is needed.
world’s population [1]. The main cause of limited Internet In this paper we successfully address the above challenges
penetration stems from the fact that more than three billigsy designing a light-weight frequency profiling methodalog
people live in rural areas. These areas are hard to conngclevaluate channel quality and a novel channel allocation
via copper cables, fiber optic or cell phone base stations dwethod that assigns operating frequencies to base stations
to high deployment cost and low population density whictwith the goal of minimizing the impact of interference over
renders these techniques economically infeasible. Ruealsa the useful signal levels in a network. We compile these
are also hard to reach via cheap license-free solutionsasiclvontributions into a practical channel profiling and allbma
WiFi, as these technologies, operating in 2.4 or 5 GHz bandgheme for wide area white space networks called VillageLin
have a very limited connectivity range. We test VillageLink’s frequency probing mechanism on a long

In the 50-800 MHz band, a large block of frequenciedistance software-defined radio white space link we deploye
has recently been freed due to the analog to digital Td¥hd confirm that antenna effects and the environment are
transition. This spectrum, called white spaces, promises d significant reason for high propagation diversity among
deliver an affordable means of providing wide area coveragehite space channels. Through simulations we evaluate Vil-
It is extremely attractive for rural areas as the propagatitageLink’s channel allocation. We show that our frequency-
range is an order of magnitude higher than in the bands usedare channel allocation leads to up to twice as much network
by competing technologies. However, a distributed, reseur capacity than an alternative heuristic based on interfaren
efficient solution for network organization, especiallyr foavoidance, and that with its high performance, efficient re-
spectrum allocation within a network, is needed for furthesource usage and distributed nature, represents a ptactica
proliferation of rural area white space deployments. solution for wide area white space coverage in rural areas.

The goal of channel allocation is to assign one of the chan-
nels to each of the network nodes. Traditionally, the issa@ h
been expressed as the graph coloring problem where a colowhite spaces represent a historic opportunity to revahitio
(channel) is assigned to a node so that network interfererize wide area wireless networking. White spaces not only
is minimized, and consequently the capacity is maximizad. teliver much greater communication range than Gigahertz
a network operating over a small set of available frequexnciédrequencies, they also support non-line of sight communi-
such as WiFi, channels generally do not exhibit significacttion, including transmission through vegetation andlsma
differences in terms of propagation properties. White epaobstacles, which makes them highly suitable for variousier

I. INTRODUCTION

II. WIDE-AREA WHITE SPACE NETWORKS
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Fig. 2. Simulated antenna gain for the antenna used in th@ooutink.

Fig. 1. Analysis of received signal strength over the UHFtharhe received
signal strength is difficult to predict as it is dependent osoanplex mix across the UHF band. Using the WIPL-D antenna modelling

of antenna gain patterns, cable is_sues and enyironmemmitmEs around software we created a model of the deployed antenna. The
antennas and between the transmitter and receiver. . . . .
results are shown in Figure 2. While an antenna with no sur-

configurations. However, white space networks have to dealinding structures has a more predictable gain patterapwh
with unique peculiarities of transmission over a wide banslirrounding structures and antenna imperfections, subbras
of relatively low frequencies, and should enable license-f or missing elements, are introduced, the antenna gainrpatte
unplanned deployments in rural developing regions. has far less predictability. Residential TV Antenna iflata&dns
. often require long lengths of low-grade coaxial cable which
A. Wde band frequency selectivity can easily get damaged during installation by home users.

The variation in the free-space loss across a band is term@shlysis of periodicity of dips in the received signal siyén
“dynamic range” and is calculated d@%;5 = 20log (fu/fz) in Figure 1 indicates a cable that has been crushed or bent
where f1, and fy are the lowest and the highest frequenclightly approximately 2 m from the connector. Predicting th
in the band, respectively. White space frequencies operatetype of TV antenna being used, the structures surroundiag th
a wide band of low frequencies, leading to a large dynamimtenna or cable imperfections is not possible and provides
range. Thus, unlike in traditional wireless networks, sudtrong support for frequency probing in white spaces.
as WiFi or GSM, free-space loss over white spaces is notin addition to antenna effects, a part of frequency seliygtiv
uniform over the range of frequencies on which a networkay stem from the environment and terrashadowing, slow
operates. Besides wide dynamic range, white space linfsgling due to physical obstacles on the signal path, would
often experience uneven fading due to antenna patternsianddtill be detected and accounted for with frequency probing.
environment. The fractional bandwidtRE) for a frequency Unlike shadowingmultipath, which leads to rapid variation
band, calculated as a ratio of operating bandwidth and tbepropagation within a channel, cannot be captured through
central frequency, determines how wideband an antennddshasur current probing method. However, channel allocation
be in order to have the same gain over all frequencies wigily requires knowledge of the average channel gain of the
the band. Again, due to the low central frequency and a largeannel that is captured by frequency probing.
operating band, white spaces require significantly widerdba
antennas than GSM and WiFi. Such antennas are hardBroChannel assignment in white space networks
design; high gain across the full frequency range is nearlyThe problem of channel assignment in wireless networks is
impossible. Consequently, white space links are proneeo thften expressed with graph coloring, where each color repre
effects of imperfect antennas and surrounding structures. sents a different channel. For a link, one of the availabidraé

To confirm this, we deployed a 3 km outdoor non line-offrequencies is assigned so that a goal, such as maximum
sight link using USRP2 radios, standard UHF log periodic T¥hroughput, is achieved. In the channel allocation litemt
antennas and a 1 W amplifier at the transmitter. The trarmmitbn traditional wireless networks all colors are considered
was configured to send a series of 10 consecutive 1MHz widgual in terms of their propagation properties [13]. Howgve
BPSK modulated PN sequence probes across the full UlktFwhite spaces, the transmission range varies significantl
white space spectrum while avoiding existing TV bands. Th&mong frequencies in the band due to the wide dynamic range
receiver was synchronized to the transmitter clock andrsedin and antenna effects (Figure 2). Therefoselection of the
the spectrum both with the transmitter turned off (baselirgperating frequency can impact the existence of a link itself.
scan) and with the transmitter sending probes (signal scanThis further complicates the problem of graph coloring, as

Figure 1 shows the received signal strength across the UH&w not all colors are equal. The choice of the color effects
TV band. Three TV stations were detected and probes did nbé graph structure, thus the existing approaches to fregyue
occur at these frequencies. The received signal strength dassignment are not directly applicable.
not fall of monotonically with increasing frequency, which _
would be the case if only free-space loss determined thesprofy- Network Architecture
gation loss. Instead, due to the antenna characteriséibfing The network scenario that describes the setting in which
and the environment, the propagation loss is non-uniforvillageLink will operate is given in Figure 3. In this paper,



TV domain

TV - white space interference

The 802.22 specification makes use of CPEs to sense for
primary users and extend the sensing coverage area. We
propose to use a similar notion when listening for probes.
CPEs of one BS experience interference from all other BSs.
To account for this CPEs can be instructed to listen for psobe
from BSs with whom they are not associated. Frequency
profiling results for CPEs are sent back to the associated BS
on the final upstream frame once the CPE has listened on the
full set of white space channels. The average SNR value of a
received probe heard at a BS and its associated CPEs is used
to incorporate the average interference on the system.eThes
Fig. 3. Layout of a targeted white space network showingrietence SNR values, from each of the cells that received the probes,
scenarios between TV and white spaces, and between white spaworks are unicast on the back channel to the sending BS. Results
in different domains. White space BSs within the same dorseimd BS to  yeceived at sending BSs are distributed to neighbouring BSs
BS probes (BBPs) to calculate the channel conditions amioaggelves. where two BSs are defined as neighboring if a probe can be

we consider wide-area white space networks that consist&@fchanged between them on at least one frequency.
individual base stations (BSs), each with a set of assatiate Once the probing process is completed each BS stores
customer-premise equipment (CPE) clients. We term one siehlocalized set” of information on signal propagation at
BS with its CPEsa cell. A BS and all the CPEs within different frequencies: 1) within its own cell, obtainedabgh
a cell operate on the same channel; thus, when considerfigtgregation of probing results from the cell's CPEs; 2) be-
channel allocation we use “BS” and “cell” interchangeabljveen itself and other BSs and associated CPEs that ovdrhear
Al cells that operate within the same administration aléeda Probes; and 3) within cells that are served by neighboring BS
a WRAN domain. The existence of TV transmission ang
other interfering white space networks not in our servide se’
reduces the number of channels available to the BSs withinAt each channet; the probe SNR with no TV interference
our domain. The aim of our work is to develop a channé&Rn be calculated using the average power in the probe listen
allocation algorithm so that the overall network performean Window and the noise level from an initial scan when no
within our WRAN domain is maximized. probes are present. From the measured SNR we can extract
the channel gain:

>>> Inter white space domain interference

wmm= Backhaul

WRAN domain B

BBP = Base station to base station probe
<2 Unassociated white space client

WRAN domain A

Calculating probe SNR

[1l. CHANNEL PROBING AND MEDIUM ACCESS FOR
WIDE-AREA NETWORKS H(e:) = SNR(c;) - No- W )
Channel probing is an important tool for propagation eval- Pt
uation over a wide white space frequency range. UnfortwhereNy, W and Pt denote the noise constant, channel width
nately, the existing MAC protocols proposed for wide are@nd the transmission power, respectively.
networks [12], [11], [3] do not explicitly support frequgnc  These SNR measurements are able to capture BS to CPE
profiling. The MAC protocol that most closely resembles owghannel gains and channel gains (interference) between a BS
proposed system is IEEE 802.22. The protocol has built-#nd other cells that include the BS and associated CPEs. We do
protection for primary users and mechanisms to move to n&@t capture CPE to CPE interference (client uplink effegtin
channels but has no built-in mechanism to choose from a se@spther client downlink on the same channel) as this would
available channels. Instead of rebuilding an entire MAGtay require CPEs to carry out probes and not allow our system
we propose to extend the 802.22 protocol to include a feattigescale. Moreover, BS superframes are time-synchronized i
that performs frequency profiling on all available channkis 802.22 and only a small portion of the uplink frame is likedy t
our frequency profiling scheme we measure the SNR of tagerlap with the downlink frame of another cell. In addition
probe that was received at a BS using the previously measuB&®.22 is also able to move into a co-existence mode with
power spectral density of channel with no probes and tla@ adjacent cell experiencing interference in which frames
power spectral density measured when a probe is present. & fully coordinated between cells. We also assume channel
assume that the network nodes are static. reciprocity for our measurements — a common assumption for
In order to perform frequency profiling between BSs anglystems using the same channel for up and down links.
between BS and CPEs on all available channels, a mechanism
is required to coordinate probing timing for channel probe
senders and listeners. We use a token mechanism, in which & this section we devise a distributed channel allocation
BS only sends channel probes when it has a token. All othedgorithm that uses information obtained through freqyenc
BSs and CPEs without tokens are in a listening state. Whprofiling (Section Ill) and does not incur channel switching
a BS is in a probing state, it sequentially steps through tleerhead typical for other allocation schemes. Our approac
full white space TV channel set and only sends a probe @based on the annealed Gibbs sampler [2], a technique that
non-interfering channels. can help us minimize a target function in a distributed way.

IV. CHANNEL ALLOCATION



A. Gibbs Sampling equation the interference is accounted for in the SINR, Wwhic
The Gibbs sampler is a Markov chain Monte Carlés €mbedded within the logarithmic function. Thus, the intpa
(MCMC) technique for obtaining random samples from gfasi_ngl_e BS on thg total sum is harc_i to isolate, and the_total

multivariate probability distribution. The sampler is fiden ~ Capacity is not a suitable metric for distributed compuotati
situations where the joint distribution is unknown or diffic ~ One of the ways to circumvent this is to revert to a tighter
to sample, but the conditional distributions of variablee aproblem formulation that prevents interfering BSs from
known and easy to sample. The Gibbs sampler draws samgiegcurrent transmission [6]. While this can be enforced in a

from a multivariate probability distributiom(z1,...,zx) as network that employs carrier sensing and collision avosgan
follows: in our setting long distances between BSs render such coordi

. Initialize all variablesz,...,zx to (random) starting nation i_nefficient [12]. In f_;lddition, aIIOV\_/in_g some interémce
valuesz?, ..., 2% 0fFen_ yields more capacity than_ restrlctm_g concurr_enl_nszrg\

« In every iteraton j = 1.k, sample each Missions [9]. Another approa.ch. is to modlfy the.optlmlzatlo
variable z; from the conditional distribution functlon and instead of maximizing capacity minimize Fotal
plalad.,a @l 2% ") to obtaina?. interference [5]. However, in white spaces, where avagiabl

After the above process is finished, we are left witﬁhanne_IS can differ drasﬂcall_y in terms of their propagal
x,& ...,:c'gv;j € [1..k] samples from the joint distributiop. properties, a channel allocation that leads to minimal

We can solve the channel allocation problem through GibH€r ference may not necessarily lead to maximum capacity.
sampling, if we obtain the samples from a distribution tijat: e Propose a novel network performance metric that allows
is related to overall network performands, depends on the distributed performance optimization with Gibbs sampling
selected operating channel of each of the BBjjsolates the and term itcumulative mterference_ plus noise to sgnal_ ratio
impact of each of the BSs on the total optimization functiohCINSR). It represents a sum of inverse &NR experienced
iv) can be calculated in a distributed way and sampled indep&h-€ach of the cellsCINSR can be seen as the overall ratio of
dently at each of the BSs) favors states that lead to maximurf€ impact of harmful factors, noise and interference, ® th
performance. Next, we develop a network performance metRgneficial one, received signal strength. Thus, our goab is t
that can be used as a basis for a distribution that satiskas thTiniMIze it:

demands. N
1

i CINSR(c) = —_— 3

B. Network Performance Metric (c) 2 SINF (o) 3)
Traditionally, the goal of a channel allocation protocol is = it

to ass_ign_availal_:;le_ channels to BS_s so that the_total network ~ NoW + > ch(i,j)PHji(ci)
capacity is maximized. The capacity;(c,) of a single cell o Z j=1..N )
operating on the channe] is: N PH,;(c;)

Cici) = Y Wilog(1+ SINRix(c;))
keK;

The first term in the numerator within the above sum is
) o ] the thermal noise, whereas the second term is the sum of
where K; is the set of CPEs within the cellV; is the jhterference experienced at cell and originating from all
width of a part of the channet; used by CPEk, and ,iher BSs that transmit at the same channel. Interference fr
SINR;(c;) is the signal to interference plus noise ratiq single source is a product & - the transmission power and
at. the CPEE. We approxmate the presence of all cl|ent§{ji(ci) — the propagation gain from BSto celli on channel
within the cell with a singlevirtual CPE with an SII_\IR. value ¢;. The functionch(i, j) is equal tol if 7 and;j operate on the
SINR;(ci) = > SIN Rix(c;)/|K|. The cell capacity is NoW: game channel, and otherwise it is equalt@he denominator
Ci(cp) = Wlog (1 + SINR;(c;)) in the ab_ove equation is the average signal stre_ngth reteive
by the clients of the BS; the average channel gain from BS
where W is the full channel width, essentially a sum of all; tgwards the clients on channelis denoted byH; (c;).

Wy, as a cell operates in an OFDMA mode. This approxima- \na now isolate the impact of a single B®n CINSR(c)
tion hides channel distribution within the cell and helps U4 term itlocal CINSR:

concentrate on inter-cell interaction.

If we consider a network witv cells, with a given channel NoW
assignment = (cy, ¢, ...,cn ), ¢; € C, whereC is the set of CINSRi(c) = PH;(c;) ®)
available channels, the total network throughput is a sum of [ PHy(c;) PHji(c:)
all individual capacities at their respective allocatedrufels: + Z ch(i, j) ( PH'-j(c-) PH]'(C') ) (6)
i 1\t g\t

C(e) =) Ci(e:) =Y Wlog(1+ SINR;(c:;)) (2)
i i Information needed forCINSR;(c) calculation, namely

A single BS's decision on the operating channel changes tRé4;(c;), PH;;(c;), PH;j(c;) and PH;(c;), is available lo-

interference level at all its neighboring BSs. In the abowally at BS:, through channel probing described in Section .



C. The Gibbs distribution variable parameter ish(i,j). At BS i this parameter can be

The Gibbs distribution associated with the functioiNsR ~Updated irrespective of the actual operating channel ofjBS
and a positive temperatuf@is the probability distribution on !N €very step a BS decides on its current channel and sends

¢V (the combined channel state space of all BSs) defined Hi¢ decision to its neighbors, who then update théit, ;)
tables. Once the cooling schedule is completed BSs switch to

their channel of choice (line 15 in Algorithm 1). This greatl
speeds up the convergence, as the channel allocation proces
is not limited by the channel switching time.

o—CINSR(c)/T
Z o—CINSR(c)/T

c’ecN

m(c) =

()

Th_e above digtribution is of _special interest as it favoasest in E. Algorithm convergence

which CINSR is low. In addition, the channel selected by BS ) ) o

is independent of all non-neighboring BSs and the distigout ~ Convergence of a Gibbs sampler, and its annealed version, is

fulfils all the conditions listed Section IV-A. a well researched topic [2]. Here we prove the convergence of
The Gibbs sampler draws a sequence of samples from 4 method, indicating that it is a natural heuristic forvog

above distribution by having each of the BSmdependently the channel allocation problem.
sample its local Gibbs distribution; (c): Proposition 1: The Gibbs distributionr (equation 7) rep-
resents a Markov random field.

e—CI/\/S’Rl(cAc\l)/T
Z e—CZNSR»; (C;‘C\I)/T

c’echN

mi(c) = mi(ciley;) =

Proof: A Gibbs potential V' associates a real number
Vr(s) with each subsef’ of a setS. The potential is de-
termined by the state of the nodes inl' and is defined as

and transitions to the sampled local state, converging 467 if I" is not a clique An energy function £(s) maps each
the stationary distributionr(c) (see Section IV-E). Here,; of the graph states to a real .numb_e.r. We say that the energy
denotes a fixed assignment of channels to all BSs but.BS function derives from the potential V" if:

Distribution(c) favors lowCINSR states when the temper- £(s) — Vi 9
ature is low. While our goal is to minimiz@INSR, by keeping (s) ; o(s) ©
the temperature low we risk getting stuck in a local minimum .
early in the processThe annealed Gibbs sampler introduces Where the summation goes over all subsets of theSs&the
a slow decrease of temperatufe to zero according tca Gibbs distribution where the energy derives from a Gibbs
cooling schedule. Therefore, in the beginning the probability ofPotential is a Markov random field (pg. 260 in [2]), and we
exploring a wide range of states is high, and as the time gDespfoceed with showing that the function that we use to constru

infinity, the procedure converges to the minim@NSR state. the Gibbs distribution in equation 7 GINSR(c) derives from
the Gibbs potential.

We can represer@INSR as a sum of local impact of cliques
of the graph of BSs4. CINSR then takes the form described
by equation 9 and can be used as the energy function for Gibbs

D. Channel Allocation Algorithm

Algorithm 1 VillageLink channel allocation — distributed
1: {Executed at the base statioh

2: while ¢t < tep,q do Samp“ng:
3: T = f(To,t) {f - scheduleTy - starting temperatute
4:  for all channelc, € C do NoW
5: c = (c1,¢2,...,¢,...,en) CINSR(C) = +
6: CalculateCINSR; (') o PHi(ei)
7:  end for
8:  for all channelc; € C do " Z ch(i, ) PH;j(c;) PHji(ci)
9: ¢’ =(c1,c2,..., ¢}, 0y CN) ’ PH;(c;) PHJ-(CZ')
10: Calculater; (c’) {i,j}eA
11:  end for _ Z Vsl )
12: Sample a random variable according to the #gvand choose the next - B\C
channel of the BS accordingly. BCA

13: Send information about the newly selected channélstaeighbors.
14: end while
15: Switch the network interface to the last selected cHanne

HereV denotes the Gibbs potential. The potential is defined
for all subsets3 of the set of BSsA as:
Algorithm 1 is executed at each of the BSs. The temperature

falls off with time, ensuring that the Gibbs sampler conesrg PH;;(c;) PHji(ci .
towards the global minimum oEINSR. The starting time for Vs(c) = ¢ ch(i, j) ( PH'J(C') PI{J'(C- if B={i,j}
all the BSs has to be loosely aligned, and can be achieved 0 e A it |B] > 3

with a standard synchronization scheme such as NTP.
Compared to some other distributed channel allocatid¥ote that the potential is non zero only for cliques of size on
schemes [5], [8], Algorithm 1 has an attractive propertyt thand two. Thus, energ¢'INSR(c) derives from the Gibbs
no channel switching is needed until the convergence. To gegential and, consequentlyis a Markov random field. ®
why note that the calculation of the loc@INSR is done after  For a network ofV BSs, each running a Gibbs sampler over
the probing process, and during the algorithm run the onig local Gibbs distributionr;(c), channel allocation converges



in variation' towards the Gibbs distributionr, since the
process can be described as a Gibbs sampler on a finite ste
homogeneous Markov chain represented by the selected cha /
nel allocation, for which the Gibbs distribution (equationis
the invariant probability measure (Example 6.5, pg. 282]n [
Note that direct sampling of the capacity (equation 2) dags n
provide any guarantees on the performance as the capaci
equation cannot be transformed to an energy function tha
derives from the Gibbs potential. Thus, we develONSR.
Finally, for a fixed network ofV BSs implementing Algorithm
1, channel allocation converges in variation towards atlimi
distribution that only puts positive probability mass ore thFig. 4. Radiation patterns of Wineguard PR9032 UHF Yagifeoreflector
states of minimum global energy, as we rely on the anneal@yenna used as a base station antenna, and AntennasCiréceiBay UHF
antenna; one of the client antennas used in our evaluation.

Gibbs sampler (example 8.8, pg. 311 in [2]). Conditions that

(@ (b)

the cooling schedule has to satisfy in order for convergence 20

to happen can be found in [4]. =
T | R W

V. EVALUATION < 10f R Getilbit b Tl
E .
The VillageLink system consists of our frequency profil- o - {==Winegrad PR-9032 (BTS)

ing method built on top of the 802.22 MAC protocol, and § of,.*" ___Doub?e Bowtie (Indoor)

the channel allocation algorithm based on Gibbs sampling. § = = AntennasDirect DB-2 (Yagi)

Experimental evaluation of such a system is challenging due 10 - Channel Master 4248 (Yagi)

to the need for a wide area outdoor deployment. In addi- - 500 I4:500 7|\9IOH 800

tion, off-the-shelf 802.22 equipment is not yet commetgial requency, [MHz]

available, and_ SOf_tware defined radio pIatforms CannOtGUppFig. 5. Antenna profiles of four of the antennas used in ouluati@n. One
the synchronization that the MAC protocol requires [10bf the profiles, Wineguard PR-9032, corresponds to the B&naat the other
Therefore, we evaluate our protocol in a simulated settingree correspond to client antennas.

However, the initial experimental investigation of channe

probing and frequency selectivity in white spaces preméntpattem shape of the center frequency to account for antenna
in Section II-A, was performed on a 3 km outdoor,link orientation, and we use the full gain over frequency divgrsi
' ' All BSs in our simulations use the Yagi antenna from

A. Smulation Setup Figure 4(a), as this antenna exhibits the best performairaié o

For a comprehensive evaluation of the channel allocatidif antennas that were modeled. In our simulation we assume
algorithm, we rely on a Matlab-based custom simulator. Wdients make use of existing TV antennas used to receive
explicitly take into account high variability of signal praga- terrestrial Ty broadcast signals. Oper_ators have no cbntro
tion in the white space band by modeling propagation with ttR¥€r the variety of antennas used by clients and we randomly
Friis transmission equation, which also figures antennasgaiS€l€Ct antennas from a set of 17 possible client TV antennas
transmission power and distance between antennas. Earliefanging from outdoor Yagi antennas with a gain of 15dBi to
our outdoor testbed, we confirmed that frequency dependeS#BPle indoor loop antennas with a gain of 3dBi.
of antenna gain is the most dominant factor that leads to the/Ve run our experiments over a white space band from 443

frequency diversity in white spaces (Figure 1), thus we rod¥Hz to 875 MHz as the antenna models we use perform
antenna effects in detail. reasonably well within this range. The band is divided into

We use publicly available antenna  model$® TV channels, each 6 MHz wide, with a 6 MHz guard

(www.hdtvprimer.com/ANTENNAS/comparing.html) and th?@nd between adjacent channels. In all the experiments we
Numerical Electromagnetics Code (www.nec2.org) antenfinulate al00km x 100km field with random BS placement
modeling software to examine propagation over differe@ind ra_mdom _antenng or|entat|0_n. Each of_the BSs _has a single
frequencies with different antennas. Figures 4(a) and 4 sociated virtual cllen_t a_t a distance u_mforml_y pickeaifr
show the radiation patterns seen from the the center freyuef-2 km to 20 km and with its antenna pointed directly towards
(598 MHz) of the white space band for two different antennalfe BS. We also simulate a TV station that covers a part of
In Figure 5 we plot frequency dependence of antenna gam? field with its signal and occupies two adjacent channels.
We found that the shape of the antenna pattern does BOtChannel Allocation Convergence

change significantly for different frequencies. The gain, o
the other hand, changes significantly and unpredictably,
seen in Figure 5. Thus, in the simulations we use the antenpa

Our solution to channel allocation represents a heuristic
we cannot give guarantees on how long will it take for
MCMC process to reach the target invariant distribution

1Convergence in variation describes convergence of an afragmples to TO gauge the praCt'Cal behawolr we S'_mU|a%gO“thm 1
a probability distribution and is defined in [2], pg. 128. in a network of ten BSs and five available channels. We
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Fig. 6. Algorithm convergence with the (a) exponential, @#odlogarithmic
cooling schedule. Each line corresponds to a differentistatemperature.

(a) Channel under-provisioning.  (b) Channel over-provisioning.

Fig. 7. Comparison of the total network capacity achievethv@INSR
and Interference metrics. We simulate under-provisiometiaver-provisioned

. . . . number of channels with respect to the number of base ssaitidihe network.
are interested in the algorithm convergence under differen

Gibbs sampling parameters. We experiment with two comma 25 80
cooling schedulesa) logarithmic: 7' = T/ log(t 4+ 2) andb) %20} —viageii
exponentiall = Tya!. Here T' denotes the temperature at 8y}l rcx
time ¢, Ty is the starting temperature, ande [0,1] is a real 2
number (set to 0.995 in our experiments).

The selection of the starting temperature is important fo
proper annealing. In Figure 6 we plot total network capacit ° 10 20 30 40 50 10 20 _30 40 50
achieved with the two schedules and four different starting
temperatures for each. The impact of the starting temperatu
is clearly visible: the high€fy is, the more time it takes for the Fig. 8. Total network capacity with varying number of chasnend BSs.
algorithm to converge. At the same time, higher temperature )
ensure exploration of a large part of the solution space, ai@taccount for the balance between well propagating ctianne
generally lead to a better solution. We can also see tifgt are preferred by the CPEs and inferior channels that
Ty = 10~6 does not result in any variation of capacity as th@inimize inter-cell interference.
algorithm progresses — the sampler is “frozen” and BSs will 1) Channel under-provisioning: We simulate a network
stick to the initial channel allocation without explorirfgetfull  With a number of contending BSs higher than the number
solution space. There is a trade-off, dictated/bybetween the Of available channels, a typical case in the urban developed
convergence time and the assurance that the optimal value Wiorld. We put 50 cells in the sam@0km x 100km region. We
be found. In the rest of the paper we I to 1, a value that €xperiment with a varying number of available channels. The
allows full exploration of the solution space and conveiges total network capacity is plotted in Figure 7(a). When npiéi
reasonable amount of time, and concentrate on the expaherfiells operate on the same frequency the network is in a low
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(a) 10 available channels. (b) 20 available channels.

schedule as it exhibits much faster convergence. SINR mode, and capacity can be increased by interference
_ minimization. From Figure 7(a) we see that the two versions
C. CINSR as a Performance Metric of the Gibbs sampler perform equally well with a small

To confirm thatCINSR is a good choice for the networknumber of available channels. As we increase the amount
performance metric, we compare it with an alternative @f available spectrum, BSs have more freedom to operate
overall interference and noise in the network — used as danefit different channels with minimal interference. Therefor

in the allocation algorithm proposed by Kauffmann et al: [5frequency-dependent performance of CPEs associatediveith t
BSs becomes an important factor that impacts total capacity

N 7 o Since this factor is not accounted for in equation 10, this
I(c) = Z NoW + Z ch(i, j)PHij(cp) (10)  version of the Gibbs sampler results in a channel allocation
=1 j=1.N that delivers less capacity than the version that @I&SR.
The impact of a single BS on the sum is definedtaslocal 2) Channel over-provisioning: We now fix the number of
interference: available channels to 36 and compare the performance of

the two versions of the algorithm with the number of BSs

J#i . o .
N . N B varying from 5 to 35. The total network capacity is plotted in
li(e) = NoW'+ ‘ XI:N ch(i, j) (PHij(ep) + PHji(cp)) (11) Figure 7(b). When the number of channels is greater than the
j=1..

number of BSs there is more than one allocation that leads
We modify equation 7 and equation 8 to includgc) to minimal interference. However, not all of the allocason
instead of CINSR;(c), and I;(c) instead of CINSR;(c), are favored by the CPEs. Through the faci®f(c,) CINSR
respectively. The necessary conditions for the Gibbs samphccounts for the frequency dependent intra-cell prefegnc
convergence still hold, and we apply an algorithm analogoaad assigns channels that maximize capacity within each of
to Algorithm 1. Note that, defined this way, the interferencine cells. The results presented here point out thannel
function still uses the results of channel probing, yet ieslo allocation in white spaces remains important even in rural
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Fig. 9.
closer the fairness index value is to one, the better).

areas where the channel availability is high.

D. Comparison to alternative channel allocation methods

Channel allocation is a difficult problem to solve in a
distributed setting. Heuristics are often used instead of a
rigorous solution and we compare our approach with:egst

Fairness with varying number of channels and bag#os$a(the

for new white space spectrum. Ma and Tsang [6] use an
integer linear programming solution for frequency allomat

to deal with channel heterogeneity in white spaces. However
frequency reuse is restricted to well defined interferenze d
mains where no two BSs are allowed to transmit at the same
time. Motivated by [9], we rely on a more sophisticated repre
sentation of interference, measuring its impact througiving

to account for interference during the allocation proc€slsbs
sampling was applied to distributed channel allocatioigntl
association and power control [5], [7]. VillageLink difger
from previous approaches by incorporating frequency depen
dence of both useful signal transmissions and interference
In addition, VillageLink minimizes channel switching and
information exchange among nodes.

VII. CONCLUSION
White space networks are largely unexplored, and their

congested channel search (LCCS) - a heuristic where each of Straightforward implementation might prove difficult due t
the BSs individually scans for a channel with the least numb@hique characteristics they exhibit. In this work we showvho

of other BSs assigned to it [8]; Breferred intra-cell channel

the heterogeneity of white space frequencies imposes aniqu

allocation (PICA) - in this greedy method each of the BS$hallenges when it comes to channel allocation in a wireless
selects the channel for which it observes the highest chianAgtwork. Rather than simply minimizing interference, areha

gain towards its own CPE&l(gmach Hi(cp))-

nel allocation policy has to account for transmission duali

We compare the experimental behavior of different soltio®ver different channels as well. To tackle the problem we
in a number of scenarios encompassing various numbersdgielop VillageLink, a channel allocation protocol thaliee
BSs and available white space channels. We run each of ik the knowledge of signal propagation in the whole white

algorithms 100 times in each of the scenarios.

space band before it performs distributed channel assighme

1) Total network capacity: In Figure 8 we plot the total that converges towards a network-wide optimum.

network capacity as we increase the number of cells in the
system from 5 to 50. To ensure consistency among poinfﬁ
in the graph, we do not generate a new topology every timg]
we increase the number of cells, but add randomly placed
cells to the existing topology. Each of the topology seqesnc
are evaluated in environments with 10, and 20 available
channels. We plot average values and two standard degatiold!]
(represented by error bars) for each data point. ViIIagIeLin[5]
performs better or equal to the alternatives in all scesafibe
benefits of frequency-probing based channel allocatiomvgro
with the number of cells. In some scenarios, such as 50 B
- 10 channels, VillageLink delivers twice as much capacgy a
the next best alternative, LCCS. (71

2) Fairness. In Figure 9 we plot the Jain fairness index
for cell capacity with channel allocations determined bysg]
VillageLink, LCCS and PICA. We plot average values and
two standard deviations (represented by error bars) foh ea
data point. Although we designed VillageLink as a method to
optimize total network capacity, it also ensures a remdykald10l
fair allocation of resources. As the number of cells grows, t
fairness of VillageLink is more pronounced as it stays clogei]
to 1 while the fairness indices of PICA and LCCS drop.

VI. RELATED WORK [12]

Over the past decade most efforts to provide broadband
connectivity to remote rural are based on modified WiFi [125?3]
Propagation in White spaces bands are drastically diffaoen
WiFi bands and networking protocols need be reconsidered
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