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Abstract—With the advent of Dynamic Spectrum Access net-
works, practical modulation recognition (ModRec) has become
an important problem with critical applications to spectrum en-
forcement and resource allocation. Existing ModRec frameworks
hinge on exhaustive classifier training and require labeled obser-
vations for all modulations before recognition can be performed.
As a result, a general ModRec system based on fully supervised
classification quickly becomes intractable due to the emergence
of new proprietary waveforms and the need to collect labeled
training data for them and retrain the system. This underpins
the need to perform modulation classification of previously
unobserved modulations. Thus, the question emerges can learned
classifiers be transferred to “unobserved” modulations?

In this paper, we investigate the utility of zero-shot learning to
address the above challenge in the context of ModRec. We design
ModRec-0, which employs unseen modulations’ constellation
diagrams within a zero-shot framework to transfer learned
classifiers from observed modulations. We propose several im-
portant properties to enable this transfer, such as the number
of constellation points, phase and amplitude levels. Our system
is flexible in that additional such properties as well as a variety
of classification features can be incorporated. We evaluate our
framework on synthetic and real over-the-air traces and investi-
gate the necessary conditions such as SNR levels and observed
training classes for successful transfer. We demonstrate that
ModRec-0 achieves over 85% average accuracy across multiple
modulation classes both in synthetic and real-world traces.

I. INTRODUCTION

The goal of modulation recognition (ModRec) is to de-
termine the modulation of a passively sensed input signal
based on pre-trained classifier or a likelihood model [1].
ModRec has emerged as an important component of future
wireless networks with applications in both civil and military
contexts. Civil ModRec applications include resource allo-
cation and spectrum enforcement, while military applications
range from identifying adversary transmitting units to efficient
jamming [2]. ModRec approaches can be grouped in two
families: likelihood based (LB) and feature based (FB) [1].
LB methods evaluate the likelihood of candidate modulations
given observations, while FB approaches extract features from
observations and train classifiers which are employed for
recognition. One drawback of LB methods is their high com-
putational complexity [1]. FB approaches are more scalable,
drawing on the tremendous advances in machine learning, but
require labeled training data for all modulations of interest.

The existing literature on FB contributes important advances
on improving the employed classifier models [3]–[5] as well
as on feature engineering [6]–[9]. Common to all of them
is the critical dependency of their accuracy on the diversity
and number of training instances [10]. In many application

scenarios, however, the collection of training instances for
every modulation class can be prohibitive or impractical alto-
gether, as some emerging modulations (e.g. Quadrature Spatial
Modulation [11]) are seldom widely available, and thus, hard
to train for. Another challenging scenario is the recognition
of customized versions of popular modulations such as phase
rotations and shape variance [12]. Methods from the transfer
learning literature, such as zero-shot learning, bring promise
for robust ModRec with limited supervision. Recent work
from image processing proposed generalized representations
enabling between-class attribute transfer [13] and sharing
of features between classes and generalized attributes [14].
Beyond new representations, various classifiers have been con-
sidered for the zero-shot learning: from traditional ones [15]
to novel deep learning architectures [16].

Our goal in this paper is to investigate the feasibility of
feature-based modulation classification with limited supervi-
sion. Our key insight is that modulations often share properties
depending on how they manipulate the phase, frequency and
amplitude of the carrier. For example, all modulations from the
phase-shift keying family manipulate the phase but not the am-
plitude and frequency. We design ModRec-0, which exploits
shared properties across modulations in support of ModRec
with limited supervision. We differentiate between observed
and unobserved modulations. “Observed” are modulations for
which we have labeled training data, while “unobserved” are
modulations for which we do not have training data, but need
to classify. Our zero-shot framework learns from observed
classes a generalized feature representation which can then be
employed for classification of unobserved modulations [17],
[18]. To this end ModRec-0 utilizes a semantic representation
space of the modulation domain and a linear classifier model.
Our semantic embedding space summarizes key “theoretical”
modulation attributes such as amplitude and phase levels, and
is flexible in that it could be extended with other attributes
of interest. We evaluate ModRec-0’s performance with sim-
ulated and over-the-air transmissions.

The contributions of our work are as follows:
• Novelty: Our work is the first to conceptualize semantic
representations of modulations and evaluate the utility of
zero-shot learning for feature-based ModRec. We show the
feasibility of ModRec of previously unobserved signals.
• Generality: While we instantiate the semantic attribute
matrix—a key component of zero-shot transfer learning—with
specific attributes, it can be easily extended with additional
ones. Similarly, alternative classification approaches and fea-
tures can be adopted in the task.



• Applicability: We study the strengths and limitations of our
approach using both simulation and over-the-air traces and il-
lustrate its applicability in both simulated as well as real-world
wireless channel conditions. We map out the feasibility and
future challenges towards a zero-shot ModRec deployment.

II. PROBLEM DEFINITION AND NOTATION

Next we present the general pipeline of feature-based (FB)
ModRec and typical features extracted from in-phase and
quadrature components (IQ) formatted signals.
ModRec as supervised learning. Supervised FB ModRec
employs a training dataset {X, y}, where X ∈ Rd×n is a
set of d-dimensional instances each representing a sequence
of measured IQ samples and y ∈ {c0, c1 . . . ck}n×1 is a
class vector encoding type of modulation giving rise to each
instance. The goal is then to learn a classifier which maps
unobserved instances to one of the observed classes f(x) →
{c0, c1 . . . ck}. In the case of zero-shot learning, discussed in
the next section, we will seek to further be able to “reuse” this
function to predict a set of classes unobserved during training,
i.e., f0(x) → {ck+1 . . . ck+k′}.
Mapping IQ samples to features. Feature engineering is an
important step in FB ModRec [1]. Let (r1, r2, ..rm) denote a
sequence of m consecutive IQ samples sensed via a passive
sensor, where ri ∈ C is the instantaneous complex signal
sampled at time i. Existing literature typically assumes a signal
model with a channel effect of additive Gaussian white noise
(AWGN), which can be represented as:

r(n) = s(n) + w(n), (1)

where w(n) ∼ Φ(0, σ2) is a zero-mean Gaussian noise term.
The feature engineering process in FB ModRec maps the input
IQ signal to a d-dimensional feature space: g : Cm → Rd.
The feature representations of all obtained instances are then
employed for training the classifier model.

High order cumulants which summarize statistical proper-
ties of observed IQ samples are among the most commonly
used features [6], [7], [19]. More recent work has also consid-
ered order statistics [8] and patterns in the local order of IQ
samples [9]. Note that we focus on cumulants as features for
the evaluation in this work, however, a thorough consideration
of other features is warranted and we plan to pursue this as
part of our future work on extending the current analysis.

III. MODREC-0: ZERO-SHOT LEARNING FOR MODREC

In this section, we outline our proposed approach. First
we describe our zero-shot pipeline and methodology. Then
we detail the ModRec semantic attributes, an imperative
component employed in the pipeline.
A zero-shot pipeline for ModRec. A key difference in
the zero-shot setting in comparison to the classical fully-
supervised case is that we need to learn a discriminator
f0(x) → {ck+1 . . . ck+k′} for unobserved classes. Intuitively,
the idea is to learn an association V between features of
training classes and semantic attributes S available for both
training {c1 . . . ck} and testing {ck+1 . . . ck+k′} classes.

Similar to the fully-supervised case, the training input in
zero-shot learning is a dataset {X,Y }, of N training instances,
i.e., samples from modulations for which we know the ground
truth modulation. Note that instead of a class indicator vector,
we learn to predict the association of each instance with one or
more of the training classes encoded in matrix Y ∈ {0, 1}N×k.
We adopt the linear classifier framework originally proposed
by Romera-Paredes et al. [20] which can also be kernelized
to perform non-linear classification. The general linear classi-
fication scheme learns a discriminator function f : X → Y
by minimizing a regularized empirical risk:

min
W

L(f(X,W ), Y ) + Ω(W ), (2)

where L(f(X,W ), Y ) quantifies the training error (or em-
pirical misclassification) and Ω(W ) imposes a desired shape
on the classifier(s). Within this general framework, one can
express a linear Support Vector Machine (SVM) objective by
choosing a hinge loss for the shape of L(XTW,Y ) and the
Frobenius norm which imposes small margin for the shape
of Ω(W ). With an SVM objective, the columns of W are
separating hyperplanes for each of the classes.

The novel challenge with zero-shot learning is that the
training {c0, c1 . . . ck} and testing {ck+1 . . . ck+k′} classes are
disjoint. Therefore the trained classifiers in W need to be
transferred to classes for which we have not observed training
instances. The zero shot approach to achieve this is to employ
an intermediate representation space, which acts as a bridge
between knowledge of unobserved and observed classes.

Lampert et al. [13] call such intermediary representations
attributes (not to be confused with the features representing
instances). Within this framework all classes (both observed
and unobserved) are represented by a finite set of attributes S,
each having a real-world interpretation [21]. We will discuss
the design of attributes for modulations in the following
section and will assume that we have a mapping from all
classes to attributes in a matrix S ∈ Rk′×m, where k′ is
the total number of classes and m is the number of semantic
attributes.

Given the attribute representation of classes S the general
goal in transfer learning is to use the semantic attribute space
to transfer the classifiers for training classes to those for test-
ing [15]. Romera-Perendes and colleagues [20] demonstrated
a simple yet effective learning process whose key idea is
to learn predictors V for the semantic embedding of classes
S as opposed to directly to the class matrix Y . By letting
W = V S in Eq. (2) for the SVM case one obtains the
following objective:

min
V

L(XTV S, Y ) + Ω(V ),where (3)

Ω(V ) = γ||V S||2F + λ||XTV ||2F + β||V ||2F . (4)

Note that the first two ridge regularization terms shrink the
feature space and perform semantic projection on the hyper-
planes in V , while the third term follows the classical margin
minimization criterion in SVM. All regularization are convex



and so is the overall objective in Eq. (3). In addition there is an
efficient closed-form solution for V due to [20]. Regularization
weights γ, λ and β can be set based on cross-validation within
the training set.

In order to predict testing classes, we first project a new
instance x into attribute space via the discriminators learned
in V , thus obtaining a semantic space representation of the
instance xTV . This representation is then compared with all
training class semantic representations S′ and the class of
highest agreement (inner product value in semantic space) is
predicted similar to the process in SVM:

argmax
i∈ck+1···ck′

xTV S′
i (5)

where S′
i is the semantic representation vector (attribute val-

ues) of the i-th training class.
The right pane of Figure 1 provides an intuitive visualization

of the training and prediction processes in ModRec-0. The
input to our framework (left pane) is comprised of a seman-
tic attribute matrix for all modulations, both observed (i.e.
training) and unobserved (i.e. testing); and a set of labeled
instances for all training modulations. In the training phase
(top right pane), we take the labeled training instances and
their respective attributes and seek to learn the corresponding
classifier V . We then transfer the learned classifier to the
prediction stage. Upon receiving a previously unobserved
instance, we use the learnt classifier along with the attribute
matrix for the testing classes to find the most likely modulation
type corresponding to the measured instance.

The accuracy of our framework depends on the design of
the semantic attributes embedding S, which has to facilitate
maximal knowledge transfer. In what follows, we propose
one possible such embedding S, however, the framework
is flexible in that S can be further extended within the
same framework. An important practical advantage of the
methodology is that adding a new target modulation class does
not require re-training of the model V . Instead, one needs to
add a corresponding attribute representation to S′ in order to
accommodate prediction for this new class.
Design of modulation attributes embedding S. Semantic
attributes capture the intrinsic characteristics of a class. For
example, recent work from the image segmentation litera-
ture [13] uses visually-observable features of a class such
as “is yellow” and “has a long neck”, whereas others [22]
use subjectively-perceived features such as “is cute”. Various
approaches to attribute design have been employed ranging
from fully expert designed [23] to fully data-driven [24]. In the
image segmentation literature, semantic attributes are typically
acquired by manual labeling (e.g. a Mechanical Turk task).
Similarly, in the modulation recognition domain, attributes will
draw on expert input.

Using expert knowledge, we design our semantic attributes,
all of which draw on the modulation’s constellation shape and
are illustrated in the left pane of Figure 1:
1) Number of unique amplitude levels A. As the name sug-
gests, we count the unique amplitude levels per modulation.

For BPSK, QPSK and 8-PSK this would be 1, whereas 16-, 64-
and 128-QAM have 3, 9 and 16 distinct levels, respectively.
2) Number of unique phase levels ϕ. We define a phase level as
the phase at which a given constellation point falls on a Polar
coordinate system. For example, BPSK has two constellation
points, which are typically at 0◦ and 180◦, whereas QPSK has
four constellation symbols at 0◦, 90◦, 180◦ and 270◦.
3) Normalized pairwise distance of constellation points. These
attributes encode the spread of a constellation. We obtain them
by first calculating the pairwise distance between all points
in a constellation. We then note the minimum (dmin), median
(dmed) and maximum (dmax) observed pairwise distances. We
derive two distance attributes per modulation class, namely the
normalized minimum distance Dmin = dmin/dmax and the
normalized median distance Dmed = dmed/dmax.
4) Constellation overlap at rotation θ◦. A modulation’s con-
stellation can be thought of as a set of points in a Cartesian
coordinate system with an origin O(0,0). We can create a
rotated version of the original constellation by keeping the
origin fixed, while rotating the x and y axes at an angle θ.
Thus, for this attribute we take all unique rotations of θ◦i for
which the derived constellation shape at θ◦i rotation completely
overlaps with the original constellation shape at rotation 0◦.
For example, for BPSK the original and derived constellations
overlap at 180◦, whereas for QPSK this overlap happens at
90◦. We implement this by varying θ from 0◦ to 180◦ in
increments of 5◦ and taking only the rotation angles for which
the derived constellation fully overlaps with the original.

All attribute values are bounded between 0 and 1 [20].
This is satisfied for our attributes as they either take a binary
value (either 0 or 1) or real value normalized between 0 and
1. Specifically, A, ϕ and θ take binary values (e.g. “unique
amplitude level of 3 or different”), whereas Dmin and Dmed

take continuous values normalized between 0 and 1.
We derive the attribute matrix as follows. Assume that

for an attribute such as the number of amplitude levels, all
modulations yield a collection of measurement denoted as
A = {A1, A2, . . . AM}, where M equal the number of mod-
ulations. From collection A we calculate unique elements as
the set B = {B1, B2, . . . BK}, K ≤ M . For each modulation,
if an attribute (say Am) is equal to an element (say Bk), the
k-th column in the attribute matrix would be encoded as 1 and
otherwise as 0. This process is adopted for the representation
of all modulations. Finally, we concatenate columns from each
attribute category (i.e. all A’s, all ϕ’s, all θ’s, Dmin and Dmed)
to form S. To keep the matrix compact, we do the following
post-processing: (1) omit columns of constant values and (2)
retain only one from a group of duplicate columns. Fig. 2
illustrates the compacted attribute matrix annotated for the six
modulation classes used in our experimentation.

The attribute values for each modulation can be obtained
from the theoretical constellation diagrams and, thus, do not
require any empirical observation of the corresponding signals.
Thus, employing the above pipeline, we can easily add a new
modulation to the attribute matrix as long as we have its
constellation projection onto a Polar coordinate system.
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IV. EVALUATION

We now evaluate the performance of ModRec-0 in both
realistic simulation as well as on over-the-air traces from [10].

Experimental setup. We implement the zero shot learn-
ing framework stemmed from [20]. Our synthetic dataset is
generated with the MATLAB Communications Toolbox and
includes six modulations: three from the PSK family (BPSK,
QPSK, 8-PSK) and three from the QAM family (16-QAM,
64-QAM and 128-QAM). Training and testing instances of
each modulation contain 512 samples each. We train on
3000 instances of each modulation and test on 3000. For
each instance we compute the features as detailed in §III
before performing the classification. We also use an over-
the-air dataset from [10], which was recorded in an indoors
interference-free environment and features four modulation
classes: BPSK, QPSK, 16-QAM and 64-QAM. The transmitter
and sensor are positioned in line-of-sight and use USRP B200
SDRs as radio front ends. The dataset contains extracted
cumulant features for every class (i.e. no raw IQ samples were
provided). We use fourth-order and sixth-order cumulants as
the feature representations. In interest of space we omit details
in feature extraction and point the interested reader to [19].
For each experiment, we report the average accuracy across

all partition combinations. We define accuracy as the ratio
of correctly-predicted instances over the total number of test
instances.

In the training phase we use a data-driven approach to find
the optimal parameters λ, β and γ (see (4)). Specifically,
we perform a grid search on these parameters, increasing
each in the range [0.001, 0.01, 0.1, 1, 10, 100, 1000]. For this
parameter estimation, we held out a 40% portion of the
training dataset for parameter validation, using accuracy as
the validation criteria.

A. ModRec-0 on synthetic data

Our experiments with synthetic data allow for tight control
over the SNR, features and the testing/training combinations.

1) Overall accuracy: We begin by presenting results for
the overall accuracy of ModRec-0 on synthetic data. We
explore two scenarios: 4/2 where training is performed on
four classes and the prediction on two and, 3/3 where training
takes three classes and prediction takes three classes. We note
that the first scenario gains 15 unique train/test combinations,
whereas the second scenario gains 20 unique combinations.
Fig. 3 presents our results for average accuracy over all
training/testing combinations as a function of increasing SNR
(0-20dBm in increments of 2dBm). The dashed line indicates a
random guess. For both 4/2 and 3/3, the prediction accuracy
is well above a random guess. For low SNR regimes, up
to 8dBm, the performance suffers deterioration, however, for
SNR higher than 8dBm, we are able to maintain high and
persistent performance of up to 0.89. Case 4/2 (Fig. 3a)
gains superior performance in comparison with case 3/3
(Fig. 3b) across all SNR regimes. Intuitively, the reduced
amount of training data in 3/3 compared to 4/2 takes a toll
on the classification performance. In the following evaluation,
we set forth to understand what training/testing combinations
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Fig. 3: Average accuracy over all combinations with increasing SNR.

are most susceptible to performance deterioration in order
to inform best practices in classifier training for zero-shot
modulation recognition.

2) Performance breakdown across combinations: Tbl. I
presents the breakdown of classification performance for each
training/testing combination. The top table presents results for
the 4/2 case, whereas the bottom for the 3/3 case. The
accuracy value is averaged across all test classes (i.e. if the test
combination was 2-PSK and 16-QAM, the reported accuracy
is averaged over the prediction accuracy for each class). We
report accuracy for three SNR levels: 2, 10 and 20dBm.

First, we focus on the 4/2 case (Tbl. I top). A random
guess in this scenario would gain an accuracy of 0.5. Com-
binations 1-9 maintain high performance, including for the
very challenging SNR regime of 2dBm. Combinations 10-
15 gain a random guess (i.e. poor classification performance)
across all SNR regimes. To gain more insight, we look at
the representation of each modulation family (i.e. PSK and
QAM) in the training and testing stages of the algorithm.
The main difference between combinations 1-9 and 10-15 is
that in 1-9 we train on two classes from each modulation
family and test on one class from each family, whereas in
combinations 10-15 we train on one class per family and test
on two classes of that family. In other words, combinations 1-
9 capture the variance within a modulation family in training,
whereas combinations 10-15 do not capture that variance. Our
results for the 3/3 case further explore this issue. We note that
none of the training combinations here captures the variance
of both modulation families simultaneously. As a result, the
average accuracy is driven up by the classification performance
of the family for which the variance is captured in training
(e.g. cases 1-6 gain high performance, since the classifier is
trained on two QAM classes and predicts one QAM class).
The performance is susceptible to low-SNR regimes.

The key insight from these observations is that train-
ing in a way that do not capture the in-family variance
severely deteriorates the classification performance. Thus,
our recommendation is that training has to include at least
two classes per family, and potentially more for complex
modulations, in support of zero-shot modulation recognition.

3) Effects of the training mix on performance: We further
explore the effects of training on ModRec-0, focusing on
whether training captures the in-family variance (i.e. within
PSK and QAM), cross-family variance (i.e. across PSK and

TABLE I: Accuracy break down for 4/2 (top) and 3/3 (bottom). All cases that
do not capture the in-family variation are plagued with poor performance.

# Training Testing 2dBm 10dBm 20dBm
1 4/8PSK, 64/128QAM 2PSK, 16QAM 0.98 1.00 1.00
2 4/8PSK, 16/128QAM 2PSK, 64QAM 0.99 1.00 1.00
3 4/8PSK, 16/64QAM 2PSK, 128QAM 0.98 1.00 1.00
4 2/8PSK, 64/128QAM 4PSK, 16QAM 0.78 0.99 1.00
5 2/8PSK, 16/128QAM 4PSK, 64QAM 0.82 1.00 1.00
6 2/8PSK, 16/64QAM 4PSK, 128QAM 0.48 0.79 0.99
7 2/4PSK, 64/128QAM 8PSK, 16QAM 0.60 0.96 0.99
8 2/4PSK, 16/128QAM 8PSK, 64QAM 0.67 1.00 1.00
9 2/4PSK, 16/64QAM 8PSK, 128QAM 0.71 0.95 0.93

10 8PSK, 16/64/128QAM 2/4PSK 0.50 1.00 1.00
11 4PSK, 16/64/128QAM 2/8PSK 0.50 0.50 1.00
12 2PSK, 16/64/128QAM 4/8PSK 0.50 0.50 0.50
13 2/4/8PSK, 128QAM 16/64QAM 0.50 0.50 0.50
14 2/4/8PSK, 64QAM 16/128QAM 0.50 0.50 0.50
15 2/4/8PSK, 16QAM 64/128QAM 0.50 0.50 0.50

# Training Testing 2dBm 10dBm 20dBm
1 8PSK, 64/128QAM 2/4PSK, 16QAM 0.51 0.98 1.00
2 8PSK, 16/128QAM 2/4PSK, 64QAM 0.54 1.00 1.00
3 8PSK, 16/64QAM 2/4PSK, 128QAM 0.37 0.89 1.00
4 4PSK, 64/128QAM 2/8PSK, 16QAM 0.45 0.98 1.00
5 4PSK, 16/128QAM 2/8PSK, 64QAM 0.50 1.00 1.00
6 4PSK, 16/64QAM 2/8PSK, 128QAM 0.58 0.67 0.78
7 4/8PSK, 128QAM 2PSK, 16/64QAM 0.65 0.67 0.67
8 4/8PSK, 64QAM 2PSK, 16/128QAM 0.66 0.67 0.67
9 4/8PSK, 16QAM 2PSK, 64/128QAM 0.66 0.67 0.67

10 2PSK, 64/128QAM 4/8PSK, 16QAM 0.37 0.37 0.35
11 2PSK, 16/128QAM 4/8PSK, 64QAM 0.35 0.60 0.65
12 2PSK, 16/64QAM 4/8PSK, 128QAM 0.30 0.65 0.66
13 2/8PSK, 128QAM 4PSK, 16/64QAM 0.50 0.66 0.65
14 2/8PSK, 64QAM 4PSK, 16/128QAM 0.45 0.67 0.67
15 2/8PSK, 16QAM 4PSK, 64/128QAM 0.42 0.67 0.67
16 2/4PSK, 128QAM 8PSK, 16/64QAM 0.33 0.32 0.37
17 2/4PSK, 64QAM 8PSK, 16/128QAM 0.45 0.66 0.67
18 2/4PSK, 16QAM 8PSK, 64/128QAM 0.50 0.58 0.65
19 16/64/128QAM 2/4/8PSK 0.33 0.67 0.67
20 2/4/8PSK 16/64/128QAM 0.33 0.33 0.33

QAM) or both. We attempt to classify two modulations from
the QAM family (16-QAM and 64-QAM), while training
on three different datasets: (i) one containing labeled data
for 4-PSK and 32-QAM, (ii) another containing 4-PSK, 32-
QAM and 128-QAM and (iii) a third containing 32-QAM
and 128-QAM. In the first case, training captures the cross-
family variance between PSK and QAM modulations, but
does not capture the in-family variance for QAM. In the
second case, we capture both the in-family and the cross-
family variance. Finally, in the third case, we only capture
the in-family variance for QAM, but not the cross-family
variance. Before we delve in our results, we note that we
deliberately chose the most challenging classification setting
(i.e. predicting high-order QAM modulations), as this case
illuminates the benefits of cross-family training. Lower order
modulations (i.e. in the PSK family) are successfully classified
as long as the in-family variation is captured. Tbl. II presents
our results. Combination 1 (training for cross-family variance)
gains an accuracy of 0.81. Combination 2, where training
captures both the in-family and the cross-family variance,
boosts performance to 0.89. Finally, excluding 4-PSK from
the training mixture significantly impacts the classification
performance, as indicated by the results from combination 3,
which are close to a random guess.

The key insight from this experiment is that beyond
capturing the in-family variance in training, incorporating
the cross-family variance leads to significant performance



TABLE II: Effects of the training classes mixture on the classification performance.
Train Test Accuracy

1 4 PSK, 32 QAM 16/64 QAM 0.8047
2 4 PSK, 32/128 QAM 16/64 QAM 0.8845
3 32/128 QAM 16/64 QAM 0.5007

TABLE III: Effects of SNR on classification performance. Training dataset
contains {4 PSK, 32/128 QAM}; Testing dataset contains {16/64 QAM}.

Train ↓ / Test → SNR 2dBm SNR 10dBm SNR 20dBm
SNR 2dBm 0.5403 0.5000 0.5000

SNR 10dBm 0.5363 0.5000 0.5000
SNR 20dBm 0.4972 0.5057 0.8845
Mixed SNR 0.5073 0.5000 0.5000

gains, especially in cases where we are looking to clas-
sify complex waveforms (e.g. high-order QAM modulations).
Our recommendation is that training should strive to incorpo-
rate at least two classes per family from multiple families.

4) Effects of SNR on performance: The signal-to-noise ratio
can significantly impact the constellation shape of a signal and
in turn, the classification performance. We are, thus, interested
in understanding how does the relationship of training and
testing SNR affect classification performance. Ultimately, we
seek to inform whether zero-shot modulation classification
should be SNR-aware or not. For this experiment, we choose
a challenging classification case with a favorable training
combination, namely seeking to classify 16-QAM and 64-
QAM while training on 4-PSK, 32-QAM and 128-QAM. We
set the SNR of the testing and training data to 2, 10 and
20dBm and explore all training/testing combination across
these SNR regimes. Tbl. III presents our results. Horizontally,
we have our test settings at 2, 10 and 20dBm from left to
right. Vertically, we have our training settings at 2, 10, 20dBm
and a mixed setting that utilizes samples from all three SNR
levels. We train on 3000 samples at each setting. Along the
diagonal (highlighted) are all the SNR-aware cases, whereby
the testing and the training were performed on the same SNR
level. Across all test SNRs, the best performance is gained
upon SNR-aware training. In addition, providing a mixed-SNR
training dataset does not aid the classification performance.

The key insight from this experiment is that zero-shot mod-
ulation recognition is sensitive to the training SNR. We postu-
late that the transfer of knowledge from one SNR to another
is not successful, due to the impact of SNR on the modulation
constellation shape. This is particularly relevant for high-order
modulation classification. Thus, our recommendation for zero-
shot modulation classification is that it should employ channel
estimation techniques [25] to pinpoint the SNR of collected
signals, prior to attempting their classification. In addition,
further exploration of attributes’ sensitivity to SNR will inform
SNR-blind ModRec with limited supervision.

B. ModRec-0 on over-the-air traces

In this section, we seek to evaluate the performance of
zero-shot modulation recognition on real over-the-air traces by
employing a dataset from [10]. This dataset was collected with
USRP B200 radios across various SNR settings and contains

TABLE IV: Breakdown of performance across combinations for over-the-air traces.
Training Testing 0dBm 10dBm 20dBm

1 4PSK, 64QAM 2PSK, 16QAM 0.99 1.00 1.00
2 4PSK, 16QAM 2PSK, 64QAM 0.99 1.00 1.00
3 2PSK, 64QAM 4PSK, 16QAM 0.49 0.68 0.94
4 4PSK, 16QAM 4PSK, 64QAM 0.42 0.86 1.00
5 16/64QAM 2/4PSK 0.53 0.50 0.50
6 2/4PSK 16/64QAM 0.50 0.50 0.50

four modulation classes: BPSK, QPSK, 16-QAM and 64-
QAM. Due to the smaller number of modulations, we evaluate
the 2/2 case, whereby training is performed on two classes
and testing on the remaining two classes. As with our synthetic
datasets, we derive all possible testing/training combinations
(in this case 6) and report accuracy of classification. Fig. 4
presents average accuracy across the six combinations with
increasing SNR. The key take-aways agree with the results
presented in our synthetic dataset analysis. First, across all
SNR levels, ModRec-0 significantly outperforms a random
guess. Higher SNR regimes gain better performance, with an
average of 0.67 at SNR of 0dBm and 0.82 at SNR of 20dBm.

We further explore breakdown of classification accuracy per
case in Tbl. IV. Due to the limited number of modulations, we
can only observe the effects of capturing the cross-family vari-
ance in training, however, we are not able to explore the effects
of in-family variation. Nevertheless, we see that in all cases
that train for the cross-family variance (i.e. 1-4), we are able to
achieve nearly perfect recognition at 20dBm, which gradually
deteriorates as the SNR decreases. We also note that transfer
from lower to higher order modulations is more challenging in
low-SNR regimes. For example, in combination 3, training on
2-PSK and testing on 4-PSK hampers classification. Similarly,
in combination 4, training on 16-QAM while predicting 64-
QAM does not transfer adequately. Finally, combinations 5
and 6 train on one family while testing on the other, which
leads to a performance commensurate with a random guess.

C. Is expert knowledge beneficial?

As detailed in our methodology, we use expert knowledge
to inform the attribute matrix design. In this section, we set
forth to evaluate the importance of this expert knowledge
in our zero-shot ModRec framework. For this experiment,
we randomly permute our original attribute matrix effectively
resulting in a random non-informed set of attributes. We
evaluate the accuracy drop of ModRec-0 with the random
attributes compared to expert attributes. Let AR be the accu-
racy with random attributes, and AE be the accuracy with
expert knowledge. The accuracy drop is then defined as
(AR −AE)/AE . Our evaluation uses the 4/2 training/testing
combinations (i.e. Tbl. I top) at 20dBm. Fig. 5 presents our
results for each testing/training combination. Each bar reports
the average and standard deviation of the accuracy drop across
100 random permutations of the attribute matrix. Across all
combinations, we note a substantial drop of performance,
between 15 and 50% if expert knowledge was not utilized.
This result underpins the importance of expert input in attribute
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Fig. 5: Accuracy drop with randomly
permuted attribute matrix for the 20dBm test
cases from Tbl I(top).

design and the potential for performance improvement if more
attributes are added to the semantic representation.

V. DISCUSSION AND CONCLUSION

In this paper we explore whether learned classifiers can
be transferred to unobserved modulations towards modula-
tion recognition of previously observed signals. To this end,
we designed and evaluated a zero-shot modulation recog-
nition framework called ModRec-0. We demonstrated that
ModRec-0 gains high accuracy and is robust across var-
ious SNR regimes, indicating the feasibility of real-world
classification of previously unobserved modulations. We also
explore cases where the classification becomes challenging and
draw general insights of how zero-shot frameworks should be
employed.

Implications on zero-shot ModRec. Our results show that
there are a few considerations to be had. First, the training
of zero-shot classifiers should ensure diverse representation
of modulation families with at least two observed classes
per family. Second, the largest performance gains were ob-
served with SNR-aware testing, suggesting that future zero-
shot ModRec should incorporate channel estimation prior
to classification. Finally, we found that while cross-family
transfer is possible from complex to simpler modulations (i.e.
QAM to PSK), transfer in the opposite direction is challenging,
which mandates that training for complex modulations be
performed on high-order members of the same family.

Future directions. While this is the first step towards zero-
shot modulation recognition, there are several avenues to be
explored to further improve the classification performance.
First, feature engineering [6]–[9] could be a promising di-
rections for future exploration. Second, in addition to our
defined attributes, we can further employ expert knowledge to
expand our semantic representation which may further boost
performance [22]. Finally, we can incorporate various other
transfer learning techniques [17] in the framework.
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