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Abstract—Modulation recognition plays a key role in emerging
spectrum applications including spectrum enforcement, resource
allocation, privacy and security. While critical for the practi-
cal progress of spectrum sharing, modulation recognition has
so far been investigated under unrealistic assumptions: (i) a
transmitter’s bandwidth must be scanned alone and in full, (ii)
prior knowledge of the technology must be available and (iii)
a transmitter must be trustworthy. In reality these assumptions
cannot be readily met, as a transmitter’s bandwidth may only be
scanned intermittently, partially, or alongside other transmitters,
and modulation obfuscation may be introduced by short-lived
scans or malicious activity.

This paper bridges the gap between real-world spectrum
sensing and the growing body of methods for modulation
recognition designed under simplifying assumptions. We propose
to use local features, besides global statistics, extracted from
raw IQ data, which collectively enable a robust framework
for modulation recognition that outperforms baselines from the
state-of-the-art. Specifically, we exploit the discriminative power
of local patterns from consecutive IQ samples extracted based
on a Fisher Kernel framework that captures non-linearity in
the underlying data. With these domain-informed features, we
employ lightweight linear support vector machine classification
for modulation detection. Our framework is robust to noise,
partial transmitter scans and data biases without utilizing prior
knowledge of the underlying transmitter technology. The recogni-
tion accuracy of our approach consistently outperforms baselines
in both simulated and real-world traces. We demonstrate up to a
98% accuracy and a 30% improvement over several counterparts
from the literature with partial scans in a USRP testbed.

I. INTRODUCTION

Modulation recognition (modrec) has been of interest since
the dawn of wireless communications with critical importance
to civil and defence applications [23]. Existing work, however,
tackles modrec as a signal decoding task, and requires targeted
spectrum scans that excursively focus on a transmitter of
interest. These scan requirements are increasingly challenged
by emerging spectrum sensing systems, which perform sweep-
based wideband spectrum scans, introducing intermittency,
partiality and biases in a given transmitter’s scan. This di-
vide between existing modrec approaches and the reality of
next generation spectrum measurement demands a rethink of
existing moderec methodology.

Modulation recognition in practice consists of a two-step
process: data collection (i.e. spectrum sensing) and data
analysis (i.e. recognition). While the quality and quantity
of collected data inevitably affects the recognition accuracy,
existing modrec approaches are largely disconnected from the
underlying spectrum sensing techniques that generate the data

necessary for analysis. This disconnect will further widen
with the advent of autonomous spectrum sensing and agile
transmitter technology. Future spectrum sensing infrastruc-
tures will have to leverage multiple dedicated [2], [21], [30]
or crowdsourced [7], [9], [24] spectrum sensors, collecting
traces in a wide frequency band. To support this heterogeneous
environment, the sensor infrastructures will have to sequen-
tially “step through” the spectrum, while collecting data from
contiguous sub-bands [8], [24]. As a result, individual trans-
mitter’s activity will be scanned intermittently, with partial
coverage of their occupied frequency band and alongside other
transmitters or unoccupied spectrum sub-bands. Modrec data
analysis is in essence a classification problem approached via
various machine learning techniques from lightweight support
vector machines (SVM) [14] to artificial neural networks [23].
Of key importance to the detection speed and accuracy are
the features employed for classification which are extracted
from raw measured IQ samples. The state-of-the-art feature-
based methods employ two families of features: order statistics
(OS) [16] and high order cumulants (HOC) [12], [19], [32].
The former family employs sorted IQ sample components
for classification, while the latter extracts high-order statistics
from the distribution of samples. Both families of global
features disregard the sequential order of IQ samples, ef-
fectively treating them as a “bag” of independent samples.
We demonstrate that the information encoded in this local
sequential order is crucial for robust modrec in practice.

In addition, many prior modrec work imposes stringent
requirements on the data collection including (i) 100% scan
coverage of a transmitter’s bandwidth, (ii) 0◦ rotation of the
modulation constellation and (iii) balanced representation of
constellation symbols in a spectrum scan. In our evaluation,
we observe that relaxing these requirements leads to severe
deterioration in modrec performance. In §III-C, we demon-
strate a significant sensitivity of HOC and OS features to scan
partiality, data bias, and constellation rotation. In particular,
individual HOC and OS features converge across modulation
types, while their standard deviations increase. These trends
cause a dramatic reduction of their discriminative power,
which, in turn, leads to poor modrec performance regardless of
the utilized classifier. The mismatch between future spectrum
sensing requirements and the assumptions of existing modrec
methodology calls for novel data-driven approaches for robust
modulation recognition in the face of partial, intermittent,
biased or noisy scans.



To bridge this gap, we design a framework that leverages
novel features from local patterns in IQ samples for robust
modulation recognition with partial, biased and noisy scans.
Specifically, we use the phase and amplitude of IQ samples
to create ordered subsequences of values, dubbed shingles.
We represent an IQ sample sequence in terms of its shingles
based on a Fisher Kernel generative framework [27], where
we quantify gradient statistics for shingles being generated by
a Gaussian Mixture Model (GMM) dictionary of prototypical
shingles. We train and employ SVM [10] classifier for run-
time detection of a transmitter’s modulation without prior
knowledge of the scan’s partiality, transmitter technology,
data bias or the channel signal to noise ratio (SNR). We
demonstrate robust performance of our method in both a
realistic MATLAB simulation and a USRP testbed.

Our paper makes the following key contributions:
• We are the first to propose and demonstrate the potential
of local IQ patterns for modulation recognition in future
spectrum sensing platforms.
• We design an adaptive Fisher Kernel framework employing
lightweight SVM classifiers for robust modrec based on local
sequential patterns.
• Our proposed approach exhibits a significant improvement
of modrec accuracy over baselines in both realistic simulation
and real-world spectrum measurement within a USRP testbed.

II. RELATED WORK

Modulation recognition has been an active area of re-
search with two main streams of methodology: likelihood-
based (LB) [26] and feature-based (FB) [11]. While optimal,
LB approaches suffer high computational complexity and
are not resilient to RF chain imperfections (e.g. timing and
frequency offset), and wireless channel effects (e.g. non-
Gaussian noise) [32]. In addition, LB approaches explicitly
rely on a model modulation constellation, which is not always
readily available or may be significantly distorted due to
small scan overlap with the transmitter, missing or unbalanced
constellation symbols and high noise regimes. FB approaches
offer a lower complexity alternative and have been heavily
utilized in recent modrec literature [3], [12], [14], [16], [19],
[32]. FB modrec extracts features from measured IQ data and
performs modulation classification based on these features.
The state-of-the-art techniques adopt order statistics (OS) [16],
high order cumulants (HOC) [12], [14], [32] and kernel
density functions [3] as features and employ various clas-
sification techniques including support vector machines [14]
and artificial neural networks [23]. All the above approaches
pose unrealistic requirements to spectrum sensing including
100% transmitter scan overlap with the transmitter, side band
exclusion, and are sensitive to the signal’s noise level. All
methods except [19] assume no bias in symbol representation.
These requirements are in direct disagreement with future
spectrum sensing infrastructures, which will use dedicated [2],
[21], [30] or crowdsourced [7], [9], [24] sensors for wideband
intermittent sensing in support of spectrum sharing technology,
policy and enforcement. Lu et al. [19] consider modulation

recognition from incomplete and biased scans, however, the
method employs HOC features which, as we demonstrate in
§III (i) are highly-sensitive to scan imperfections, (ii) but
encode complementary information to our proposed local fea-
tures, and thus can be successfully combined in order to boost
modrec performance (see §V). Recently, deep neural networks
(DNN) have been employed for modrec with promising perfor-
mance outcomes [25], [29]. Such approaches are orthogonal to
our work, as they use simple input data comprised of raw IQ
samples while employing complex classifiers. In contrast, we
focus on domain-informed feature design, and in this paper,
employ lightweight SVM classification, however, our features
can be employed in a DNN framework as well.
The discriminative power of local patterns has been demon-
strated in various signal domains, including images [15], [31],
[34]–[36], video [22], audio [18] and text [6]. The-state-of-the-
art techniques employ dictionary learning for feature extraction
and various classifiers for classification [31], [36]. A key
benefit of local patterns is their resilience to global changes in
the underlying signal. As demonstrated in §III, these benefits
carry over in the modulation recognition domain, where the
misrepresentation of a constellation symbol, higher noise level
or partial transmitter overlap inevitably affect global features,
but preserve inherent signatures in local IQ patterns.

III. PRELIMINARIES AND LIMITATIONS OF EXISTING
FEATURES FOR MODULATION RECOGNITION

A. Problem formulation and notation
The input to modulation recognition is a set of IQ sam-

ples represented as complex numbers of the form I + iQ,
collected by a sensor at a specified center frequency and
bandwidth. We transform each sample into (amplitude, phase)
pairs x = (A, φ) = (

√
I2 +Q2, arctan Q

I ). Let x =
((A1, φ1), (A2, φ2) . . . , (An, φn)) denote an ordered sequence
(series) of samples to which we will also refer as an instance.
Given a set of such instances X = [x(1), x(2), . . . x(m)] and the
corresponding modulation types employed by the underlying
sampled transmitters y = [y(1), y(2), . . . , y(m)], the objective
in supervised modulation recognition is to learn a classifier
f(x) = y which can predict the modulation type of newly
observed instances. All existing feature-based techniques (in-
cluding ours) do not work directly with the samples x to learn
a classifier, but instead extract features from them which are
then employed for classification.

B. Global features: order statistics and cumulants
All existing methods treat samples within an instance x

as independent and extract features that summarize their
statistical properties. There are two main classes of such
features, both aiming to summarize the overall distribution of
all instance samples, thus, we refer to them as global features.
Higher order cumulants (HOCs) [4]. This approach seeks to
summarize the statistical properties of the IQ samples using
high order complex cumulants [13]. Within this framework
the instance observations are modeled as samples from a
complex-valued stationary random process x(n) and high-
order cumulants associated with the empirical distribution are



Fig. 1: Effects of partial scan on con-
stellation shape for QPSK (left) and 16-
QAM (right).

Fig. 2: Bias due to imbalanced
(top) or missing symbols (bottom)
leads to poor modrec.

estimated and used as predictive features [32]. Subsets of
the fourth-order {C40, C41, C42} and sixth-order cumulants
{C60, C61, C62, C63} have received most attention in the mod-
rec literature [4], [12], [14], [32]. These quantities are defined
in terms of estimates of moments associated with the empirical
IQ sample observations. For example, C42 is defined as:

C42 = M42 − |M20|2 − 2M2
21, (1)

where Mkv = E[x(n)k−vx∗(n)v] are the empirical estimates
of the moments associated with the stationary process from
which the IQ samples are drawn, and x∗(n) denotes the com-
plex conjugation of x(n). We omit the exhaustive definition
of all the above cumulants due to space limitations and refer
the reader to [4] for details. To remove the effect of the signal
scale on cumulants, they are typically normalized by C21 [32]:
Ĉkv = Ckv/(C21)k/2.In addition, since some cumulants are
complex numbers, their L2 is adopted as a real feature in
classification [14].
Order statistics (OS) [16]. The k-th order statistic of a
random real sample is its k-th smallest value. This simple
notion gives rise to a modrec approach proposed in [16] which
employs the ordered values of the amplitude A, phase φ and
the baseband I and Q components derived from an observed
sample sequence x. OS features offer an alternative global
summary of the distribution of the IQ samples. Note that in
this representation the order of IQ samples is lost, however,
as we demonstrate, this order contains information that can be
used to discriminate modulations in realistic scenarios.
C. Limitations of global feature approaches

While the two families of global features discussed above
have been successfully employed by many recent modrec
approaches, they inherently rely on assumptions about (i) the
overlap of the sensing range with the underlying transmitter’s
frequency range; (ii) the balance of observed symbols in a
sample; and (iii) the phase offset (or constellation rotation).
When these assumptions are relaxed in practical modrec “in
the wild”, the discriminative power of the global features
deteriorates. In what follows, we analyze the robustness of
HOC and OS with respect to the above assumptions in order
to quantify and understand their limitations.
1) Effects of partial scan overlap with the transmitter.
In sweep-based spectrum sensing, a transmitter may only
be scanned partially as the exact frequency range may not
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Fig. 3: Mean and standard deviations of (a) C42 with varying scan overlap;
(c) C63 with missing symbols; (b) the 75% OS with partial overlap; and (d)
the 25% OS with missing symbols (all averaged over 100 instances).

be available a priori. What is the effect on the shape of
the modulation constellation, and thus, the global feature
modrec performance when a transmitter is only partially
scanned? Fig. 1 illustrates qualitatively this effect for QPSK
and 16-QAM. The constellations in both cases transition from
sets of well-pronounced symbol clusters at 100% overlap to
a single (or multi-modal) at lower overlap, from which the
original constellation is hard to recover. This visual deterio-
ration is also reflected in a decreased stability of both HOC
and OS features (Fig. 3). The averages of C42 for 8-QAM and
16-QAM converge, while their standard deviations increase
(Fig. 3a). The same trend is observed for the 75%-th order
statistic (Fig. 3b) and for other HOC and OS features (omitted
due to space limitations). As a result the discriminative power
of this feature decreases with the overlap, thus, reducing its
utility regardless of the adopted classifier.

2) Effects of bias in instance samples. Bias in the instance
symbols may arise due to scan intermittency (i.e. insuffi-
cient IQ samples to obtain uniform symbol representation)
or malicious transmitters which purposefully obfuscate the
constellation to deceive modrec [28]. Biases both due to small
number of samples (Fig. 2, top) or missing symbols (Fig. 2
bottom) affect the overall constellation, and similar to partial
scans, have a negative impact on the discriminative power of
global features. Fig. 3c and 3d show the behavior of C63

and the 25% OS for 8-PSK and 8-QAM with increasing
number of randomly missing symbols. The respective feature
values converge between modulation types, while their vari-
ance increases drastically with increasing number of missing
symbols. Once again, this behavior suggests a deteriorating
discriminative power of global features with missing symbols,
further evaluated in §V.

3) Effects of constellation rotation. Global OS features
assume 0◦ rotation of the modulation’s constellation [16], i.e.
prior knowledge of the transmitter’s technology. This may not
be available when sensing arbitrary agile transmitters in the
wild, once again negatively affecting the performance of global
feature-base modrec (details in §V).
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Fig. 5: LP of Polar and Cartesian representation of
IQ samples over time (x-axis). Both magnitude and
shape of the LPs vary across modulations.

IV. METHODOLOGY: DISCRIMINATIVE LOCAL FEATURES

Sample bias, partial overlap of the scan with the transmitter,
constellation rotation and increasing noise levels all distort the
global statistical properties of instances, thus deteriorating the
quality of corresponding global feature modrec approaches.
At the same time, these challenges are ubiquitous when
the problem is considered in realistic settings. To improve
the robustness of modrec techniques, we propose to capture
information contained in the local ordering of IQ samples.
The resulting local features, when combined with global HOC
features, enable a robust and efficient modrec, exhibiting
superior accuracy in both simulated and real-world scans. In
what follows, we summarize the intuition behind our proposed
local features and specify the methodology for their extraction.

A. Intuition: Local features encoding the order of IQ samples
While the order and relationships of individual IQ samples

within an instance x has not been considered in the modrec
literature, we postulate that it carries important information,
which is better preserved in realistic settings and can be used
to improve modrec accuracy. This intuition is inspired by the
tremendous success of local features extracted from images in
computer vision and particularly employed for natural image
classification [31], [35]. In our case, we treat an instance x as
a 1-dimensional signal as opposed to the typical 2D setting
arising in computer vision.

Consider Fig. 4 which presents the constellations of QPSK
and 8-PSK modulations. Intuitively, an instance x is a trajec-
tory of transitions between constellation clusters. The distribu-
tion of angular distances (angle changes) between consecutive
transitions arising from different modulations varies due to the
varying inter-cluster distances in their constellations. For ex-
ample, transitions in 8-PSK will be centered around multiples
of π/8, while those in QPSK around multiples of π/4. Fig. 5
depicts a segment of the IQ sequences arising from QPSK
and 64-QAM. We plot separately the I and Q components as
well as the corresponding amplitude A and phase φ sequences.
Qualitatively, it is evident that high-order modulations (i.e.
64-QAM) exhibit bigger variation compared to their low-order
counterparts. Furthermore, the phase transitions of low-order
modulations are sharp from sample to sample, while these
transitions are smoother with higher-order modulations.

To capture the sequential information encoded in IQ sample
subsequences, we focus on intervals of their time domain and
propose to extract modulation-specific transition signatures.

We demonstrate that, such signatures are more robust to noise,
sample bias, constellation rotation and partial transmitter over-
lap than global features alone, and thus can be employed to
improve modrec accuracy.

B. Local sequential features based on the Fisher Kernel

Let xA, xφ ∈ Rn denote the real-valued sequences of
observed amplitude and phase values in an instance x. We
employ the same framework to extract local features from each
of those sequences separately, as they might be advantageous
for different modulation types. For example, the amplitude
sequence xA will be discriminative for amplitude-related mod-
ulation properties (e.g. PSK v.s. QAM families), while the phase
sequence xφ will be useful to differentiate the order of the
modulation (e.g. QPSK v.s. 8-PSK). The same framework can
be applied to the sequences of I and Q components, however,
in our experimental evaluation they did not offer additional
discriminative power. In what follows, we will simplify the
notation by denoting x = [x1, x2, . . . , xn] as either of the
real-valued sequences xA or xφ.

We adopt a generative framework to model a sequence x in
terms of all of its subsequences of length l, to which we will
refer as shingles. Specifically, let xli denote a shingle starting
at position i of length l. An instance x of length n has a
total of n − l + 1 such shingles. Our key assumption is that
observed instance shingles are generated from some parametric
generating distribution pλ parametrized by a set of parameters
λ. This representation is similar to n-gram based models for
text [6] and patch-based representations for images [31].

We adopt a Gaussian Mixture Model (GMM) as the gener-
ating distribution pλ, which is a typical choice in patch-based
representation of images [31]. A K-component GMM is fully
specified by λ = {wk, µk,Σk}, k = 1 . . .K, where wk ≥ 0 is
the non-negative mixing weight of the k-th component and µk
and Σk are its mean vector and covariance matrix respectively.
We further disregard mixed covariance terms for shingles and
instead work with a variance vector σ2

k (i.e. we assume a
diagonal covariance matrix). This assumption is justified in
our case as consecutive constellation symbols within shingles
are determined by the encoded data and we do not place any
assumptions on their sequence. Note that the shingle size l
determines the dimensions of µk and σ2

k.
We adopt the Fisher Kernel (FK) representation which

defines similarities between shingles in terms of dot products
of their Fisher Vectors (FVs) [17]. Formally, a FV fλ(xli)
representing shingle xli is defined as:

fλ(xli) = Lλ∇λ log pλ(xli), (2)

where ∇λ log pλ(xli|λ) is the gradient of the log-likelihood
of the observed shingle xli being generated by pλ, where the
gradient is evaluated at xli; and Lλ is the square root of the
inverse of the Fisher Information Matrix (FIM). Lλ normalizes
the dynamic range of gradient vectors similar to its use in [17].



We obtain the local feature representation fλ(x) of the
whole instance x, given a GMM model pλ, as the average
Fisher Vector of all observed shingles within the instance:

fλ(x) =
1

n− l + 1

n−l+1∑
i=1

fλ(xli). (3)

In other words, the instance FV is the average of the normal-
ized gradient statistics of all involved shingles, where Lλ is
treated as a normalization factor. We apply the same transfor-
mation to both the amplitude xA and phase xφ sequences and
concatenate the resulting FVs. In what follows, we discuss
how to derive the normalization Lλ and gradient statistics
∇λ log pλ(xli|λ) for individual shingle FVs.

The likelihood pλ(xli) in GMM is defined as the average
weighted likelihood of the shingle xli arising from the individ-
ual Gaussian components:

pλ(xli) =

K∑
k=1

wkpk(xli), (4)

where pk(xli) is the pdf of the k-th l-variate Gaussian compo-
nent in the GMM. To ensure that pλ(xli) is a valid probability
distribution the weights need to be all non-negative and sum
to 1, i.e.

∑K
k=1 wk = 1. We use the gradient statistics with

respect to the mean µk and variance σk vectors of each
component resulting in the following component-wise Lλ-
normalized gradients:

fµk
(x) =

∇µk
log pλ(x)
√
wk

=
γk(x)
√
wk

[x− µk
σ2
k

]
(5)

fσk
(x) =

∇σk
log pλ(x)
√
wk

=
γk(x)
√
wk

[ (x− µk)2

σ3
k

− 1

σk

]
, (6)

where the γk(x) is the soft assignment (posterior probability)
of the shingle to component k defined as:

γk(x) =
wkpk(x)∑K
i=1 wipi(x)

, (7)

and where exponentiation and division operations involving
vectors x, µk and σk in Eqs. 5, 6 are element-wise operations
(recall that they are l-dimensional vectors). Note that we do
not consider the gradient statistic with respect to wk in our FV
representation, arriving at a (4lK)-dimensional vector, repre-
senting 2 series (amplitude and phase), maintaining shingle-
length (i.e. l-dimensional) gradient statistics (both mean and
variance) for each of the K components of the GMM. We omit
a gradient statistic with respect to the component weights wk
which could be interpreted as prior component probabilities,
as they require more data to robustly estimate (GMM model
estimation is discussed next), than their variance and mean
vectors. Investigation of whether these additional statistics
boost the performance might be a fruitful further direction.

An illustrative example of the gradient evaluation for a
shingle x in a two-component mixture model with unit
variance vectors is presented in Fig. 6. The well-agreeing
GMM components result in close-to optimal corresponding

x 

(shingle) 

GMM (patterns)

pattern 1

pattern 2

Gradients

[ ]FV =

Fig. 6: Example of local features computed for l = 3-dimensional shingle x
and 2-component GMM with µ2 agreeing “better” with the shingle than µ1
(σ1,2 = 1, w1,2 = 0.5). The gradient statistics for each of the components
are shown on the right. The mean gradient statistics of the “better”-agreeing
component ∇µ1 is closer to 0 (expected as per Eq. 5) and its ∇σ1 is closer
to −1 (as per Eq. 6).

gradient statistics. The final FV is composed of concatenating
[∇µ1

∇µ2
∇σ1
∇σ2

] (normalization by 1/
√

1/2 omitted).
It is worth noting that, while resorting to a kernel method for

representation of our local features as opposed to working di-
rectly with component likelihoods pk(x), results in higher di-
mensional representation, it comes with the usual advantages.
Namely, when the kernel is appropriately selected, it allows
modelling non-linear data using simple linear classifiers. In
addition, the specific FV kernel has been shown to perform
very well in the natural images domain and typically requires
small number of Gaussian components for good discriminative
power, thus allowing good scalability [31]. We experimented
with non-kernel local feature representations and did not
find similar improvements over state-of-the-art global feature
methods as the ones exhibited by the FV kernel representation.

C. Model learning: GMM dictionary and classification
To enable modrec employing our local features scheme, we

need to first estimate a GMM model from shingle observations
in actual instances and then train a modulation classifier based
on the feature encoding of instances.
GMM dictionary learning. The FV representation outlined in
§IV-B depends on a GMM generating distribution for shingles.
Intuitively, we need to learn a “dictionary” of prototypical
shingles, observed in instances across modulations and learn
their component-wise mean µk, variances σk and relative
weights wk. Given a fixed dictionary size K and a shingle
length l, we learn a GMM based on a training data set
X containing instances of all modulation classes we aim to
predict. Note, that since we do not use the class information
y associated with instances in X , our dictionary GMM learn-
ing is unsupervised. Supervised alternatives may allow even
sparser discriminative representations for classification [20],
however, we leave this direction for future exploration. To
learn the GMM model from a training set X we first extract
shingles from the instances and use the seminal Expectation
Maximization (EM) approach [5]. Details about selecting the
dictionary size K and shingle length l are discussed in §V.
Classification. As we discuss earlier, the advantage of the
FK methodology is that it captures non-linear information in
its representation, and hence, simple classification techniques



are expected to perform well. Thus, we adopt a simple linear
SVM classifier with soft margin for our modrec task [10]. We
expect that other classification schemes may further improve
the classification performance, but resort to a simple SVM
in this work as our goal is to evaluate the utility of our
local features and also employ a classifier which is typically
employed by baseline global feature methods.

Our local feature scheme captures local transition informa-
tion, however, we expect that the global sample distribution
statistics may encode additional non-redundant information
and thus consider classification schemes in which we con-
catenate the fisher vector fλ with the 7 HOC features widely
adopted in prior work. This combination is expected to “lift”
the modrec performance of local features alone, particularly
when the dictionary is learned on a rotated constellation w.r.t.
that used in testing instances. We confirm this expectation
empirically in §V.

D. Algorithmic complexity
Both the dictionary learning process and classifier training

do not need to be repeated during actual modulation recog-
nition, as long as they are performed on a training set that
features instances from all target modulations. Thus, both
processes can be thought of as “offline”, i.e. they do not occur
during actual modrec at work.

The complexity of modrec with our employed local features
is the cost of encoding shingles from an instance x. Asymp-
totically, it depends on the dictionary and shingle sizes and
and the number of samples instances O(nlK), as there are
O(n) shingles in an instance and their gradient statistics of
size l need to be evaluated with respect to each of the K
GMM dictionary components. In practice we resort to short
l = 3 shingles and small dictionary size K = 50 as they
show optimal performance. Thus, assuming that K and l are
constants relative to the number of samples n, the complexity
of local patterns is linear O(n) similar to that for computing
HOC [32] and asymptotically better than OS (when using all
samples) [16] which require sorting the samples in O(n log n).

V. EVALUATION

We evaluate the robustness of our methodology with partial,
biased and noisy scans in over-the-air and simulated settings.
We begin by describing our implementation and data sets.
In §V-B-§V-D we evaluate the modrec performance of our
method compared to state of the art HOC [32] and OS [16].
For these results, we vary the classifier training, while using a
universally-trained dictionary, as described in §V-A. Unless
otherwise noted, all accuracy results were obtained as an
average from a 10-fold validation.

A. Implementation, data and parameters
Implementation. Our method is implemented in MATLAB
with all experiments executed on Ubuntu 14 machines. The
Fisher Vector dictionary learning module is implemented using
[33]. For classification, we adopt the SVM classifier model
from MATLAB. We use one-versus-rest label coding to trans-
form multi-classification to binary classification. We use the

same classification approach across all compared features (i.e.
HOC, OS, LP and LP+HOC).
Data. We use two datasets for our evaluation: one generated
in a MATLAB simulation and one from a USRP testbed. For
our simulation we use MATLAB Communications System
Toolbox to implement a transmitter and receiver connected
by a AWGN channel. The transmitter is configured to use
QPSK, 8-PSK, 8-QAM, 16-QAM and 64-QAM. We tune
various blocks of our transmitter-receiver chain to generate
the necessary datasets as follows. For partial scans, we tune
the low-pass filter at the receiver side by setting its cut-off
to a fraction of the transmitter’s bandwidth. For biased scans,
we purposely modify the input signal at the transmitter side to
reduce or remove the occurrence of a given symbol. To control
the noisiness of the collected scan we tune the SNR level of the
AWGN channel. Finally, to control the constellation rotation,
we modify the modulation block at the transmitter side. Our
simulated datasets are used for results presented in §V-B-§V-D.
We also present results from partial scans from USRP-based
transmissions, as detailed in §V-F.
Default parameters. All performance results presented in
§V-B-§V-F were obtained with a single universal dictionary
of patches trained at SNR 10dB, with no data bias, at 100%
transmitter overlap with mixed constellation rotation. The
patch size, is set to 3 and the dictionary size to 50. A natural
question is whether the dictionary learning parameterization
(i.e. how we set the patch and dictionary size) and training
data play role in our algorithm’s performance. We explore this
question in §V-G and show that the above universally-trained
dictionary is feasible across all real-world settings.
B. Robustness to data bias

We begin by evaluating our method with data bias. All scans
were collected at 100% coverage of the transmitter bandwidth.
We train the classifier on data with equal representation of all
constellation symbols (i.e. unbiased data). A separate classifier
was trained for each SNR level (i.e. classification is SNR-
aware). We then test using data with purposely removed 1, 2
or 3 symbols. Fig. 7 presents our results. For unbiased data
(Fig. 7a) all methods perform similarly. As bias is introduced,
methods using global features deteriorate immediately even
with SNR of 20dB. At 3 missing symbols global features can
achieve a maximum of 69% accuracy at 20dB, whereas our
method maintains high accuracy of 98%. Table I (left) shows
a breakdown of performance of LP+HOC across modulations
at SNR=10dB. For low-order modulations the accuracy is
maximal and decreases as modulation order increases. These
results demonstrate the potential of LP+HOC to successfully
detect a transmitter’s modulation in the face of data bias.

C. Robustness to scan partiality
We evaluate the performance of our method with scan

partiality. We first focus on performance, where the train-
ing and testing of the classifier are overlap-aware, meaning
that a different classifier is trained at each partial overlap.
Fig. 8a-8c present modrec accuracy for 20, 10 and 4dB,
respectively. Our method (LP+HOC) persistently outperforms
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Fig. 7: Performance with missing symbols. Classifier is SNR-aware and
trained on unbiased data. Scans cover 100% of the transmitter’s bandwidth.
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Fig. 8: Performance on partial scans with overlap-aware (a-c) and overlap-
blind (d) classifier training.

existing counterparts across all SNR regimes. For a 100%
scan, our method performs on par with the literature for high
SNR regimes (20 and 10dB) and outperforms the state in low
SNR regimes (4dB). Table I (right) presents a breakdown of
LP+HOC accuracy across modulations at SNR=20dB. Our
method maintains high accuracy for low-order modulations
even when a transmitter’s bandwidth is scanned only at 50%.
The accuracy with high order modulations deteriorates as the
overlap decreases. These results demonstrate that LP+HOC (i)
leads to better modrec performance across all partial scans and
(ii) is robust in noisy channel conditions.

Prior knowledge of the scan partiality in the classifier
training phase poses a practical challenge to the real-world
applicability of our method, as one needs to determine the
fraction at which a transmitter is scanned before recognizing
its modulation. Thus, we consider overlap-blind classification
in which the classifier is trained on a mix of all possible partial
scans as opposed to at every overlap individually. Fig. 8d
shows our results for overlap-blind modrec at a challenging
SNR of 10dB. Global features (HOC and OS) alone fail in
classification even at a 100% coverage. LP+HOC and LP, on
the other hand, outperform their global counterparts across

TABLE I: LP+HOC accuracy with scan bias (L) and partial overlap (R).

Bias at 10dB, #missing symbols Overlap at 20dB, %

0 1 2 3 100 90 80 70

4-PSK 1.00 1.00 0.87 1.00 1.00 1.00 1.00 0.99

8-PSK 1.00 1.00 0.98 0.94 1.00 1.00 1.00 0.97

8-QAM 1.00 0.97 0.83 0.84 1.00 1.00 1.00 1.00

16-QAM 0.77 0.66 0.65 0.61 1.00 0.81 0.64 0.63

64-QAM 0.74 0.74 0.71 0.70 1.00 0.86 0.64 0.56
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Fig. 9: Phase-blind classification of non-biased scans at SNR 10dB.

all partial overlap. Furthermore, in comparison with the the
overlap-aware modrec performance at 10dB (Fig. 8b), our
method only suffers a marginal performance deterioration
when overlap-blind classifier training is employed. These
results demonstrate our method’s applicability in the wild
without the need of prior knowledge of the partiality of a
transmitter’s scan.
D. Robustness to constellation rotation

We evaluate the performance of our approach with unknown
constellation rotation. We use spectrum scans at a challenging
SNR regime of 10dB. We vary the constellation rotation from
0 to π/2 while scanning a transmitter bandwidth at 100%, 75%
and 50%. We train our classifier on a mix of constellation
rotations. Fig. 9 presents our results. For 100% scan HOC
and LP+HOC perform equally well, whereas OS and LP
have lower accuracy. As the transmitter overlap decreases,
our method maintains maximal performance, whereas all other
counterparts suffer dramatic deterioration in modrec accuracy
due to their susceptibility to constellation rotation.
E. Robustness to noise

All results so far were obtained with a SNR-aware classifier,
meaning that a separate classifier was trained for each SNR
level. This approach requires prior knowledge of the channel,
which while feasible, adds steps and computational overhead
to the modrec procedure. To address this issue, we explore
SNR-blind modrec, where the classifier is trained on a mix
of instances at different SNR levels. Specifically, we consider
SNR levels from 0 to 20dB in increments of 2. At each SNR
level we generate 1000 instances and train the classifier on the
mix of these instances. We then test at each SNR level.

Fig. 10 shows the classification accuracy across SNR. We
compare our proposed method LP+HOC with HOC [32] and
OS [19]. For the HOC features, we use all fourth order
and sixth order cumulants. For the OS features, we use the
amplitude and the phase order statistics. The same linear SVM
classifier is used across all of HOC, OS and LP+HOC. The
results show that our method is persistently able to achieve
maximal performance across all SNR regimes. HOC alone
suffers severe performance deterioration across all SNR levels,
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Fig. 11: Modrec from partial scans in a USRP
testbed.

while OS performs on par with our method at high SNR and
slightly worse in low SNR.

F. Modrec from partial scans in the wild
Finally, we evaluate the performance of our method in real

over-the-air transmissions from a USRP-based testbed. We
use a transmitter comprised of a USRP B210 attached to
an Intel i7-5600U CPU host, and a receiver comprised of a
USRP B210 with an Intel i7-6700 CPU host. Both hosts are
running on low-latency Linux kernel. Using GNURadio [1],
the transmitter generates a signal modulated with BPSK,
QPSK, 8PSK, QAM16 and QAM64. The two USRP devices are
located in line of sight at a distance of roughly 8 inches. We
set the transmitter gain as 65 and receiver gain as 10. At the
transmitter side, we use a sample rate of 320 kHz. Based on
our observation we use the following bandwidth at the receiver
side as roughly 50% coverage overlap: 40 kHz(BPSK), 80
kHz(QPSK), 120 kHz(8PSK), 120 kHz(QAM-16) and 160
kHz(QAM-64). Scans collected at the receiver were stored in
a file and later analyzed. Fig. 11 presents our results. At 100%
transmitter overlap, the proposed LP+HOC method achieves
98% accuracy, outperforming the HOC based classifier by
12%. At 50% overlap, both features suffer performance dete-
rioration. Proposed feature classifiers fall to 85% accuracy but
still outperform the HOC classifier, which is at 65% accuracy.
These results show our method’s applicability and robustness
to real-world modulation recognition with partial scans.

G. Effects of dictionary learning on modrec accuracy
So far, all experimental results were obtained with a single

universally-trained dictionary as detailed in §V-A. In this sec-
tion we evaluate the feasibility of such a universal dictionary
across various realistic scenarios. Of key interest is whether
the training data (i.e. SNR level, scan overlap and bias) and
parameter setting (i.e. dictionary and patch size) play a role in
modrec performance. For this analysis, we generate a synthetic
data set using our simulator (§V-A) with 100% transmitter
overlap, no data bias and mixed constellation rotation. We
consider ten SNR levels (0-20dB in increments of 2) and five
modulations: QPSK, 8-PSK, 8-QAM, 16-QAM and 64-QAM.
For each modulation and SNR level we generate m = 1000
training instances of n = 512 each and another 500 testing
instances of the same size. The SVM classifier was SNR-aware
and trained on 100% scans with no data bias.
1) Should dictionary learning be SNR-, overlap-, and bias-
aware? We adopt four training approaches in the dictionary
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Fig. 12: Dictionary learning performance over SNR (left) and instance size
(right) for four training mechanisms. DL does not require explicit training for
each SNR or instance size.

learning phase: (1) Varied: we train and test the dictionary for
each SNR level, (2) 0dB: we train the dictionary at SNR=0dB
and test at each level, (3) 10dB: we train the dictionary at
SNR=10dB and test at each level and (4) 20dB: we train
the dictionary at 20dB and test at each level. Fig. 12 (left)
presents modrec accuracy for the four training strategies across
a range of SNR values from 0 to 20dB. The classification
performance remains the same across training approaches,
which indicates that we can only train the dictionary once,
at any SNR level and the learned patterns will be applicable
across any SNR level. Similar conclusions can be drawn from
our results with biased and partially-overlapping scans (results
omitted in interest of space). This is particularly important to
the real world applicability of our approach, as it demonstrates
its robustness to various real-world conditions.
2) Does the instance length affect the dictionary learning
performance? The instance length is defined in terms of the
number of IQ samples that appear in a measured sequence.
We adopt four dictionary training approaches: (1) Varied: we
train and test the dictionary for each instance length, (2) L=32:
we train the dictionary at instance length of 32 and test at all
instance lengths, (3) L=128: we train the dictionary at instance
length of 128 and test at all instance lengths and (4) L=512:
we train the dictionary at instance length 512 and test on all
instance lengths. Fig. 12 (right) presents modrec accuracy over
increasing instance length for the four training schemes. We
see that the classification performance remains the same across
the four training approaches, indicating that we do not need
to retrain the dictionary as our instance length changes.
3) Do dictionary learning parameters affect the modrec
accuracy? Two key parameters of the dictionary learning step
are the shingle size l and the number of components K for the
GMM instantiation. We explore the performance with various
(l,K) combinations (l = 2, 3, 5, K = 20, 50, 100) with SNR
varying from 0 to 10dB in increments of 2. In interest of
space we omit a figure and summarize our results as follows.
We observe maximal performance across all SNRs for shingle
size of 2 or 3, which deteriorates at l = 5. Similarly, a GMM
instantiation with 20 or 50 components leads to good accuracy,
however, the accuracy deteriorates with K = 100. Thus, we
choose to use a shingle size of 3 and a dictionary size of 50.

H. Discussion
Our evaluation shows the merit of combining local and

global features for robust modrec in the wild. Our hierarchical
modrec approach LP+HOC outperforms methods based on



global features by a large margin across all the explored
realistic scenarios. A counterpart based on LP-only closely
follows the performance of LP+HOC, however, it is not as
robust in the face of arbitrary constellation rotation.

VI. CONCLUSION

We designed a novel modulation classification framework
which is robust to imperfect spectrum scan data due to
encoding local sequential patterns within IQ samples. We
employed a Fisher Kernel representation which flexibly han-
dles non-linearity in the underlying data and enables high-
quality modulation recognition even with simple linear clas-
sification models such as linear soft-margin Support Vector
Machines. We demonstrated our framework’s applicability on
real-world, partial, intermittent, biased and noisy scans. Our
method consistently outperformed state-of-the-art approaches,
and in addition our local features were demonstrated to encode
complementary information to global alternatives. Thus, our
framework can be effectively combined with existing features
to further boost its individual recognition accuracy.

Our work addresses a critical disconnect between modrec
requirements and spectrum sensing capabilities. Particularly,
it addresses critical challenges posed by emerging spectrum-
sharing technologies which will employ heterogeneous ded-
icated or crowdsourced sensors, scanning a wide frequency
band sequentially, and thus producing intermittent, partial and
noisy scans. The superior performance of our methodology
on over-the-air partial scans indicates its potential for im-
proved modrec in the wild. Our proposed framework and
its inter-operability with previous approaches constitutes a
solid foundation for future work on spectrum analytics with
practical importance to future spectrum sharing technology,
enforcement and security.

VII. ACKNOWLEDGEMENTS

This work was supported through NSF CISE Research
Initiation Initiative (CRII) grant CNS-1657476 and NSF Smart
and Connected Communities (SC&C) grant CMMI-1831547.

REFERENCES

[1] GNURadio. https://www.gnuradio.org/.
[2] Microsoft’s Spectrum Observatory. https://observatory.

microsoftspectrum.com/.
[3] H. Abuella and M. K. Ozdemir. Automatic modulation classification

based on kernel density estimation. Canadian Journal of Electrical and
Computer Engineering, 39(3):203–209, 2016.

[4] M. W. Aslam, Z. Zhu, and A. K. Nandi. Automatic modulation
classification using combination of genetic programming and KNN.
IEEE Trans. on Wireless Communications, 11(8):2742–2750, 2012.

[5] C. M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[6] W. B. Cavnar, J. M. Trenkle, et al. N-gram-based text categorization.
Ann Arbor, MI, 48113(2):161–175.

[7] A. Chakraborty, A. Bhattacharya, S. Kamal, S. R. Das, H. Gupta, and
P. M. Djuric. Spectrum patrolling with crowdsourced spectrum sensors.
In IEEE INFOCOM, Honolulu, HI, 2018.

[8] A. Chakraborty, U. Gupta, and S. R. Das. Benchmarking resource
usage for spectrum sensing on commodity mobile devices. In ACM
HotWireless, New York, NY, 2016.

[9] A. Chakraborty, M. S. Rahman, H. Gupta, and S. R. Das. Specsense:
Crowdsensing for efficient querying of spectrum occupancy. In IEEE
INFOCOM, Atlanta, GA, 2017.

[10] C. Cortes and V. Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[11] O. A. Dobre, A. Abdi, Y. Bar-Ness, and W. Su. Survey of auto-
matic modulation classification techniques: classical approaches and new
trends. IET Communications, 1(2):137–156, 2007.

[12] O. A. Dobre, Y. Bar-Ness, and W. Su. Higher-order cyclic cumulants
for high order modulation classification. In IEEE MILCOM, Boston,
MA, 2003.

[13] J. Eriksson, E. Ollila, and V. Koivunen. Statistics for complex random
variables revisited. In IEEE ICASSP, Taipei, Taiwan, 2009.

[14] H. Gang, L. Jiandong, and L. Donghua. Study of modulation recognition
based on HOCs and SVM. In IEEE VTC Spring, Milan, Italy, 2004.

[15] S. Gao, I. W.-H. Tsang, L.-T. Chia, and P. Zhao. Local features are
not lonely – Laplacian sparse coding for image classification. In IEEE
CVPR, San Francisco, CA, 2010.

[16] L. Han, F. Gao, Z. Li, and O. A. Dobre. Low complexity automatic
modulation classification based on order-statistics. IEEE Trans. on
Wireless Communications, 16(1):400–411, 2017.

[17] T. Jaakkola and D. Haussler. Exploiting generative models in discrimi-
native classifiers. In NIPS, Denver, CO, 1999.

[18] A. Kumar and B. Raj. Weakly supervised scalable audio content
analysis. In IEEE ICME, Seattle, WA, 2016.

[19] G. Lu, K. Zhang, S. Huang, Y. Zhang, and Z. Feng. Modulation
recognition for incomplete signals through dictionary learning. In IEEE
WCNC, pages 1–6, San Francisco, CA, 2017.

[20] J. Mairal, J. Ponce, G. Sapiro, A. Zisserman, and F. R. Bach. Supervised
dictionary learning. In NIPS, Vancouver, B.C., Canada, 2009.

[21] M. A. McHenry, P. A. Tenhula, D. McCloskey, D. A. Roberson, and
C. S. Hood. Chicago Spectrum Occupancy Measurements and Analysis
and a Long-term Studies Proposal. In ACM TAPAS, Boston, MA, 2006.

[22] I. Mironica, B. Ionescu, J. Uijlings, and N. Sebe. Fisher kernel based
relevance feedback for multimodal video retrieval. In ACM ICMR,
Dallas, TX, 2013.

[23] A. K. Nandi and E. E. Azzouz. Modulation recognition using artificial
neural networks. Signal processing, 56(2):165–175, 1997.

[24] A. Nika, Z. Li, Y. Zhu, Y. Zhu, B. Y. Zhao, X. Zhou, and H. Zheng.
Empirical validation of commodity spectrum monitoring. In ACM
SenSys, Stanford, CA, 2016.

[25] T. J. OShea, T. Roy, and T. C. Clancy. Over-the-air deep learning based
radio signal classification. IEEE Journal of Selected Topics in Signal
Processing, 12(1):168–179, 2018.

[26] P. Panagiotou, A. Anastasopoulos, and A. Polydoros. Likelihood ratio
tests for modulation classification. In IEEE MILCOM, Los Angeles,
CA, 2000.

[27] F. Perronnin, J. Sánchez, and T. Mensink. Improving the Fisher kernel
for large-scale image classification. In Proc. ECCV, Crete, Greece, 2010.

[28] H. Rahbari and M. Krunz. Full frame encryption and modulation
obfuscation using channel-independent preamble identifier. IEEE Trans.
on Information Forensics and Security, 11(12):2732–2747, 2016.

[29] S. Rajendran, W. Meert, D. Giustiniano, V. Lenders, and S. Pollin. Deep
learning models for wireless signal classification with distributed low-
cost spectrum sensors. IEEE Trans. on Cognitive Communications and
Networking, 4(3):433–445, 2018.

[30] S. Roy, K. Shin, A. Ashok, M. McHenry, G. Vigil, S. Kannam, and
D. Aragon. Cityscape: A metro-area spectrum observatory. In IEEE
ICCCN, Vancouver, B.C., Canada, 2017.

[31] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Image classifica-
tion with the Fisher vector: Theory and practice. International journal
of computer vision, 105(3):222–245, 2013.

[32] A. Swami and B. M. Sadler. Hierarchical digital modulation classifica-
tion using cumulants. IEEE Trans. on Communications, 48(3):416–429,
2000.

[33] A. Vedaldi and B. Fulkerson. Vlfeat: An open and portable library of
computer vision algorithms. In Proc. ACM MM, Firenze, Italy, 2010.

[34] K. Yu and T. Zhang. Improved local coordinate coding using local
tangents. In ICML, Haifa, Israel, 2010.

[35] J. Zhang, M. Marszałek, S. Lazebnik, and C. Schmid. Local features
and kernels for classification of texture and object categories: A compre-
hensive study. International journal of computer vision, 73(2):213–238,
2007.

[36] Q. Zhang and B. Li. Discriminative K-SVD for dictionary learning in
face recognition. In Proc. IEEE CVPR, San Francisco, CA, 2010.


