
Learning the unknown: Improving modulation
classification performance in unseen scenarios

Erma Perenda∗, Sreeraj Rajendran∗, Gerome Bovet†, Sofie Pollin∗ and Mariya Zheleva‡
{erma.perenda, sreeraj.rajendran, sofie.pollin}@esat.kuleuven.be, gerome.bovet@armasuisse.ch, mzheleva@albany.edu

∗ WaveCore, ESAT, KU Leuven, †Cyber-Defence Campus, armasuisse Science&Technology,
‡Department of Computer Science, University at Albany - SUNY

Abstract—Automatic Modulation Classification (AMC) is sig-
nificant for the practical support of a plethora of emerging
spectrum applications, such as Dynamic Spectrum Access (DSA)
in 5G and beyond, resource allocation, jammer identification, in-
truder detection, and in general, automated interference analysis.
Although a well-known problem, most of the existing AMC work
has been done under the assumption that the classifier has prior
knowledge about the signal and channel parameters. This paper
shows that unknown signal and channel parameters significantly
degrade the performance of two of the most popular research
streams in modulation classification: expert feature-based and
data-driven. By understanding why and where those methods fail,
in such unknown scenarios, we propose two possible directions
to make AMC more robust to signal shape transformations
introduced by unknown signal and channel parameters. We show
that Spatial Transformer Networks (STN) and Transfer Learning
(TL) embedded into a light ResNeXt-based classifier can improve
average classification accuracy up to 10-30% for specific unseen
scenarios with only 5% labeled data for a large dataset of 20
complex higher-order modulations.

Index terms — Modulation Classification, Spatial Trans-
former Network, Transfer Learning, Spectrum Sensing.

I. INTRODUCTION

Although AMC has received considerable research interest
for more than 40 years, most developed methods have been de-
signed under the assumption of prior knowledge of transmitter
technology (e.g., symbol duration, bandwidth, upsampling and
signal shaping) and channel conditions. This prior knowledge
plays a critical role in the spectrum sensor’s configuration and
the model training used for transmitter fingerprinting. Unless
a sensor is configured in accordance with the transmitter
properties, the respective spectrum scans will not cater to the
transmitter fingerprinting task. Similarly, training a model in
certain channel conditions/transmitter properties while apply-
ing it to different channel conditions/properties also leads to
performance deterioration.

Emerging spectrum sensing applications, however, cannot
readily rely on the availability of prior channel and transmitter
information. Consider crowd-sourced spectrum enforcement
as one example application [1]–[3], whose goal is to auto-
matically detect and counteract rogue radio transmissions. To
this end, a wide targeted band from 30MHz to 6GHz is con-
tinuously monitored by low-cost heterogeneous sensors [1,4].
This target band is (i) orders of magnitude larger than the
instantaneous bandwidth of commodity sensors (i.e., 100 [5]
to 1000 [6] times larger) and (ii) extremely dynamic and
heterogeneous as it houses the majority of the commercial,

scientific and federal radio technologies. Thus, it is unrealistic
to assume that a sensing system would have detailed prior
knowledge about a transmitter to custom-configure the scan.
It is, thus, essential to develop novel AMC approaches that can
(i) fingerprint a large variety of transmitter technologies while
(ii) lacking prior knowledge of the transmitter characteristics
and (iii) relying on low-cost and intermittent spectrum scans.

In this paper, we consider three major oversights in the
existing literature: (i) limited set of target modulations, (ii)
stringent assumptions of signal shaping parameters, and (iii)
prior knowledge of channel conditions. We begin by evaluating
the performance deterioration of baseline methods from the
State-of-the-Art (SotA) when the above assumptions are re-
laxed. We then propose a novel approach to address these per-
formance gaps by enhancing the learned model architectures
and employing agile model training with limited supervision.

Oversight 1: Limited set of target modulations. Most
existing AMC methods were evaluated on low-order mod-
ulation datasets (e.g., BPSK-8PSK or QAM16), with the
most challenging being QAM-64 [7]–[12]. However, emerging
wireless systems utilize complex and higher-order modulations
to improve spectral efficiency and reliability, such as QAM-
1024 in WiFi-6 and 5G and APSK in satellite systems. The
classification of such modulations is challenging even at a
high Signal-Noise Ratio (SNR). To the best of our knowledge,
only [13] considers a complex dataset of 24 modulations,
including high-order QAM and APSK. While [13] makes an
important headway towards high-order AMC, it still requires
prior knowledge of signal shaping and channel conditions.

Oversight 2: Knowledge of signal shaping parameters.
As wireless communication systems operate in band-limited
channels and mostly employ sampling frequencies much
higher than Nyquist’s, it is necessary to shape a transmitted
signal to limit its bandwidth. Different techniques can be
applied to produce a signal with the target bandwidth, e.g.,
upsampling of the signal with factor 2 results in the same
bandwidth as the shaping of the signal with Raised Cosine
(RC) filter with a roll-off factor of 0.5. Since those techniques
are unknown at the receiving sensor, they introduce uncertainty
about the symbol duration of the received signal.

Oversight 3: Knowledge of the channel conditions.
AMC models are often trained under certain channel as-
sumptions (e.g., Additive White Gaussian Noise (AWGN) [7],
Rayleigh [11]–[14], or Rician [15]). However, if the chan-
nel conditions upon runtime modulation classification differ



from those upon training, prior work suffers a significant
performance deterioration [16]. Recent efforts focus on the
transferability of AWGN training to runtime classification with
Rician channel conditions [16], using raw In-phase/Quadrature
(I/Q) data and High-Order Cumulants (HOC) as input features.
While [16] makes an important first step towards understand-
ing model transferability across channel conditions, there are
multiple directions that remain unexplored: (1) consideration
of complex datasets; (2) employing SotA deeper networks;
and (3) evaluation across more complex and realistic channel
conditions such as variable path Rayleigh channels. Blind
channel estimators such as constant modulus [17], expectation-
maximization [18], and High-Order Moments (HOM) and
HOC based [19] algorithms are not directly applicable in
our setting. [17,18] are plagued with high computational and
sensing costs. HOM and HOC [19] have a lower complex-
ity; however, they are highly-sensitive to signal shaping and
channel conditions, as we show later.

Following a detailed exploration of these oversights, we
show that existing AMC approaches suffer substantial perfor-
mance deterioration with complex datasets, unknown signal
shaping, and unknown channel conditions. Signal shaping
leads to modulation variations, which significantly deteriorate
classification performance if not captured in training. Simi-
larly, unknown channel conditions trigger learned classifiers
inapplicable out of context, in which they were trained. To
address these issues, we explore two avenues for enhanced
AMC using Deep Learning (DL). We begin by enhancing the
SotA [20] with STN in search of resilient feature extraction.
In addition, we also employ transfer learning, which improves
classification models by incorporating limited training (e.g., in
cases with rarely-seen channel conditions).

This paper makes the following contributions:
• We identify key criteria such as signal shaping, channel
conditions, and dataset complexity that hamper the DL
AMC methods’ practical applicability to emerging spectrum
applications. We employ a rigorous empirical evaluation to
pinpoint performance drawbacks under realistic circumstances.
• We explore the performance deterioration caused by the
lack of channel-aware training and develop a principled
approach for DL model training across channel conditions to
ensure model applicability to unknown channels.
• We are the first to conceptualize and demonstrate the
adverse effects of unknown signal shaping parameters on
the data-driven and expert feature-based AMC methods.
Accordingly, we develop a principled approach for model
training that ensures model robustness with unknown shaping
parameters.
• We show that STN and TL can substantially improve
the robustness of DL-based approaches to unknown signal
properties.

II. RELATED WORK

A vast literature exists on AMC with three main method-
ological themes: Likelihood-Based (LB), Feature-Based (FB),

and Deep Learning (DL). Due to their high computational
cost and the required prior knowledge about the signal model,
LB approaches have limited practical applicability. On the
other hand, FB and DL approaches have received considerable
research attention. Below we summarize the pros and cons of
each approach.

1) LB methods: They are optimal in the Bayesian sense,
as they minimize the probability of wrong classification [21].
The AMC task is defined as a multiple composite hypothesis-
testing problem, where the number of hypotheses is equal to
the number of target modulations. The major limitation of
conventional LB methods is the careful design and selection of
signal and noise models [22], which requires prior knowledge
about all signal and channel parameters. In the literature,
novel LB methods that blindly estimate unknown parameters
have also been proposed [17]. Thus, their performance and
computational cost depend on the accuracy and complexity of
the employed estimation algorithms.

2) FB methods: These methods extract discriminative fea-
tures from underlying raw data (e.g., I/Q or Power Spectral
Density (PSD)) to classify individual modulations, which re-
quires a substantial system design-time knowledge. In contrast
to LB methods, FB methods [23]–[26] are sub-optimal in
the Bayesian sense but have lower complexity. Classification
features such as instantaneous time-domain features, transfor-
mation and spectral features, and statistical features (HOC and
HOM) have been widely adopted in the FB methods. Novel
features that are more discriminative for certain modulation
formats have also been investigated [7]–[9]. As a classifier,
FB methods have mostly employed Support Vector Machines
(SVM), Decision Tree Classification (DTC), K-Nearest Neigh-
bour (KNN), and shallow Neural Network (NN). Some FB
methods have combined those classifiers to boost performance
[9].

3) DL methods: The input features for those methods are
raw I/Q or PSD data, avoiding the need for system design-
time knowledge required for the heavy feature extraction in
FB methods. DL methods are orthogonal to FB methods,
and can be separated into two major directions: Recurrent
Neural Network (RNN) [12] and Convolutional Neural Net-
work (CNN) [10,11,13]. RNNs are suited for temporal feature
extraction, whereas CNNs learn spatial features. RNNs tend
to have higher running time, as they are difficult to paral-
lelize due to non-linear sequence dependencies [12]. At the
same time, CNNs, albeit faster, are more sensitive to noise
compared to RNNs. Recently, inspired by RNN, new CNN-
based models such are Residual Neural Network (ResNet) [27]
and Aggregated Residual Transformations for Deep Neural
Networks (ResNeXt) [20] have been proposed. Those models
outperform SotA CNN models, as shown for the ResNet-
based AMC model in [13]. Building on ResNet, ResNeXt
is a multi-branch architecture that follows a split-transform-
merge strategy. In [20], the authors show that stacking more
parallel layers with the same hyper-parameters (filter size and
depth) keeps the network design simple and leads to better
results than going deeper or wider. To date, there has not been



any AMC model based on ResNeXt. Furthermore, there have
been a few proposals that combine two or more Deep Neural
Networks (DNNs) connected in multiple serial or parallel
branches to improve performance [10,14,28,29]. The success
of DL methods heavily depends on the size and diversity of
the available labeled dataset. Semi-supervised DL techniques
(mostly Generative Adversarial Network (GAN)) have been
employed to enhance classification performance by generating
additional high-quality labeled data from a small amount of
seed data [30]–[32]. Such generated data are very similar to
labeled seed data as they come from the same distribution,
while data distributions from unseen scenarios differ. Thus,
all DL models perform poorly on the unseen signal shapes.
Every change of a signal or channel parameter would affect the
signal shape and introduce uncertainty in DNNs performance.
This paper investigates which signal and channel parameters
lead to performance degradation and give possible directions
to make DL methods more robust to unseen signal shapes.

III. SIGNAL MODEL

In this section, we introduce the modulated signal as input
to the classifier. Wireless communication systems must be
designed under bandwidth and power constraints determined
either by law or by technical requirements. We assume that
the wireless channel has an available bandwidth equal to B
centered around fc. At the transmitter, there are different oper-
ations (e.g., upsampling, pulse shaping, and upconversion) that
can be performed to produce a signal with a target bandwidth
B. Those operations might introduce some uncertainty about
the symbol rate at the receiving sensor since the sensor that is
sampling at a fixed frequency f

(r)
s does not know the band-

width, B of the signal, and which operations are performed
at the transmitter to produce the signal with that bandwidth.
Thus, there might be an oversampling factor K = f

(r)
s /B

at the receiving sensor. The baseband representation of the
transmitted signal is given as sbb(t) =

∑+∞
n=−∞ ang(t−n/fs),

where an is the n-th complex symbol of the input data, fs is
sampling frequency at the transmitter and g(t) is an impulse
response of the pulse shaping filter. This signal has non-zero
spectral power over the entire [−fs/2, fs/2]. If fs > B,
then upsampling and interpolation of the sequence an is
necessary to narrow its spectral width. An upsampling factor,
L is chosen such that L = fs/B. The upsampler inserts
L − 1 zeros between every two input samples, and must
be followed by a low-pass filter to remove multiple copies
of the upsampled spectrum. The most popular pulse shaping
filter used in wireless communications is the RC filter [33],
whose passing bandwidth is defined by the roll-off factor α
which ranges between 0 and 1, and rarely exceeds 0.5. The
upsampled and filtered transmitted signal can be expressed as

s(t) =

+∞∑
k=−∞

bkg(t− kL

fs
), (1)

where bk = an for k = nL and bk = 0 otherwise. The signal,
s(t), is sent over a dynamic wireless fading channel with an

impulse response hc. Assuming one antenna at the sensor, the
distorted and noise-corrupted received signal, r(t) is given as

r(t) = e−j2π∆fts(t− τ) ~ hc(t) + v(t), (2)

where τ is the timing offset, ∆f is the frequency offset, and
v(t) is AWGN with mean 0 and variance 2σ2

v . We assume
that the receiving sensor is working at the same frequency as
the transmitter, f (r)

s = fs, and also the carrier frequency fc
is known. Thus, the oversampling ratio, K, at the receiving
sensor is equal to the upsampling factor, L. This signal is fed
to the input of AMC classifier that does not know α or L.
The AMC classifier’s task is to correctly select a modulation
format from a pool of known Nmod candidate modulations by
examining the received signal, r(t).

IV. DATASETS AND BASELINE METHODS

In this section, we introduce the datasets and selected SotA
AMC methods used to examine the discussed oversights.

A. Synthetic datasets

We generated several synthetic datasets, as specified in
Table I, by varying L, α, fs, channel models and instance size.
An instance denotes a vector of I/Q samples. We consider two
sets of modulations:
• Simple set, containing 11 low-order modulations typically
used in the literature: BPSK, QPSK, 8-PSK, 16/64-QAM,
PAM4, GFSK, CPFSK, BFM, DSB-AM and SSB-AM;
• Complex set, containing the simple ones and 9 more modu-
lations: OQPSK, 32/128/256-QAM, 16/32/64/128/256-APSK.

We generated 1000 instances with a certain size for each
combination (modulation type, α, L, fs, SNR, channel type),
resulting in 91, 520, 000 and 166, 400, 000 instances for the
simple set and complex set, respectively.

B. Baseline AMC models

We employ six baselines from the literature: five based
on DL and one FB that uses HOC. The 5 DL methods are:
LSTM [12], PF-CNN [14], 2D-CNN [11], ResNet [13], 1D-
CNN [13], and the FB method is HOC [7,25,26]. The first
three models were optimized for a simple dataset which is
an easy classification task at high SNR, with a few DNNs
layers (e.g., two layers in LSTM and four layers in 2D-
CNN) and very short signal observations (e.g., instance size
of 128). However, such shallow DNNs cannot capture higher-
order modulations’ inherent properties even with extended
signal observations. 1D-CNN and ResNet employ a deeper
network structure, and to the best of our knowledge, they
are the only two models evaluated on a complex dataset. We
employ 1D-CNN with seven Conv1D layers with 64 filters
of size 3 and stride 1 (note that these parameters were not
specified in the original paper [13]). ResNet and 1D-CNN
accurately distinguish complex and higher-order modulations,
but their resilience to unknown signal and channel parameters
is unknown.

Our final baseline is a FB classifier that uses HOC features.
To perform well on the complex dataset, HOCs require longer



Table I: Datasets specifications
Name fs [MHz] L RC α Channel Model

DS AWGN [0.2, 0.6,
1, 1.5, 2]

[2, 3.2, 4, 6.4,
8, 10.67, 16, 32]

[0.15, 0.25,
0.35, 0.45]

AWGN with SNR in range [−6, 18] dB

DS Rayleigh [0.2, 0.6,
1, 1.5, 2]

[2, 3.2, 4, 6.4,
8, 10.67, 16, 32]

[0.15, 0.25,
0.35, 0.45] and AWGN with SNR in range [−6, 18] dB. Maximum Doppler shift is 4 Hz.

Rayleigh with a path profile: Delays: [0, 4.5, 8.5] µs; Gains: [0,−1,−5] dB,

DS Rician [0.2, 0.6,
1, 1.5, 2]

[2, 3.2, 4, 6.4,
8, 10.67, 16, 32]

[0.15, 0.25,
0.35, 0.45] Maximum Doppler shift is 4 Hz.

Gains: [0,−2,−10,−3] dB, and AWGN with SNR in range [−6, 18] dB.
Rician with K factor of 4, a path profile with: Delays: [0, 0.25, 3, 8] µs;

DS Rayleigh 2 [0.2, 0.6,
1, 1.5, 2]

[2, 3.2, 4, 6.4,
8, 10.67, 16, 32]

[0.15, 0.25,
0.35, 0.45] and AWGN with SNR in range [−6, 18] dB. Maximum Doppler shift is 8 Hz.

Rayleigh with a path profile: Delays: [0, 0.2, 3, 9] µs; Gains: [0,−7,−2,−1] dB,

signal observations. Thus, we set out instance size to 1024 I/Q
samples and use C20, C21, C40, C41, C42, C60, C61, C62, C63,
C80, C84 [26] employed with a simple linear SVM classifier.

C. Training and testing settings

A seed is used to generate random mutually exclusive
instance indices, which are then used to split the data in each
dataset mentioned in Table I into three sets, training, validation
and testing using order 80:10:10 respectively. Each evaluated
AMC method is implemented using TensorFlow [34]. As an
optimizer, we opted for Adam [35], with a learning rate of
0.001. This learning rate is a reasonable trade-off between
slow convergence at lower rates and inaccurate results at
higher rates. Training is done through 80 epochs and a batch
size of 256. The models are trained and tested on a GPU
server with eight Nvidia RTX 2080Ti cards. All presented
classification accuracies are averaged over the whole SNR
range of [−6, 18] dB.

V. LIMITATIONS OF EXISTING WORK

We now evaluate the baselines’ limitations (§IV-B) with
complex datasets, unknown signal shaping and channels.

A. Sensitivity to complex datasets

Most prior AMC methods have been evaluated on simple
low-order modulation datasets. In this section, we exam-
ine whether these models maintain robust performance with
a complex dataset. The analysis is done on the complex
DS AWGN dataset with L = 4, α = 0.35 and fs = 200
kHz. We keep the same model configurations while varying
the instance size.

Fig. 1 shows that shallow DNN models such as 2D-CNN
have reduced performance for complex datasets, even when
the instance size is increased. PF-CNN, 1D-CNN, and ResNet
are deeper structures, and their accuracy increases up to 16%
with a higher instance size. Those models are CNN based and
much more computationally and memory efficient than Long-
Short Term Memory (LSTM). We employ LSTM with default
training parameters and no hyper-parameter tuning. LSTM
fails to converge for the instance sizes of 512 and 1024 on
the complex dataset. For further examination, we selected the
ResNet and 1D-CNN with the instance size of 1024 as they
performed the best for complex datasets.

B. Sensitivity to signal shaping

According to the signal model described in Section III, there
are three signal shaping parameters (L, RC α, fs), the settings
of which might impact the AMC performance. All SotA
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Figure 1: SotA AMC models evaluated on DS AWGN (L = 4, fs = 200
kHz, α = 0.35). ”s” denotes a simple and ”c” denotes a complex dataset.

AMC models assume that those parameters are known prior
to modulation classification and consequently consider only
a limited subset of all possible practical system realizations.
What remains unclear is how the lack of prior knowledge of
these parameters at the sensor will affect the classification
performance. In what follows, we tackle this question.

1) Upsampling factor variations (L): Baselines are trained
for L = 8, α = 0.35 and fs = 200 kHz in AWGN,
Rayleigh+AWGN and Rician+AWGN channel conditions.
Testing is done for other L values while channel conditions,
RC α and fs remain the same as for training.

Fig. 2 shows that 1D-CNN and ResNet have similar sensitiv-
ity to unknown Ls in all channels. Both have a small accuracy
drop of c. 10% for L = 6.4, and a large accuracy drop of c.
60% for L = 2. HOC-SVM achieves the lowest accuracy for
known L = 8, but it is also the least sensitive to unknown Ls
with an accuracy drop of 25% for L = 2 with Rician+AWGN
channel. These results illustrate that a lack of prior knowledge
of L is critical for AMC performance.

2) RC roll-off factor variations (α): Baselines are trained
for L = 8, α = 0.35 and fs = 200 kHz in AWGN,
Rayleigh+AWGN and Rician+AWGN channels. Testing is
done for unknown RC α values, while channel conditions, L
and fs remain the same as for training. Fig. 3 shows that prior
methods’ performance is consistent across all roll-off values
and channel conditions, with a peak accuracy drop of 8%
for 1D-CNN with AWGN channel. These results indicate that
unknown filter settings might not harm classification accuracy.

3) Sampling frequency variations (fs): Finally, we evaluate
the resilience of AMC performance to the sampling frequency
fs. Baselines are trained for L = 8, α = 0.35 and fs = 600
kHz in AWGN, Rayleigh+AWGN and Rician+AWGN chan-
nels. Testing is done for unknown fs values, while channel
conditions, L and RC α remain the same as for training.
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Figure 2: Sensitivity to upsampling factor L in: AWGN (top-left),
Rayleigh+AWGN (top-right), and Rician+AWGN (bottom) (trained for fs =
200 kHz, α = 0.35, L = 8).
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Figure 3: Sensitivity to RC roll-off factor α in: AWGN (top-left), Rayeleigh
+ AWGN (top-right), and Rician+ AWGN (bottom) (trained for fs = 200
kHz, α = 0.35 and L = 8).

Sampling frequencies higher than the Nyquist are applied in
practice to improve the performance of A/D and D/A convert-
ers. The choice of fs higher than Nyquist’s is not harmful to
AMC performance in AWGN, as shown in Fig. 4 (top left). In
contrast, unknown fs highly deteriorates AMC performance in
fading channels for all baselines. Fig. 4 (bottom) shows that
fs variations introduce a large accuracy drop of 68% for 1D-
CNN and ResNet and 35% for HOC-SVM.

C. Sensitivity to channel models

The wireless channel is inherently dynamic, and thus,
the characteristic of the same signal may significantly dif-
fer over time. Thus, it is crucial to understand how differ-
ences between the channel conditions in training and run-
time classification affect the AMC performance. In this sec-
tion, we set out to quantify these performance issues and
determine which channel conditions are most conducive to
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Figure 4: Sensitivity to sampling frequency fs in: AWGN (top-left),
Rayleigh+AWGN (top-right), and Rician+AWGN (bottom) (trained for fs =
600 kHz, α = 0.35 and L = 8).
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Figure 5: Classification accuracy drops due to the channel model variations.

universal training. To this end, we performed three experi-
ments: (1) train for AWGN, test on Rayleigh+AWGN and
Rician+AWGN; (2) train for Rayleigh+AWGN, test on AWGN
and Rician+AWGN; (3) train for Rician+AWGN, test on
AWGN and Rayleigh+AWGN. Training signal parameters
L = 8, α = 0.35 and fs = 200 kHz were used for all runs.

Fig. 5 shows that all baselines have the highest accu-
racy drop (ResNet: 27.74%, 1D-CNN: 32.25%, HOC-SVM:
8.21%) when they are trained for AWGN. ResNet achieves
the best results when trained for Rayleigh+AWGN, while 1D-
CNN and HOC-SVM achieve a bit better results when trained
for Rician+AWGN. Also, HOC-SVM is much less sensitive
to channel model variations than 1D-CNN and ResNet. We
further evaluate the effect of changing channel conditions
while the channel model remains the same, but with a different
profile. To this end, the model trained for DS Rayleigh we
tested on DS Rayleigh 2. Even within the same channel
model, the small changes in the channel profile introduce
an accuracy drop of 6%, as shown in Fig. 6. Based on
accuracy drops and overall average accuracy, training either
for Rayleigh+AWGN or Rician+AWGN channel would be
a conducive choice. Since Rayleigh has a lower number of
hyper-parameters, it would be a preferred choice.
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Figure 6: Sensitivity to different Rayleigh channels.

D. Learned representations and sensitivity analysis

The previous subsections show that DL AMC methods
suffer from generalization issues with signal and channel
parameter variations. In contrast, FB AMC methods are much
less sensitive to these unknown parameters at the cost of
lower classification accuracy. In what follows, we analyze
the features learned by our baselines and their sensitivity to
parameter selection in detail.

1) DNN models: Since all DNN AMC models have been
treated as ”black boxes”, it is unclear how does DNN work
with the input data, what features does it learn, and how does
it arrive at the final prediction output. Gradient weighted Class
Activation Map (Grad-CAM) [36] is an efficient representation
of the importance of input features to CNN models. As both
1D-CNN and ResNet have similar performance, we pursue
Grad-CAM analysis for the 1D-CNN model to understand how
do the input properties affect the signal shape, and how are
features learned. The Grad-CAM output is a heatmap, which
captures the importance of each input data point for a given
class. This heatmap for I/Q samples of one instance is shown
in Table II. The color of each point represents the importance
of that point for the model. A line is drawn between two
adjacent I/Q points in time, if both have weights higher than
0.8, to capture the model’s transition learning capabilities.

Table II presents the heatmaps for two simple modulations,
BPSK and QPSK, at SNR = 18 dB. Correct predictions
are shaded in green, while wrong predictions are shaded
in red. From the cells in green, we note that the 1D-CNN
learns spatial information of constellation points giving high
importance to constellation point transitions. Upsampling and
channel fading lead to profound changes in the constellation
diagrams and result in miss-classification. An upsampling
factor L introduces L − 1 constellation points between two
original constellation points; thus, a higher L results in higher
dispersion of the constellation diagrams. Rayleigh fading in-
troduces constellation rotation, while Rician fading adds more
constellations in one diagram depending on the number of
Line-Of-Sight (LOS) direct discrete paths (e.g., the last column
in Table II shows two over-imposed constellations in both
modulation classes). These results illustrate that the signal
shape critically depends on the input conditions and explain
the poor transferability of learned models to unseen scenarios.

2) HOC-based FB models: Although we expected that
HOC’s discriminative power would persist across signal and
channel models, the above-presented analysis shows the op-
posite. In what follows, we quantify the sensitivity of HOC.

Figure 7: Effects of L on constel-
lation shape for 16-QAM and 16-
APSK in AWGN (SNR=18 dB).

Figure 8: Effects of L and fs on
constellation shape for 16-QAM in
Rician+AWGN (SNR=18 dB).

(a) C63 (Sensitivity to L) (b) C84 (Sensitivity to L)

(c) C63 (Sensitivity to fs) (d) C84 (Sensitivity to fs)

Figure 9: Sensitivity of mean and standard deviation of C63 and C84 to L in
AWGN (top) and fs in Rican+AWGN (bottom). (All averaged across SNR
range [0, 18], for each SNR value is generated 100 instances).

Upsampling factor sensitivity. With L > 1, the shape of
the modulation is distorted, and this distortion is larger for
higher L. Fig. 7 illustrates the effect of upsampling for 16-
QAM and 16-APSK in AWGN at SNR = 18 dB. Without
upsampling, the constellations for both 16-QAM and 16-APSK
are ideal with clear sample clusters. With upsampling, the
clusters become distorted making it hard to recover the original
constellation. Consequently, the HOC values are unstable,
which increases with L, as shown in Figs. 9(a) and 9(b). The
discriminative power of C63 and C84 is maintained for each
L, however, their values change with L, leading to classifier
confusion when applied to datasets with unknown L.

Sampling frequency sensitivity. The sampling frequency
affects the classification performance only in fading channels.
Rician and Rayleigh channels are modeled as slow flat for
fs = 200 kHz, while for higher fs, these models act as a slow
frequency selective fading channel. In flat fading, the channel’s
multipath structure is such that the transmitted signal’s spectral
characteristics are preserved at the receiver. In contrast, the fre-
quency selective channel introduces Inter-Symbol Interference
(ISI) since different frequency components of the signal are
affected independently. As time varies, the channel varies in
gain and phase across the signal spectrum, and it is highly
unlikely that all parts of the signal will be simultaneously
affected by a deep fade [33]. Consequently, the discriminative



Table II: Grad-CAM visualisation of the importance of input features to 1D-CNN trained for different values of signal and channel parameters at SNR = 18
dB. Correct classification predictions are shaded in green, while wrong ones are shaded in red. Higher weight intensity means higher importance.
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power of the cumulants features decreases with increasing
fs, as shown in Figs. 9(c) and 9(d) for C63 and C84 in two
representative modulations. The higher fs, the deep fade takes
a more severe impact on the signal.

Channel model sensitivity. Although the constellation
shapes are lost in fading channels, the HOC values do not
change so much in flat fading channels. E.g., in Fig. 8 a
16-QAM constellation appears with a single symbol cluster
as opposed to the expected 16 clusters. If we compare C63

values for 16-QAM and 16-APSK in AWGN (see the third
bar in Fig. 9(a)) and in flat Rician+AWGN (see the first
bar in Fig. 9(c)), we observe a small decrease of C63 for
both, 16-QAM and 16-APSK. The same trend is observed
for C84 (compare the third bar in Fig. 9(b) and the first bar
in Fig. 9(d)). HOC discriminative power is lost in frequency
selective fading channels, resulting in poor performance re-
gardless of the adopted classifier.

VI. USING STN AND TL TO COMBAT SENSITIVITY TO
UNKNOWN SIGNAL AND CHANNEL PARAMETERS

In the previous section, we showed that CNNs learn spatial
signal information, i.e., constellation shapes. Upsampling,
noise, and fading distort the constellation shapes, either by
rotation, translation, scaling, or some non-linear transforma-
tion, as shown in Table II. Recently, the use of DNNs to
learn spatial transformations has become an active research
field in DL [37]. STN is introduced in [37] and designed
as an independent module that can be easily embedded into
any classifier network. There have been a few approaches
to embed STN in the AMC classifier [38]–[40]. However,
performance evaluation is done on simple datasets (e.g., 3,
8, and 11 in [39], [40], and [38], respectively) with a priori
known L, RC α, and channel models. Prior work [38,40]
reports marginal improvements in using STN to synchronize
the frequency and sample rate offset between a sensor and

a transmitter. Our work examines the applicability of STN
to combat AMC sensitivity to unknown signal and channel
parameters and for a large dataset of 20 complex modulations.
We omit receiver impairments such as frequency offset and
sample rate offset. Below we present the results achieved by
two different approaches: (1) data augmentation with STN
and (2) TL with an assumption that small labeled datasets
are available for certain unseen scenarios.

A. A novel network model with STN and ResNeXt

Inspired by the advantages of ResNeXt over ResNet [20],
we propose a new classifier network in which we add the STN
module. Our model, named STN-ResNeXt, is given in Fig. 10.
The instances of size 1024 are fed into the model. The model
has two parallel branches: (1) ClassNet learns features from
the original input; (2) STN+ClassNet learns features from the
transformed input. Both learned features are concatenated and
sent to the Dense layer of 128 units, followed by the Softmax
layer. STN consists of three modules: (1) the Localizer predicts
transformation matrix; (2) the Grid Generator implements
the transformation; (3) the Sampler implements interpolation.
The Localizer network contains two CNN layers followed
by three ResNeXt blocks (shown in Fig. 11) and a Global
Average Pooling layer. The last layer in the Localizer is a
dense layer with 6 units, whose weights are initialized as
[0.7,−0.7, 0.1, 0.3, 0.7, 0.2]. ClassNet consists of two CNN
layers, six ResNeXt blocks, and a Global Average Pooling
Layer. Note that ClassNet and the Localizer hyperparameters
(number of ResNeXt blocks, block structure, etc.) are opti-
mized through trial-and-error, and found optimal values are
given in Figs. 10 and 11. The entire STN-ResNeXt network
has 86,212 trainable parameters, which are 2.74 times lower
than the number of trainable parameters in ResNet (236,344),
and 1.65 times lower than 1D-CNN (142,932).



Figure 10: STN-ResNeXt network layout.

Figure 11: ResNeXt block layout.

B. Performance analysis with STN

We seek to evaluate the benefits of STN in unseen scenarios.
We trained STN-ResNeXt for a Rayleigh channel, as it is
most conducive to universal training. The remaining training
parameters are L = 8, α = 0.35, and fs = 200 kHz. First,
we evaluated the performance when only the ClassNet branch
is active, while the STN+ClassNet branch is disabled. The
results show that the ClassNet branch alone achieves the same
results as ResNet [38]. Second, by enabling the STN+ClassNet
branch, we also achieved an average accuracy improvement
of up to 6%. However, the sensitivity to unknown signal
parameters persists similarly to our already evaluated AMC
methods: ResNet and 1D-CNN. Replacing the ClassNet block
with the ResNet model [13] only gave an expected slight
improvement of 3%, which is in line with the conventional
reported improvements of less than 6% [37].

C. Performance analysis with TL

Since labeled data across all scenarios is infeasible to obtain,
we propose to use TL to transfer learned features from existing
source tasks to improve and expedite learning in related tasks
with a limited set of labeled training data [41]. TL has been
applied to AMC, where the target domain is a new modulation
set [42], unknown receiver impairments (frequency offset or
time drift), or different instance sizes [13,42,43]. Those ap-
proaches either aim to improve the accuracy only for the target
domain ([42]) or to improve the overall accuracy by creating
individual models for each domain [43]. While the former
might result in very poor performance for the source domain,
the latter suffers from high computational complexity. We aim
for generalizability by having only one model that achieves the
best average accuracy for each unseen scenario with a small
labeled data set. In this analysis, we use a baseline the STN-
ResNeXt model trained for Rayleigh+AWGN channel, L = 8,
fs = 200 kHz, and α = 0.35.

1) STN-ResNeXt with varying channel models: The base-
line STN-ResNeXt model achieves an average classification
accuracy of 80.4% in Rayleigh+AWGN, while in unseen
channel conditions, it achieves 53.11% for AWGN and 72.34%
in Rician+AWGN. We improve the accuracy by retraining only
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Figure 12: Classification accuracy across channel models with TL.

a portion of the baseline using TL with 5, 8 or 10% labeled
data. Specifically, we explore two scenarios: (1) retrain only
the last Dense layer; and (2) retrain only the last ResNeXt
block in STN. Fig. 12 shows that the transfer of a limited
amount of information substantially boosts the performance
over the baseline in both modified scenarios. Increasing the
percentage of limited training, from 5% to 10%, does not
lead to substantial improvement. The best results are achieved
when only the last Dense layer is retrained with 10% labeled
data. The average accuracy is increased by 20% in AWGN
and 3% in Rician+AWGN. Fig. 12 shows that lower layers
are indeed in charge of more general features, while higher
layers are more sensitive to domain differences as elaborated
in [44]. There is a slight decrease in classification accuracy
of up to 2% for the source domain, Rayleigh+AWGN, due to
the network layers’ adaptation with the other two unknown
channel models; however, this is justified by the significant
performance boost in the other two unknown channel models.

2) STN-ResNeXt with varying sampling frequencies: As a
baseline model, we use STN-ResNeXt optimized for channel
variations. As the sampling frequency is a problem only in
fading channels, we need a small set of labeled data with
frequency selective channel conditions. We selected a small
set from DS AWGN, DS Rayleigh, and DS Rician for fs =
1500 kHz, L = 8, and α = 0.35. We retrain the last Dense
layer with 5% and 10% of labeled data. Fig. 13 shows that
by retraining only the last Dense layer with 5% of labeled
data, the accuracy for fs = 1500 kHz is increased by 26% in
fading channels. The accuracies for fs = [1000, 2000] kHz see
a smaller increase of 10%, and overall they are low even with
TL. Thus, we conclude that the sampling frequency difference
of 500 kHz is too large to be generalized by DNNs, and small
sets of labeled data for both 1000 kHz and 2000 kHz are
required to improve their performance. Further investigation
is necessary into the minimum sampling frequency offset that
DNN can sustain.

3) STN-ResNeXt with varying upsampling factors: Finally,
we seek to understand STN-ResNeXt’s performance across
upsampling factors. As a baseline, we use STN-ResNeXt
optimized for channel variations. First, we study the per-
formance of STN-ResNeXt with a fixed upsampling factor
L = 8 and channel-aware training (i.e., the training uses
labeled data for each channel model: 80% of DS AWGN,
80% of DS Rayleigh, and 80% of DS Rician). Fig. 14 (left)
illustrates the sensitivity of such trained model to unknown
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Figure 13: STN-ResNeXt sensitivity to fs in AWGN (top left),
Rayleigh+AWGN (top right), and Rician+AWGN (bottom).

Ls. The maximum accuracy is around 80% for known L = 8
in each channel model, while it significantly drops when L is
different than 8. We explore TL’s performance benefits using
a limited set of training data (5%) with L = [2, 4, 8, 16, 32]
for each channel. We retrained the last Dense layer in STN-
ResNeXt with this data. Fig. 14 (right) shows that the accuracy
is increased by 20% for L = 2 and by 50% for L = 32 in
each channel model.
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Figure 14: Channel-aware STN-ResNeXt across L. Without TL (left), with
TL (right).

Finally, we seek to understand the performance of STN-
ResNeXt without channel-aware training and without prior
knowledge of Ls (i.e., using our model optimized for channel
variations). To this end, we test STN-ResNeXt, optimized
for channel variations and L = 8, across all three channel
conditions (AWGN, Rayleigh+AWGN, and Rician+AWGN)
and unknown Ls. Fig. 15 (left) presents accuracy across L
without TL. Compared to Fig. 14 (left), we see a 10% increase
in accuracy for unknown L > 8 in each channel model. Note
that TL adjusted STN-ResNeXt was optimized for channel
variations with only 10% labeled data of each channel model
with L = 8. In comparison, channel-aware STN-ResNeXt
was trained with 80% labeled data for each channel with
L = 8. The improvement by 10% is due to the included STN
module in our model. To be more restricted with the amount of
labeled data, we retrained the last Dense layer with 5% labeled
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Figure 15: STN-ResNeXt across L. Baseline (left), baseline with TL (right).

data for L = [2, 4, 8, 16, 32], but only for Rayleigh channels.
The results after TL (Fig. 15 (right)) show that the accuracy
for the Rayleigh+AWGN channel is better than in the case
with channel-aware STN-ResNeXt, while for the other two
channels, the accuracy is lower. However, compared with the
baseline without TL ( Fig. 15 (left)), the accuracy increases
by 30% and 20% for L = 32 in Rician+AWGN and AWGN,
respectively. Average accuracy increases across all Ls with
TL are 23.07%, 7.5%, and 5.76% for the Rayleigh+AWGN,
Rician+AWGN, and AWGN, respectively. These results lead
to two important insights: (i) channel-oblivious training suf-
fers a non-negligible performance deterioration; however, (ii)
employing transfer learning with limited training substantially
improves the modulation classification.

VII. CONCLUSIONS

AMC in realistic scenarios is a challenging problem, as
knowledge of signal and channel parameters is required for
optimal performance. In this paper, we examined how the
lack of this knowledge affects the performance of two AMC
research streams: data-driven and expert feature-based. We
showed that unknown upsampling factors significantly deterio-
rate classification accuracy in each channel model for both re-
search AMC streams, while unknown RC filter parameters do
not harm accuracy. Unknown sampling frequency introduces
a substantial accuracy drop in fading channels. Feature-based
AMC methods are most sensitive to unknown upsampling
since it introduces the most significant deviations in signal
shape and, in turn, in features’ values. On the other hand,
data-driven AMC methods outperform expert feature-based
methods in scenarios for which they are trained. As each
change of signal and channel parameters impacts the data
distribution, data-driven AMC methods that rely on trained
data distribution knowledge fail to correctly classify data from
different distributions. STN is an active research direction
in DL, which aims to improve the robustness of DNNs
to distorted data distributions. We showed that the current
implementation of STN improves performance by less than
6%. Given a limited labeled data set for a new target domain,
we showed that transfer learning improves performance by
up to 30% with only 5% of labeled data while retraining
just one layer in the overall DNN architecture. However, even
with optimal STN and TL, DNNs are still vulnerable to out-
of-distribution data, which calls for further investigation into
anomaly detection to improve the certainty in DNN’s output.
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