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ABSTRACT 
Studies of user behavior in cellular networks have served as a 

knowledge base for development of critical applications and 

services catered to specific user needs. In this paper we examine 

community persistence in egocentric social graphs extracted from 

cellular network traces in the Cote d’Ivoire provided by Orange. 

The goal of our study is to inform mechanisms for improved 

dissemination of information by identifying subscribers or groups 

that can serve as information relays. We find that communities 

that persist in an egocentric network are independent of one 

another. Thus, multiple information relays can be selected from 

each independent community, to increase the probability that 

information will flow to the ego.   

Categories and Subject Descriptors 
C.2 [Computer-Communication Networks]: Network 

Operations; C.4 [Performance of Systems]: Modeling 

Techniques; E.1 [Data Structures]: Graphs and Networks 

General Terms 
Algorithms, Measurement, Human Factors. 

Keywords 
Cellular networks, egocentric graphs, community detection, 

temporal graph mining. 

1         INTRODUCTION 
The availability of mobile networks has revolutionized the way 

people communicate in the developing world. Our first hand 

experience in rural Macha, Zambia indicates that access to cellular 

services is of critical importance to residents. While the reasons 

for adoption of cellphone technology in developing communities 

are not drastically different than those of the Western world, the 

benefits for people in these remote communities without 

infrastructure or other means of telecommunications is much more 

pronounced. Obtaining information via cell phone, as opposed to 

in person after travel, saves both critical time and money. 

A plethora of applications that improve the well-being of people 

in remote communities leverage cellular networks. Such 

applications span from health care [3] and education [1] to 

agriculture [11] and mobile banking [9]. Multiple successful 

projects in Africa have originated from observing user behavior in 

mobile or social networks. As a result of Facebook traffic 

analysis, Johnson et al. designed a system to facilitate local 

content sharing within remote rural communities [7]. Mbiti et al. 

describe a system called mPesa [9] that enables transfer of money 

in the form of airtime in rural Kenya. The design of this system 

was inspired by analysis of mobile network usage in Kenya, which 

indicates that people tend to transfer airtime between one another 

as a means for payment or financial support. Follow up studies on 

the adoption of mPesa in Kenya show that theft decreased, as 

users no longer needed to carry cash. 

Such projects are of critical importance to introducing new 

services and enhancing the well-being of people in under-serviced 

areas. At the same time, special attention should be paid in the 

design process of these systems to make sure that they meet an 

actual need in the community. Analysis of large scale datasets 

generated by the targeted communities naturally facilitates the 

identification of actual community needs. 

We approach a cellular network dataset from Cote d’Ivoire with 

this end in mind. The dataset provides information for the 

personal network of 5,000 randomly selected individuals; these 

personal networks are called egocentric social graphs. We analyze 

these egocentric social graphs hoping to identify community 

persistence in an attempt to motivate feasibility of information 

relays in user-centered cellular communication. 

Social network analyses using mobile traces focus on implications 

of network diversity [5], extracting relations [6] and community 

formation [10]. These works, however, are not concerned with 

temporal aspects of individuals’ communication networks. This 

paper makes several contributions. First, we design a model based 

on persistence graphs to study temporal persistence of social 

groups in egocentric graphs. We then discover that while there is 

a weak community persistence in egocentric graphs, there are 

individuals in an egocentric network that are highly persistent 

over time. 

2         METHODOLOGY 
We analyze individual user communication patterns over time. In 

particular, we look at community persistence in egocentric social 

graphs, whereby a subscriber of interest is centered in a graph and 

the periphery nodes of this graph are other subscribers with whom 

the central node communicates. In this section we start by 

describing the dataset as provided by Orange. We then describe 

our model for egocentric social graph analysis.  

2.1      Dataset 
Our analysis is based on a dataset that features the personal 

communication networks of 5,000 subscribers (egos) and was 

provided by Orange. The dataset was collected in Cote d’Ivoire 

over the course of 150 days between December 1, 2011 and April 

28, 2012. To assure homogeneity, the data includes records only 

for users who were subscribed with the network for the entire 

capture period. In this dataset the capture period is divided into 
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ten equal sub-periods, each of which contains one network per 

ego. This subdivision of data in time allows temporal analysis of 

individual communication networks. These personal 

communication networks include up to second degree neighbors 

of an individual and are called egocentric graphs. An edge 

between neighbors in these ego-graphs indicates that there was at 

least one call between the two users; no information for number of 

calls, call duration or direction is provided. Edges are drawn 

between (i) the ego and its first order neighbors, (ii) between two 

first order neighbors or (iii) between first and second order 

neighbors. 

The 5,000 egocentric graphs were anonymized by Orange before 

release to researchers. The process of anonymization kept the ego 

as well as the neighbor ID the same throughout the entire 

observed period. If the same subscriber, however, appeared in 

more than one egocentric graph, the subscriber’s ID is different in 

the different graphs. While the telecom did not provide 

information regarding the randomization process, the dataset is 

considered representative of the user population in Cote d’Ivoire. 

2.2      Egocentric Graphs Analysis 
We examine the egocentric social graphs dataset to determine 

persistence of social groups for each ego over time. We also 

analyze the likelihood that one or more nodes (users with which 

an ego communicates) persist over time in an egocentric graph. 

We hope to see persistence in both communities as well as 

individual subscribers. We hypothesize that such continuously-

present entities can be used as information relays to strengthen 

information distribution amongst community members. Our 

analysis indicates that while community persistence is relatively 

low, persistent nodes indeed exist. 

In order to extract the separate social groups of an ego, we remove 

the ego node from each egocentric social graph (Figure 1) and 

analyze the connected components that remain. Each connected 

component corresponds to one social group. Note that in the text 

we use the terms connected component and social group 

interchangeably.  

 

Figure 1: The effect of removing the ego (depicted with a 

square) from the egocentric social graph 

After extracting the connected components we evaluate the 

persistence of these components over time. A connected 

component is 100% persistent over two consecutive periods if the 

nodes in this connected component are identical in the two 

periods. For this evaluation we define a persistence graph 

G=(N,E,W) with N nodes, E edges and W weights assigned to 

each edge. Each node in G is a connected component labeled with 

the period to which it belongs. An edge exists between two 

connected components if they overlap in consecutive periods. The 

weight assigned to each edge is the Jaccard similarity, J, between 

the connected components [12]. For two sets A and B, the Jaccard 

similarity J can be calculated as follows: 

J ranges between 0 and 1, where 0 indicates no overlap and 1 

indicates full overlap.  

 

Figure 2: Building a persistence graph. 

Figure 2 presents an example of building the persistence graph for 

a single ego over three consecutive periods. The left side of the 

picture presents the set of neighbors in each of the three periods. 

The social groups comprised by these neighbors are color-coded. 

The right side of the picture presents the resulting persistence 

graph. Each node corresponds to a connected component (CC) in 

a given period. In the figure node labels are of the format CCID- 

PeriodID. Edges exist only between connected components that 

overlap fully or partially in consecutive periods. There is no edge 

between connected components that persist over non-consecutive 

periods (e.g. there is no edge between node “CC1-1” and node 

“CC1-3”). 

Our persistence analysis is based on the described persistence 

graphs and consists of two parts. First, we analyze the in- and out-

degree distribution of the nodes in the persistence graph. We note 

that if the social groups of an ego persist over time, all the nodes 

in the persistence graph should have in- and out-degrees of either 

0, if the node belongs to the first or last period, or 1, if the node is 

in the intermediate periods. In cases where social groups do not 

persist, nodes can have a degree of 0 if the corresponding social 

group does not re-appear in following periods. Nodes can also 

have in- and out-degrees larger than 1 if social groups merge or 

split in consecutive periods. 

We attempt to quantify the level to which social groups overlap by 

considering the weights of the edges in the persistence graphs. As 

detailed earlier, edges are drawn between nodes that overlap fully 

or partially in consecutive time periods. The weights assigned to 

these edges are the Jaccard similarity between the nodes 

connected by these edges. For each transition between period t 

and period t + 1 we find the normalized Jaccard similarity JS(t,t+1) 

between these periods; that is the sum of edge weights Wi
(t,t+1) 

divided by the number of edges |E(t,t+1)| between the two 

periods:

 

We then find the average Jaccard similarity for the entire 

persistence graph by summing the normalized Jaccard similarities 

and dividing this sum by the number of period transitions K. 

 



Informally, the higher the average Jaccard similarity, the more 

persistent the social graphs of an ego are over time. 

3         ANALYSIS RESULTS 
We start our analysis with evaluation of the average number of 

social groups with which each ego communicates over the entire 

capture period from December 2011 to April 2012. For this 

analysis we sum the number of connected components that appear 

in each two-week period and divide this sum by the number of 

capture periods. Figure 3(a) plots a CDF of the average number of 

connected components for each ego. While the average number of 

components across egos spans from 1 to 10, 68% of egos have 

between 2 and 5 connected components on average. Further, we 

examine how the number of connected components deviates for 

each ego. Figure 3(b) plots a CDF of the standard deviation of the 

number of connected components per ego over the observed 

period. Almost half of the egos (47%) have standard deviation of 

less than 1, while 96% of all the egos have standard deviation of 

less than 4. This indicates that the number of connected 

components in an egocentric graph remains relatively constant 

over time. 

Next we analyze the persistence of these social groups over time. 

First, we look at the in- and out-degree distribution of nodes in 

the persistence graphs. As detailed in Section 2.2, a node in 

period t has in- or out-degree of 0 if it belongs to the first or last 

observed period or if it does not overlap with any node from the 

preceding t − 1 or the following t + 1 period. Nodes have in- and 

out-degree of exactly 1 if they persist over time, and degree larger 

than 1 if they split or merge over consecutive periods. 

We calculate that out of all the nodes in all persistence graphs, 

9.49% belong to the first period (i.e. have in-degree of 0) and 

8.93% belong to the last period (i.e. have out- degree of 0). At the 

same time Figure 4(a) indicates that in nearly 60% of the cases 

nodes have in- or out-degree of 0. This means that about 50% of 

all the social groups that we observe, and which were not 

associated with the first or last period, did not occur in the 

preceding and following periods. 40% of the nodes have in- or 

out-degree of 1, indicating that 40% of the social groups persisted 

in consecutive periods. Only about 3% of the cases have in- or 

out-degree larger than 1; social groups rarely split or merge over 

consecutive periods. 

This result indicates an important quality of the observed 

egocentric social graphs: there are two distinctive types of social 

groups with which an ego communicates – (i) those that likely 

occur only once (in- and out-degree is 0), and (ii) those that likely 

persist over time and strictly correspond to one social group from 

the preceding and one social group from the following period.  

The former group can be associated with one-time calls, for 

example calling to schedule a doctor appointment, while the latter 

can be associated with calls recurring over time, such as these 

between relatives and friends who stay in touch. 

We continue our evaluation of social group persistence by 

analyzing the weight of edges (representing the similarity) of 

social groups in consecutive periods. We leverage the average 

Jaccard similarity metric as defined in Section 2.2; the closer this 

similarity is to 1, the larger the overlap between social groups in 

consecutive periods. Figure 4(b) plots a CDF of the average 

Jaccard similarity for the 5,000 egocentric graphs. The median of 

this CDF is only 0.22, which means that on average the overlap of 

social groups over time is relatively small – about 22%. 

 

Figure 3: (a) The number of connected components (CCs) per 

ego and (b) the standard deviation of the number of connected 

components per ego over the observed period 

 

 

Figure 4: (a) The in- and out-degree of nodes in all persistence 

graphs and (b) the average Jaccard similarity for each 

persistence graph 

Finally, we evaluate the frequency of occurrence of the neighbor 

that appears most often in the social network of an ego. For this 

evaluation we count in how many of the ten observed periods 

each neighbor appears. We then sort the neighbors in decreasing 

order of appearance frequency. We compare the first, second and 

tenth most frequent neighbors to determine whether there are 

groups of neighbors that appear more often and what the typical 

size is of such groups. 

 

Figure 5: Number of occurrences of the first, second and tenth 

most frequent neighboior 

Figure 5 presents our results. The median value for the first top 

neighbor is 8, while for the second and the tenth top neighbor it 

decreases to 6 and 3, respectively. This means that in 50% of the 

cases, the most frequently occurring neighbor exists in 8 out of 

the 10 observed periods. These results indicate high persistence of 

at least one neighbor in the social graph. At the same time, a 

group of two most persistent neighbors would appear ten times in 

only 6.8% of the cases, which indicates that a group of most 

persistent neighbors would typically have very few members. 



4         RELATED WORK 
Analysis of mobile network traces provides a unique opportunity 

for large-scale verification of socio-economic models that were 

previously derived and studied on much smaller scales. Previous 

research related to our work can be divided in two groups: (i) 

social interactions analysis and (ii) dynamic graph mining. 

Social analysis. Social network analyses based on cellular traces 

focus on implications of network diversity [5], extracting relations 

[6] and community formation [10]. Studies demonstrate that 

diversity of one’s mobile social network influences socio-

economical prosperity [5]. Other work extracts biases in self-

reported friendships by comparing characteristics of self-reported 

relationships with those extracted from cellular traces [6]. These 

studies, however, are not concerned with variability of social 

networks over time. In contrast our analysis explores temporal 

trends of cellular communication in individual subscribers’ 

communication networks and provides insights on community 

persistence in egocentric social graphs. 

Dynamic graph mining. In the area of dynamic graph mining, 

research has focused on evolutionary community detection [8], 

conserved relational states [2] and high-scoring dynamic 

subgraphs [4]. Bogdanov et al. propose a method to identify the 

highest-scoring temporal subgraph (e.g. most congested road 

segment) in a dynamic network [4]. Our analysis is different, as 

we seek to summarize the persistence in different egocentric 

networks without observing the whole graph at a time. Other work 

mines relational patterns in a dynamic network [2] in order to 

detect maximal evolution paths in time-evolving networks. While 

this work utilizes a model for tracking similarity that is similar to 

our persistence graphs, the proposed scheme is only concerned 

with full overlap of graph entities over time. In contrast, our 

method captures partial overlaps and allows for fine-grained 

analysis of community persistence. 

5         DISCUSSION AND CONCLUSION 
We present preliminary analysis on community persistence in an 

egocentric network. Analyzing 5,000 random users from Cote 

d’Ivoire, we find that on average an egocentric network has four 

social groups; this number is stable over time. We also find that 

50% of the observed social groups did not occur in the 

corresponding preceding and following periods. At the same time, 

less than 1% of the communities split or merge over time; thus 

communities that do persist tend to be independent of one 

another. Finally, we observe that on average there is a 22% 

overlap of social groups over time. Persistence of a subscriber in 

one’s social group likely means that there is a stronger personal 

connection between the ego and the corresponding subscriber. We 

hope that with this preliminary analysis we can inform 

mechanisms for improved communication channels in rural 

communities by the use of information relays in egocentric 

networks. Our first-hand experience in rural health care indicates 

that improvement of information channels is of critical importance 

since health care services such as vaccinations are often available; 

however, it is difficult to bring information about availability to 

the interested patients. While our analysis provides some insights 

on community persistence, in order to devise models for 

information relay extraction, more detailed data is needed that 

contains information such as location, frequency, duration and 

type of interaction. Availability of such information will enable 

true extraction of individuals that are strongly connected to an ego 

and can serve as reliable information relays.  
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