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Abstract—Automatic modulation classification receives

significant interest in the context of current and future

wireless communication systems. Deep learning emerged

as a powerful tool for modulation classification, as it allows

for joint discriminative features learning and signal classi-

fication. However, the optimization of deep neural network

architectures for modulation classification is a manual and

time-consuming process that requires profound domain

knowledge and much effort. Most state-of-the-art solutions

focus mainly on classification accuracy, while optimization

of network complexity is neglected. This paper presents

a novel bi-objective memetic algorithm, BO-NSMA, to

search optimal deep neural network architectures for

modulation classification to maximize classification accu-

racy and minimize network complexity. The experiments

show that BO-NSMA, with an initial population of six

individuals and only ten generations, finds a deep neural

network architecture that outperforms all human-crafted

architectures. Furthermore, BO-NSMA discovered the first

low-complexity Convolutional neural network architecture,

which achieves slightly better performance than costly Re-

current neural network architectures, allowing a 2.9-fold

reduction in network complexity with 1.43% performance

improvement. Compared to counterparts from network

architecture search, BO-NSMA finds the best architecture,

which achieves up to 18.73% accuracy gain and up to an

82-fold reduction in network complexity. The results are

validated using the Wilcoxon signed-rank test.

Index Terms—Modulation Classification, Deep Learn-

ing, Network Architecture Search, Multi-objective Genetic

Algorithm.

I. INTRODUCTION

AUTOMATIC Modulation Classification

(AMC), an intermediate step between signal

detection and demodulation, is an integral part

of designing an intelligent transceiver for future

wireless communication with critical applications

in Dynamic Spectrum Access (DSA) and resource

allocation. Furthermore, it is a key enabler for

many other spectrum sensing applications such

as signal monitoring, intruder detection, jammer

identification, and numerous regulatory and defense

applications.
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Research in Automatic Modulation Classification

(AMC) has been carried out for more than 40

years, using three main methodological themes:

Likelihood-Based (LB), Feature-Based (FB), and

Deep Learning (DL). LB methods formulate AMC

as a multiple composite hypothesis problem, where

the number of hypotheses is equal to the number

of target modulations [1]. Although optimal in the

Bayesian sense, LB methods require prior knowl-

edge about all signal and channel parameters and

suffer from high computational cost [2]. On the

other hand, FB methods perform classification by

utilizing pre-designed discriminative features at a

lower computational cost than LB methods [3,4].

FB methods’ performance heavily depends on the

discriminative nature and noise robustness of the

extracted features, and it is very challenging to pre-

design the right features [5,6]. In contrast to FB,

DL automatically learns radio features from raw

In-phase/Quadrature (I/Q) data and outperforms FB

methods [7]–[11].

Due to its ability to jointly learn discrimina-

tive features from raw I/Q data and perform sig-

nal classification based on them, DL has been

widely adopted for AMC. Two streams of DL-

based methodology can be distinguished: Recur-

rent Neural Network (RNN) [7] and Convolutional

Neural Network (CNN) [8]–[10]. Due to RNNs’

higher computational cost and memory require-

ments, CNNs have been preferred for classification

tasks. Deeper CNN architectures have a vanish-

ing gradient problem, making them unsuitable for

complex classification tasks [11] because the net-

work performance degrades with depth. Recently,

inspired by RNN, new CNN based models such as

Residual Neural Network (ResNet) [12] and Ag-

gregated Residual Transformations for Deep Neu-

ral Networks (ResNeXt) [13] have been proposed.

These models outperform State-of-the-Art (SoA)

CNN models, as shown for the ResNet-based AMC

model in [8] and ResNeXt-based AMC model in

[11]. ResNet and ResNeXt are modularized archi-

tectures where the pre-designed blocks are stacked.

Several designs of ResNet blocks [12] and ResNeXt

blocks [13] have been proposed. Despite the great

successes in using Deep Neural Network (DNN)

for AMC, designing efficient and accurate DNN

architectures is usually a manual, time-consuming

process that requires profound domain knowledge.

Moreover, many AMC applications run in real-time

and require fast inference. The lower the DNN

architecture complexity, the faster the inference will

be. The following challenges make this process even

more difficult.

Immense search space: Even for a simple CNN

architecture, the search space is very large, as the

degrees of freedom include the number of layers,

the number of filters per layer, and the filter size.

For example, let us consider a simple ResNet-18

network with 18 layers (of which 16 Convolution
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(Conv) and 2 pooling layers). A typical architecture

optimization task for ResNet-18 would consider

16 layers with 8, 16, 32, 64, or 128 filters and a

filter size of 1 or 3. This creates a large search

space of (5 × 2)16 = 1016 possible architectures.

A random search of such space can take days or

weeks. Recently, two heuristic approaches based on

Reinforcement Learning (RL) [14] and Genetic Al-

gorithm (GA) [15]–[17] have been widely adopted

in computer vision to automate the Network Archi-

tecture Search (NAS). While the former uses RL

to guide the search, the latter is a population-based

metaheuristic reflecting natural selection [18]. RL-

based approaches [14] suffer from prohibitively high

computational cost and are not readily applicable to

Multi-Objective Optimization Problems (MOOPs)

[19]. Generally, in the literature, two distinct ap-

proaches exist on multi-objective RL: single-policy

and multiple-policy. The single-policy approach

[20] performs conversion of a MOOP into a Single-

Objective Optimization Problem (SOOP) through

the specific scalarization methods, which denote the

preferences of objectives. Specific weights represent

the preference, and they are different in each run.

This approach is redundant in both computation and

model representation. The most used scalarization

method is a linear combination of weighted objec-

tives. In [21] is shown that any system based on

a linear combination of the objectives is incapable

of producing a good approximation of the Pareto

front for problems that exhibit non-convex regions.

Many real-world MOOP problems have that nature,

and the scalarization method is an inefficient tool

to solve such problems. In contrast, the multiple-

policy approach [22] must find multiple policies to

satisfy trade-offs between objectives. It can be done

simultaneously (in a single run) or iteratively (one

policy per run). Multi-policy RL methods still have

a high computational cost, even in their expanded

and optimized version [22]. As these methods ex-

plicitly maintain multiple policies, they are difficult

to scale up to high-dimensional preference spaces

among the objectives. In contrast, GAs are highly

efficient for MOOPs [18] since they can obtain

a set of solutions in a single run due to their

population-based characteristic. NAS has seldom

been considered for DL-based AMC [23].

Dataset-centric solutions: Most existing human-

crafted AMC DNN architectures were optimized

for a single set of modulations [7,9]. Adding new

modulation formats and/or changing the input fea-

tures are highly likely to deteriorate the DNN per-

formance [11]. Thus, new target classes trigger the

re-optimization of the architecture. To make this re-

optimization tractable, a flexible search space and

encoding scheme for GAs are necessary to make

them robust to input feature changes. Most of the

GAs for NAS neglect this and require a new search

space and encoding scheme when the input feature

space changes. [16] proposed pre-designed blocks,
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which fail on input feature changes as shown later.

[23] proposed a shallow CNN architecture that fails

on complex feature spaces, as shown in [11].

Maximizing classification accuracy while ne-

glecting network complexity: All human-crafted

AMC DNN architectures have focused on maxi-

mizing the classification accuracy while reducing

network complexity has been neglected. However,

such the human-crafted DNN architectures might

not be optimized in terms of the connections and

hyperparameters values. As already mentioned, GA

provides a few techniques to solve MOOP, but GAs

applied for AMC’s NAS are still single-objective

driven [23].

Besides RL and GA, there are a few alternative

approaches to optimize DNN architectures. In [24],

a human-crafted DNN is pre-selected. Then greedy

criteria-based pruning is applied to reduce the num-

ber of trainable parameters achieved by pruning

unimportant features per layer. The performance of

this method depends mainly on the human-crafted

initial architecture. Knowledge distillation was con-

sidered for NAS in [25], where DNN architec-

ture compression is done by transferring knowledge

from a trained teacher network to a smaller and

faster student model. This method has a significantly

lower computational cost than GA and may arrive

at a sub-optimal solution as it does not explore

the entire search space. Knowledge distillation can

be combined with RL to expedite the convergence

of RL-based NAS, as shown in [26]. For AMC

applications, it is very important to have DNN

architectures with high classification accuracy while

keeping the complexity low. The time consumption

for searching for such architecture is not critical,

allowing us to apply the GA approach, which might

find an architecture close to the global optimum.

This paper proposes a novel AMC algorithm

called BO-NSMA (Bi-objective Network Search

using Memetic Algorithm) to optimize both classi-

fication accuracy and network complexity. Memetic

algorithm refers to an extension of GA with Local

Search (LS) [18]. The main goal of an LS operator is

to push candidate solutions towards more promising

areas of the search space, where a finding of the

optimum solutions is highly likely. Consequently,

a carefully designed LS operator can expedite the

convergence rate of GA, as it is shown in this work.

Optimization of network complexity considers both

the connections and hyper-parameters of variable-

length network architecture. The key contributions

of this paper are summarized below:

• A first study of the use of multi-objective

GA-based NAS for AMC. This paper identi-

fies the key components of the proposed BO-

NSMA, such as Fitness Sharing (FS), Local

Search (LS), and self-adaptivity of mutation

and crossover rates that enable it to find a

diverse population close to the Pareto optimal

front. Note that the Pareto optimal front is a
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set of non-dominated individuals referred to as

Pareto optimal solutions. There is a (possibly

infinite) number of Pareto optimal solutions.

• The impact of the search space and encoding

on GA convergence rate and AMC’s perfor-

mance is thoroughly explored.

• It is demonstrated that BO-NSMA can find

a diverse population very close to the Pareto

optimal front for a small set of 6 individuals.

Furthermore, it is shown that BO-NSMA out-

performs all human-crafted DNN-based AMC

by yielding up to cc. 2% gain in accuracy

and up to cc. 5-fold reduction in network

complexity.

• The new termination criteria are created to

balance the trade-off between search duration

and gained performance efficiently.

The remainder of the paper is organized as

follows. The overview of State-of-the-Art (SoA)

GA methods for NAS are presented in Section II.

The problem statement is introduced in Section III.

Section IV explains the structure of the proposed

GA method for AMC’s NAS. The deep performance

analysis of the proposed method and its comparison

with human-crafted AMC methods is presented in

Section V. The time complexity, limitations and

potential applications of BO-NSMA are discussed

in Section VI. The conclusions are briefly presented

in Section VII.

II. RELATED WORK

A detailed overview of existing work in the field

of NAS research can be found in [27]. As the

selection of the GA approach for NAS is justified

in the previous section, a detailed overview of GA-

based NAS research is given below.

GAs have been successfully used for NAS in

image processing [15,16,28]. By encoding the net-

work architecture as a chromosome or individual,

GA methods strive to optimize the weights of the

DNN architecture and/or the connections and hyper-

parameters of the DNN architecture. The literature

in GA for NAS can be categorized into two main

streams.

A. Collaborative combination

GAs optimize both the connections and hyper-

parameters, and weights of the DNN architecture

by using single or multiple GAs. However, all the

proposed GAs assume a fixed-length network with

simple architectures with one hidden layer, such

as Feed-Forward Neural Network (FFNN) [29,30].

[29] seeks to optimize only weights, while [30]

seeks to optimize number of neurons and their

weights. Complex network architectures increase

individual representations’ complexity and result in

a computationally expensive search for the opti-

mal weights. On the other hand, back-propagation

algorithms have emerged as an efficient method

for weights optimization [31]. Furthermore, intel-
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ligent weight initialization can slightly boost back-

propagation performance, as shown in [15], where

weights initialization values, encoded into individu-

als as the additional hyperparameters, are optimized

over generations.

B. Supportive combination

In this stream of work, GAs are used to optimize

the connections and hyperparameters of the DNN

architecture, while the weights are optimized using

other algorithms such as the back-propagation [31].

FFNN optimization is proposed in [32], CNN op-

timization in [15]–[17,33] and RNN optimization

in [33,34]. Mostly considered hyperparameters are

the number of hidden layers, learning rate, type

of optimizer, number of filters, layers’ positions,

and activation functions. There are a few different

research approaches within this stream. They are

distinguished by whether they focus on network

depth, optimization problem formulation, or the way

of DNN architectures building. First, considering

the network depth, there are two categories: fixed

[17] and variable [15,16,32]–[34] network depth

approaches. While the former might waste compu-

tational power in cases when the network depth is

set to a value higher than optimal, the latter tries to

find the optimal network depth and, thus, provides

more computationally efficient candidate solutions.

Second, considering the optimization problem for-

mulation, there are two categories: single-objective

[15,17,33,34] and bi-objective [16,32] optimization

approaches. While the former minimizes only clas-

sification error or mean squared error, the latter

minimizes both the classification error and network

complexity. The bi-objective optimization problem

is translated into single-objective using the scalar-

ization method in [32] or Pareto Dominance (PD)

approach in [16]. The scalarization method is very

sensitive to the weighting of the objectives. It may

require a large number of iterations to converge

to a small part of the Pareto optimal front. Third,

considering the way of DNN architectures building,

there are two categories: layer stacking [15,17,32]–

[34] and block stacking [16] approaches. The layer

stacking approach is not preferred for complex

classification problems. It requires a deeper network

vulnerable to the vanishing gradient problem where

gradients become vanishingly small, preventing net-

work training [12]. On the other hand, a careful

design of blocks with identity shortcuts makes the

network robust to the vanishing gradient problem.

These identity shortcuts allow gradient information

to pass through the layers, even in deeper networks,

making the training independent of network depth.

Besides adding the identity shortcuts, the design

of blocks highly impacts DNN’s performance. For

instance, in [16], a few pre-designed blocks are

proposed with the same human-designed connection

settings. NAS running on such a limited search

space might not find an optimal DNN architecture.

In the context of modulation classification, GA
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methods have been employed to extract and op-

timize classification features [35]–[38] or to op-

timize the DNN architecture [23]. However, [23]

does not consider the joint optimization of both the

connections and the hyperparameters of the AMC’s

DNN architecture. Moreover, only the simple CNN

network architecture has been considered [23]. This

paper aims to jointly optimize both the connections

and hyperparameters of the AMC’s DNN architec-

ture by a novel memetic algorithm that addresses

the drawbacks mentioned above of GA methods in

image processing.

III. PROBLEM DEFINITION

This section gives a mathematical representation

of NAS for AMC. The input to AMC is explained

as well.

A. Signal model

Before the definition of NAS for AMC, let us

introduce the modulated signal as input to the DNN-

based modulation classifier. Assume that one active

transmitter transmits a signal, s(t), over a dynamic

wireless fading channel with an impulse response,

hc. Assuming one antenna at the receiver, the dis-

torted and noise-corrupted received signal, r(t), is

given as

r(t) = ej(φ0−2π∆ft)s(t−∆t)~ hc(t) + v(t), (1)

where ∆t is the timing offset, ∆f is the frequency

offset, φ0 is the phase offset, and v(t) is Additive

White Gaussian Noise (AWGN) with mean 0 and

variance 2σ2
v . It is assumed that the receiver is work-

ing at the same center frequency as the transmitter.

The received signal, r(t), is sampled in the time

domain and N raw I/Q samples are fed to the input

of the AMC classifier as its input features. The

N raw I/Q samples are referred to as an instance,

represented as a matrix with dimensions 2−by−N ,

where the first row holds I values and the second

row holds the corresponding Q values. For example,

an instance of size N = 4 for Binary Phase-Shift

Keying (BPSK) modulated signal looks as below

[I/Q]2x4 =

 0.027 0.053 0.119 0.144

−0.014 0.003 0.005 0.035

 . (2)

The AMC classifier has a task to correctly select

a modulation format from a pool of known Nmod

candidate modulations.

B. Problem definition of network architecture

search for modulation classification

The Network Architecture Search (NAS) for

AMC can be treated as a bi-objective optimization

problem where classification accuracy should be

maximized, and simultaneously, network complex-

ity in terms of computational cost and memory

requirements should be minimized. As this work

searches for an optimal CNN architecture, network

complexity can be roughly approximated as the total

number of trainable parameters of the model. A
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mathematical representation of considered problem

is given below.

Let Z ⊂ <2×N be the above mentioned feature

space of raw I/Q samples and Y = {1, ..., c}

be the label space, where c is the number of

considered modulation classes. Thus, the training

dataset can be defined as D = {(zi, yi)}ni=1, where

(zi, yi) ∈ (Z × Y). A classifier is defined as a

function that maps the input feature space to label

space, f : Z → <c. The AMC classifier adopts

the Softmax output layer with cross-entropy loss for

classification. Accordingly, the classification risk,

which captures the discriminative nature of features

learned by DNN, is given as

RL(f) = ED
[
L(f(z; θ), yz)

]
=

− 1

n

n∑
i=1

c∑
j=1

yij log fj(zi; θ), (3)

where θ is set of parameters of the classifier, L

is cross-entropy loss, yij is the label of instance

zi (represented as j’th element of one-hot encoded

label), and fj denotes the j’th element of the

classifier function f . The lower the classification

risk, the higher classification accuracy pc will be.

Therefore, the joint connections and hyperparame-

ters optimization of the DNN architectures can be

formulated as

minimize F (z) =
(
RL(f(z)),#θ

)
subject to z ∈ Z, f(z) ∈ A,#θ > 0,

(4)

where A is the architecture search space and #θ

is the number of trainable parameters out of all

classifier parameters θ. Given A, a goal is to find an

optimal architecture f(z) for the classifier with the

minimal number of trainable parameters #θ, such

that after training those parameters the architecture

can achieve the minimal classification risk, RL.

IV. METHODOLOGY

This section introduces the proposed BO-NSMA

(Bi-objective Network Search Memetic Algorithm),

which flowchart is shown in Fig. 1. BO-NSMA

considers the block-level design and utilizes Pareto

Dominance (PD) with Fitness Sharing (FS) strat-

egy to solve the bi-objective optimization prob-

lem. Simultaneously, in contrast to [16], it allows

blocks with different connection settings, using ex-

panded hyperparameters search space. As this work

considers a complex network architecture, back-

propagation is adopted for the weights optimization

with the default Xavier weights initializer [31]. All

methods mentioned in Section II use the absolute

number of iterations to terminate their GAs. This

termination criterion is inefficient and may lead to

unnecessary computations. Thus, this work employs

the averaged Hausdorff distance to avoid it. Further,

the exploration and exploitation are enhanced by

self-adaptive mutation and crossover rates. In what

follows, the components of the proposed BO-NSMA

are explained.
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Figure 1: BO-NSMA Overview

A. Search space and encoding

Inspired by the ResNet [12] and ResNeXt [13]

architectures, the CNN-based network architecture

is designed as a serial fusion of the number of

blocks followed by a global pooling layer and

several dense layers. Each block is defined as a

parallel fusion of w branches with d Conv lay-

ers, whose outputs are first concatenated and then

merged with the Identity branch, as shown in Fig. 2.

With the probability of ppool, each block is followed

by a pooling layer. Different variants of the merge

function, including Multiply, Add, and Concat are

considered. The Multiply and Add are element-wise

operations, while the Concat is done along the

column axis (axis=1). Traditionally, CNNs capture

the spatial properties of the underlying signal as

classification features. However, these spatial prop-

erties are inherently sensitive to noisy conditions

and may suffer significant performance deterioration

[11]. This work proposes to address this problem by

expanding the search space of the merge function,

which might enable the extraction of new features

that capture cumulants-like signal properties. To en-

force the dimensionality reduction of features space

with network depth, the adding of one Conv layer

(a) (b)

Figure 2: Block structure examples, w = 3, d = 2
with (a) Dim. reduction before the Conv and Identity
branches, and followed by a pooling layer; (b) Dim.
reduction in the Identity branch, and without a
pooling layer.

either before the Conv branches and Identity branch

(Fig. 2(a)) or in the Identity branch (Fig. 2(b)) is

employed. The first block in the network has a

width equal to 1, depth equal to 1, and no Identity

branch, while for the other blocks, width and depth

are randomly chosen from the following ranges:

w ∈ [1, wmax]; d ∈ [1, dmax]. As dense layers require

a higher number of trainable parameters, they are

added with a probability of pdense. GA seeks the

optimal number of blocks, the number of dense

layers, and each block’s optimal depth and width.

In addition, GA seeks the optimal hyperparameter

values for each architecture layer. The search space

for hyperparameters is given in Table I. An individ-

ual’s genotype is given as a list of several blocks,
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Table I. Hyperparameters encoded into individuals

Unit Hyperparameters Search space

Network No. of dense layers
No. of blocks

[0, 4]
[1, 10]

Block

Pooling
Dim. reduction
Merge function

depth
width

{Y es,No}
{Before,After}

{Add,Multiply, Concat}
[1, 4]
[1, 32]

Conv
Activation
Kernel size

Filters

{relu, selu, tanh, linear}
{1, 3, 5, 7}

{4, 8, 16, 32, 64, 128}

Pooling Kernel size
Type

{2}
{Max,Average}

pooling
Global Type {Average, F latten}

Dense Activation
Units

{relu, selu, tanh, linear}
[32, 256]

Figure 3: Examples of individual’s genotypes.

one global pooling layer, and several or no dense

layers. An individual’s length, L, is equal to the sum

of the number of blocks, the number of dense layers,

and one global pooling layer. Fig. 3 presents several

examples of individual’s genotypes. A phenotype of

an individual is a DNN architecture built upon its

genotype.

B. Population initialization

The search space, given in Table I, might result in

a very complex network architecture. Many human-

crafted DNN architectures have been proposed for

AMC [7,8,11], and can help in the more intelligent

design of the population initialization. Therefore, a

control parameter referred to as the maximum al-

lowed number of trainable parameters, #θmax, with

Table II. BO-NSMA input parameters

Name Notation Default Value
Population size λ 6
Offspring size µ 6
Max. no. of blocks NB 8
Max. no. of Dense layers ND 4
Max. block width wmax 32
Max. block depth dmax 4
Probability of adding a Dense layer pdense 0.4
Probability of adding a Pooling layer ppool 0.5
Max. allowed no. of trainable parameters #θmax 100,000
Absolute no. of iter. J 10
No. of initialization trials I 100
No. of iter. for convergence check H 3
Convergence threshold ε 10−4

No. of epochs Nepochs 10
Probability to flip units in crossover pc flip 0.6
Optimal classification accuracy p̂c 0.9
Optimal no. of trainable parameters #̂θ 10,000
Tournament Selection Parameter k 2
Max. length of individual Lmax 20

a value determined from the human-crafted SoA, is

introduced. Even with limited network complexity,

there are still many architectures to explore. The

process of population initialization is explained in

Algorithm 1. The initialization of an individual con-

sists of adding block units (lines 11− 17), adding a

global pooling unit (lines 18−19), and adding dense

layers (lines 20− 22). If the individual has a higher

number of trainable parameters than #θmax, it will

be discarded and initialized again until the generated

candidate satisfies the target number of trainable

parameters or the number of trials, I, does not reach

maximum value. Although this might prolong the

initialization time, it results in a much lower overall

time cost induced by alternative complex network

architectures.
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Algorithm 1: Population initialization
Input: Input parameters given in Table II
Output: Initialized population P0

1 Po ← ∅
2 for i← 1 to λ do
3 j ← 0
4 while True do
5 j ← j + 1
6 Individual← Null
7 nb ←

Uniformly generate an integer between [1, NB ]
8 nd = 0
9 r ← Uniformly generate a number between [0, 1]

10 if r ≤ pdense then
11 nd ←

Uniformly generate an integer between [0, ND]

12 list← []
13 block0 ← Randomly initialize a block unit with

d = 1, w = 1, no the Identity branch, and ppool
14 list← list ∪ block0
15 for j ← 1 to nb do
16 w ←

Uniformly generate an integer between [1, wmax]

17 d←
Uniformly generate an integer between [1, dmax]

18 block ← Randomly initialize a block unit
with d, w, and ppool

19 list← list ∪ block
20 gp← Randomly initialize a global pooling unit
21 list← list ∪ gp
22 for j ← 1 to nd do
23 dl← Randomly initialize a dense layer unit
24 list← list ∪ dl
25 Individual.units← list
26 Individual.accuracy ← 0.0
27 Individual.complexity ← count #θ()
28 if Individual.complexity < #θmax or j == I

then
29 P0 = P0 ∪ Individual
30 break

31 return P0

C. Fitness evaluation

The fitness evaluation is performed in three steps:

(1) counting of trainable parameters, (2) training of

the decoded individual through a predefined number

of epochs, Nepochs, and (3) evaluating the trained

models on the validation dataset. The number of

trainable parameters and validation classification

accuracy are the objectives that are utilized during

offspring generation and elimination. Adam opti-

mizer [39] with a learning rate of 0.001 is adopted

in this work. This learning rate is a reasonable

trade-off between slow convergence at lower rates

and inaccurate results at higher rates. Note that

the Adam optimizer provides gradient normaliza-

tion and momentum which make the learning rate

important only for the initial learning before the

learning rate is updated. Our selected learning rate

is based on recommendations from prior work [39],

whereby a learning rate of 0.001 works well for

most problems.

D. Offspring generation

GA reflects the process of natural selection,

where the fittest individuals are selected for mat-

ing to produce offspring for the next generation.

Natural selection in GA is performed by selection,

crossover, and mutation operators [18].

1) Selection: The deterministic k-tournament

[18] is employed to select the individuals for mating

without replacement, whereby k individuals are

evaluated randomly, and the best one is chosen.

The deterministic k-tournament selection does not

require any global knowledge of the population,

nor a quantifiable measure of quality like the other

selection methods like the Roulette wheel method.

Instead, it uses an ordering relation to compare

and rank any two individuals. Further, the selection
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pressure is easy to control by varying the tourna-

ment size k [40]. Since there are two objectives

in considered problem, the well-known concept of

Pareto Dominance (PD) is utilized to determine

which individual is better. One individual is said

to dominate the other if one of the following con-

ditions is satisfied: (1) it has a higher classification

accuracy, and a lower or equal number of trainable

parameters, or (2) it has a higher or equal classi-

fication accuracy, and a lower number of trainable

parameters. For each individual, the individuals by

which it is dominated are counted. The individual

with a lower number of individuals by which it is

dominated is treated as better.

2) Crossover: The crossover operator is analo-

gous to natural reproduction and is usually per-

formed with a rate of 1. However, such a rate may

result in the mating of parents with poor genes,

which leads to poor offspring performance. The

survival selection will highly likely eliminate poor

offspring, resulting in slowing down or completely

halting the GA progress. Thus, it is important

to generate good offspring in order to speed up

the solution search and increase the offspring’s

survival rate. To this end, self-adaptive crossover

rates inspired by Q-learning [41] are developed.

Specifically, a track of whether an individual is good

for mating or not is kept by encoding information

about its crossover rate, pcr. Each individual in

the initialized population P0 has a crossover rate

of 1. The crossover operator takes two parents

as inputs, parent1, parent2, and returns two off-

spring, offspring1, offspring2. Before applying

the crossover operation, offspring are pure copies

of the selected parents, i.e., offspring1 inherits all

properties of parent1, while offspring2 inherits

all properties of parent2. After applying crossover

operator, the offspring crossover rates are updated

as below

poffspringicr = γ∗pparenticr +(1−γ)∗poffspringic ; i = 1, 2,

(5)

where γ is the learning rate ranging from 0 to

1, pparenticr denotes the crossover rate of parenti,

while poffspringic denotes the validation classification

accuracy of the offspringi. The value of γ is

mostly set to 0.3 in practice, as for higher values,

Q-learning becomes unstable [41]. Intuitively, the

higher the reward in maximizing the objective score,

the higher the crossover rate will be. To avoid

duplicates in the population, for offspring generated

without crossover operator (copies of their parents),

the mutation operator with a rate of 1 is applied. As

a crossover operator, the uniform crossover with a

flip probability of pc flip = 0.6 is adopted [18] (see

lines 6− 13 in Algorithm 3). Uniform crossover is

applied to type-aligned units, as shown in Fig. 4.

3) Mutation: As uniform crossover of aligned

units does not impact the length of the offspring,

each offspring inherits the parent’s length. To al-
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Figure 4: Crossover example

low both offspring length variability and hyperpa-

rameters’ values changes, the following mutation

operators: Add new, Duplicate, Delete, and Reset

are introduced. With probability pm unit, which is

inversely proportional to the individual’s length L,

one uniformly chosen mutation operator will be

applied to each unit of the individual. The Add new

operator adds a new unit with randomly selected hy-

perparameters’ values. The Duplicate operator adds

a unit with the same structure and hyperparameters’

settings as the current unit. The Delete operator

removes the unit. The Reset operator keeps the unit

with the same structure but randomly changes its

hyperparameters’ settings. The mutation process is

explained in Algorithm 2. Similarly, each individual

has encoded information about the mutation rate pmr

as the crossover rate, which is adapted over gen-

erations. The initialized population has randomly

selected mutation rates within a certain range. High

mutation rates introduce more exploration in an

individual’s length. The mutation rates are updated

using log-normal transformation [42], as given be-

low:

pnewmr =
(
1 +

1− poldmr
poldmr

exp−τN(0,1)
)−1

, (6)

where τ is the adaptation speed control parameter

(set to 0.22), and N(0, 1) is a normal variable with

zero mean value and unit variance. The log-normal

transformation of the mutation rates keeps them

between 0 and 1, and has been shown as an efficient

technique for mutation rate self-adaptation [42].

Algorithm 2: Mutation in BO-NSMA
Input: Individual x, Input parameters given in Table II
Output: Mutated individual x̂

1 r ← Uniformly generate a number between [0, 1]
2 if r > pxm then
3 return x

4 x̂← ∅
5 p← 1

length(x)

6 for i← 1 to length(x) do
7 r ← Uniformly generate a number between [0, 1]
8 u← x[i]
9 if r < p and length(x̂) < Lmax then

10 m←
Uniformly generate a number between [0, 4)

11 if m == 0 then
12 x̂← x̂ ∪ u
13 if length(x̂) < Lmax then
14 b← Randomly initialize a new unit, b

with the same type as u
15 x̂← x̂ ∪ b

16 if m == 1 then
17 b← Randomly initialize a new unit, b with

the same type as u
18 x̂← x̂ ∪ b
19 if m == 2 then
20 x̂← x̂ ∪ ∅
21 if m == 3 then
22 x̂← x̂ ∪ u
23 if length(x̂) < Lmax then
24 x̂← x̂ ∪ u

25 else
26 x̂← x̂ ∪ u

27 if length(x̂) == 0 then
28 return x

29 else
30 return x̂
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E. Local search

Before applying the elimination strategy, Local

Search (LS) is applied to the best and the worst

individuals (offspring + parents). The best indi-

viduals are non-dominated by any other individual

and belong to the Pareto optimal front. In contrast,

the worst individuals have the maximum number

of individuals by which they are dominated. LS

explores the worst individuals’ neighbourhood to

find their fitter neighbours that might have a chance

to survive. LS consists of applying mutation to

the selected individual for two runs. The selected

un-mutated individual is replaced with its mutated

version only if one of the following conditions is

satisfied: (1) the mutated individual has a higher

classification accuracy, and its number of trainable

parameters is not increased more than 5%; (2) the

mutated individual has a lower number of trainable

parameters, and its classification accuracy is not

decreased more than 0.5%.

F. Elimination strategy

Crossover and mutation operators generate µ off-

spring. The λ+ µ strategy is opted for the elimina-

tion strategy [18], where parents and offspring are

merged, and the λ best individuals are selected for

the next generation. The best individuals selection

is made according to the modified classification

accuracy by using Fitness Sharing (FS) for diversity

promotion. FS is the most successful and widely

used method for diversity promotion. While [16]

uses the crowding method for diversity promotion,

this work opted for FS for the following reasons.

Although FS has a higher computational cost than

crowding, FS tends to encourage searches in unex-

plored regions of the space and favors the formation

of stable subpopulations [43]. In contrast, crowding

has difficulties to preserve the stable subpopulations

in some cases as a result of replacement errors.

The complete overview of methods for diversity

promotion can be found in [44]. The modified

classification accuracy is given as below:

p′c = pc ∗
[ ∑
r∈N i

σ(x)

1−
(d(x, r)

σ

)α]
, (7)

where σ denotes the threshold of dissimilarity,

d(x, r) is the distance between the individual x and

the individual r, α is a constant parameter that

regulates the shape of the sharing function, and

N i
σ(x) denotes the σ neighbourhood of individual

x in the current population Pi given as N i
σ(x) ={

r ∈ Pi|d(x, r) ≤ σ
}
.

The distance d(x, r) is calculated as the Euclidean

distance between individuals’ normalized complex-

ities and classification accuracies as below:

d(x, r) =

√(
#θx −#θr

#θmax

)2

+ (pc,x − pc,r)2, (8)

where #θmax is the maximum allowed number of

trainable parameters. As the maximum distance can

reach
√

2, σ is set to 0.2. The shape parameter α is

set to 2, ensuring high diversity pressure in the σ
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neighborhood.

G. Termination strategy

Unlearned termination criteria present one of

the main GA’s drawbacks. An infinite number of

iterations might be required to reach an optimal

global solution in a large search space. As each

iteration of GA is very expensive, it is necessary

to have the proper termination criteria, which in-

dicates the point in time when further computa-

tions become unnecessary as they do not gain sub-

stantial performance improvement. The following

termination conditions are adopted (lines 27 − 34

in Algorithm 3): (1) the number of iterations is

greater than or equal to a fixed number, J , decided

a priori; (2) an acceptable solution is reached -

GA will terminate if the algorithm generates an

individual with classification accuracy higher than a

predefined value p̂c and trainable parameters lower

than a predefined number, #̂θ; (3) when there has

not been any improvement in the population for

the last H iterations, i.e., differences between the

generations in the last H iterations are less than a

certain convergence threshold, ε. Each generation is

represented as a set of Pareto points with size equal

to the population size, λ. A Pareto point denotes

an individual, x, represented by an ordered pair

(1 − pc,x,#θx) of its properties. To measure the

similarity between two Pareto sets, the well-known

averaged Hausdorff distance is utilized, which is a

widely used tool to measure the distance between

different objects in several research fields [45]. The

averaged Hausdorff distance between two Pareto

sets in BO-NSMA, U = {u1, u2, ..., uλ} ⊂ R2 and

V = {v1, v2, ..., vλ} ⊂ R2 is defined as below:

∆p(U, V ) = max
(
(
1

λ

λ∑
i=1

dist(ui, V )p)1/p,

(
1

λ

λ∑
i=1

dist(vi, U)p)1/p
)
, (9)

where dist(ui, V ) is the minimal Euclidean distance

from ui to set V , dist(vi, U) is the minimal Eu-

clidean distance from vi to set U , and p is the control

factor for outliers’ penalty. The higher the value of

p, the more penalized are the outliers. Since ∆p is

used as the termination condition, p is set to 1.

V. PERFORMANCE EVALUATION

This section explains the experimental setup used

for simulations including the selected baselines,

datasets and implementation details. The obtained

results are presented and analysed.

A. Experimental setup

1) Baselines: This work employs four baselines

from the literature that human experts manually

design: LSTM [7], ResNeXt [11], ResNet [8], and

1D-CNN [8]. Furthermore, this work employs two

of the newest baselines from GA NAS in image

processing: NSGA-Net [16] and EvoCNN [15]. The

former is a bi-objective optimization with adopted

PD for block-level NAS, while the latter is a single-

objective optimization for layer stacking NAS. The
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Algorithm 3: BO-NSMA
Input: Input parameters given in Table II
Output: Population

1 Po ← Initialize population using Algorithm 1
2 i← 1
3 while True do
4 Pi ← Pi−1

5 for j ← 1 to µ/2 do
6 parent1, parent2← run k-tournament selection

without replacement
7 r ← Uniformly generate a number between [0, 1]
8 crossover done← False
9 if r <

(
pparent1cr + pparent2cr

)
/2 then

10 offspring1, offspring2 ← crossover(parent1,
parent2)

11 crossover done← True

12 else
13 offspring1 ← parent1
14 offspring2 ← parent2

15 r ← Uniformly generate a number between [0, 1]
16 if r < poffspring1mr or

crossover done == False then
17 offspring1 ← mutation(offspring1)

using Algorithm 2

18 r ← Uniformly generate a number between [0, 1]
19 if r < poffspring2mr or

crossover done == False then
20 offspring2 ← mutation(offspring2)

using Algorithm 2

21 update poffspring1cr and poffspring2cr by the Eq.
(5)

22 update poffspring1mr and poffspring2mr by the Eq.
(6)

23 Fitness evaluation of offspring1, offspring2
24 Pi ← Pi ∪ {offspring1, offspring2}
25 LocalSearch(Pi)
26 Pi+1 ← Elimination(Pi)
27 if i == J then
28 stop BO-NSMA!

29 else if ∃ Individual, x ∈ Pi, pxc ≥ p̂c and #θx ≤ #̂θ
then

30 stop BO-NSMA!

31 else if ∀j ∈ [0,H),∆(Pi−j , Pi−j−1) ≤ ε then
32 stop BO-NSMA!

33 else
34 i← i+ 1

35 return Pi

NSGA-Net searches for the network architecture

based on a few pre-designed blocks with fixed

hyperparameters. In contrast, the EvoCNN seeks to

optimize each layer’s hyperparameters in the DNN

architecture, including the weights initialization val-

ues. As those baselines are applied for the 2D

image processing problem, each 2D layer in the

architectures is replaced with a corresponding 1D

layer while keeping all other hyperparameters the

same.

2) Datasets: Two modulation sets are used:

(1) a Baseline set, containing Nmod = 11

low-order modulation formats: BPSK, QPSK, 8-

PSK, 16/64-QAM, PAM4, GFSK, CPFSK, BFM,

DSB-AM and SSB-AM; and (2) an Extended

set, containing the simple ones and 9 addi-

tional modulations: OQPSK, 32/128/256-QAM,

16/32/64/128/256-APSK (Nmod = 20). The I/Q

samples are generated at increasing Signal-Noise

Ratio (SNR) (-6 dB to 18 dB). The performance of

DNN models for different channel models (AWGN,

Rayleigh, Rician) follows the same performance

trends as long as there is enough labeled data

at disposal, as shown in [11]. In this work, the

emphasis is on the performance evaluation of BO-

NSMA, where channel modeling does not play an

important role. Thus, the channel is modeled as

simple AWGN. For each combination of SNR and

modulation type, 1000 instances are generated with

a size of N = 128 and N = 1024 for the baseline

set and the extended set, respectively. A seed is

used to generate random mutually exclusive instance

indices, which are then used to split the data into

three subsets: training, validation, and testing at a

ratio of 80:10:10, respectively.
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3) Implementation details: BO-NSMA is im-

plemented in Python [46]. Each evaluated AMC

method is implemented using TensorFlow [47].

The fitness evaluation training is performed over

Nepochs = 10 epochs and a batch size of 256.

The models are trained and evaluated on a GPU

server with eight Nvidia RTX 2080Ti cards. The

default values of BO-NSMA input parameters (see

Table II) are kept constant over all experiments.

The population size is set to a low value, λ = 6,

as each individual’s evaluation is computationally

heavy. The k parameter for deterministic tournament

selection is set to 2, which gives a high chance that

each individual is selected for crossover operator.

All presented classification accuracies are averaged

over the whole SNR range of [−6, 18] dB.

B. Results

1) Performance evaluation of BO-NSMA: Be-

sides GA’s performance over generations common

to any GA, there are two qualitative metrics to

be considered to assess how good a certain multi-

objective GA is for a given problem: (1) popula-

tion accuracy, that is to determine how similar the

population is to the Pareto optimal front, and (2)

population diversity, that is to evaluate how well

distributed individuals are in the population. Note

that the Pareto optimal front denotes the set of

non-dominated individuals. Keeping that in mind,

below is justified why BO-NSMA is designed as

described in Section IV by using the baseline set

of modulations. As an evaluation with the extended

dataset follows the same performance trends as

with the baseline dataset, the conclusions given

below remain valid for the extended dataset. BO-

NSMA denotes the proposed GA with applied

FS, LS, high mutation rate, pmr ∈ [0.5, 1], and

self-adaptive crossover rates. To evaluate their im-

pacts on the mentioned qualitative metrics over

generations, seven experiments are run: (1) BO-

NSMA, (2) BO-NSMA with low mutation rate

pmr ∈ [0.05, 0.2], (3) BO-NSMA without FS in

elimination and keep the λ individuals with the

highest classification accuracy, (4) BO-NSMA with

low mutation rate pmr ∈ [0.05, 0.2] and without

FS in elimination and keep the λ individuals with

the highest classification accuracy, (5) BO-NSMA

without LS, (6) BO-NSMA with low mutation rate

pmr ∈ [0.05, 0.2] and without LS, (7) BO-NSMA

with constant crossover rates equal to 1.

Fig. 5 presents the performance of BO-NSMA

over generations showing average classification ac-

curacy for the entire population (top left), an average

number of trainable parameters for the entire pop-

ulation (top right), and the maximum classification

accuracy of the best individual in the population

(bottom). Note that the classification accuracy val-

ues are averaged over the whole SNR range of

[−6, 18] dB. Fig. 6 (right) presents Pareto front

approximation for the 10th generation. The Pareto

optimal front is illustrated with the solid line in
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Fig. 6 (right), and the best-performing method

should follow closely it. Fig. 6 (left) shows the

Pareto set difference between two population gener-

ations which is important for GA convergence rate

monitoring.

a) BO-NSMA performance over generations:

As BO-NSMA without FS focuses only on max-

imizing the classification accuracy, it achieves the

best average and maximum accuracy at the tenth

generation (see Fig. 5 (top left and bottom)). High

mutation rates introduce a high level of search

exploration, with an unpredictable impact on the

GA performance. LS in combination with high

mutation rates always improves accuracy, for BO-

NSMA with and without FS. However, BO-NSMA

without LS operates better for low mutation rates.

Consequently, more search exploration increases the

average number of trainable parameters. Each BO-

NSMA with low mutation rates converges to almost

the same number of trainable parameters, around

60k. In contrast, BO-NSMA cases with high muta-

tion rates result in around 80k trainable parameters

(see Fig. 5 (top right)). Further, Fig. 5 proves that LS

expedites the convergence rate of GA. BO-NSMA

with constant crossover rate, pcr = 1 likely mates

the poor parents, leading to worse performance. It

has a 5% lower average accuracy and 2% lower

maximum accuracy at the tenth generation than BO-

NSMA with self-adaptive crossover rate.

b) Population accuracy and diversity: Fig. 6

shows that BO-NSMA with FS provides a diverse

population for both mutation rates. On the other

hand, BO-NSMA without FS and with high muta-

tion rates converges to one optimal Pareto point after

the sixth generation, while BO-NSMA without FS

and with low mutation rates slowly converges, and

at the tenth generation two optimal Pareto points

can still be noticed. BO-NSMA with high mutation

rates finds six diverse individuals and two optimal

Pareto points, while BO-NSMA with low mutation

rates finds five diverse individuals and three optimal

Pareto points (Fig. 6 (right)). The individuals found

by BO-NSMA with high mutation rates are closer

to the Pareto optimal front compared to BO-NSMA

with low mutation rates. Thus, it can be stated that

BO-NSMA with high mutation rates found the best

population in terms of both population accuracy and

diversity.

To sum up, BO-NSMA without FS achieves the

best average and maximum accuracy but at the cost

of diversity loss. In contrast, BO-NSMA with FS

slowly converges to the optimal Pareto points, but

it provides a diverse population. High mutation rates

enable a more accurate population, closer to the

Pareto optimal front.

2) Impact of the search space and encoding

on performance: The solutions found by any GA

heavily depend on the given search space and in-

dividuals’ representation. In order to assess how
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Figure 5: BO-NSMA components and their impact on: average accuracy (top left); average number of
trainable parameters (top right); maximum accuracy (bottom) over generations.
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Figure 6: The averaged Hausdorff distance of two subsequent generations (left). Pareto front approximation
for Generation 10 (right).

good is the proposed search space, its benefits are

explored versus well-known ResNet blocks [12] and

simple networks with layer stacking, while keeping

all components of BO-NSMA (FS, LS, offspring

generation) the same. ResNet blocks by design have

d = 3, w = 1, and Add as merge function [12].

Thus, to demonstrate the impact of encoding, five

experiments are run: (1) BO-NSMA with the pro-

posed encoding, (2) BO-NSMA with layer stacking,

(3) BO-NSMA with ResNet block stacking, (4)

NSGA-Net [16] with their pre-designed blocks, and

(5) EvoCNN [15]. Each experiment uses the base-

line set of modulations. EvoCNN stacks the Conv,

pooling and dense layers (the maximum number of

layers is set to 15).

Fig. 7 shows that BO-NSMA with the proposed

block design has 4% higher average classification

accuracy and 4% higher maximum achieved classi-

fication accuracy after the sixth generation than BO-

NSMA with layer stacking and the ResNet block

stacking. Furthermore, BO-NSMA with ResNet

block stacking finds the population with the lowest

average number of trainable parameters. NSGA-Net

achieves very poor AMC performance where each
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found architecture is overfitting. Although NSGA-

Net employs PD, its proposed architecture search

space with pre-designed blocks and the fixed hy-

perparameters values prevents GA from optimiz-

ing such architectures according to the considered

problem. In contrast, EvoCNN gives a much higher

number of degrees of freedom for hyperparameters

values, resulting in complex network architectures

compared to NSGA-Net and BO-NSMA. Moreover,

EvoCNN for population size λ = 6 prematurely

converges after the second generation to one non-

optimal Pareto point. The high number of degrees

of freedom for hyperparameters values and un-

controlled population initialization require a higher

population size to avoid premature convergence.

Thus, EvoCNN is run for λ = 30. Fig. 7 shows

that EvoCNN with a higher population size will

take a longer time to converge, whereas a higher

population size will increase its chance to find at

least one Pareto optimal point.

3) Comparison with baselines: Finally, the per-

formance of the best individual found by BO-

NSMA is compared with selected baselines for

both sets of modulations. All models are trained

for 80 epochs and evaluated on the testing dataset.

Table III presents classification accuracy averaged

over all SNRs for the baseline and extended datasets

mentioned in Section V-A2, respectively, whereas

Fig. 8 presents accuracy across SNRs for the base-

line dataset.

LSTM [7] is the best-performing SoA architec-

ture for AMC evaluated on the baseline dataset,

which achieves an average accuracy of 86% with

over 200k trainable parameters. BO-NSMA finds

the first genetically-optimized architecture, which

achieves slightly higher average accuracy (an im-

provement of 1.43%) while reducing the number

of trainable parameters to 69k (a 2.90-fold re-

duction in the number of trainable parameters).

LSTM with default training parameters given in

[7] fails to converge for the extended dataset. Next

in terms of achieved performance are ResNet and

ResNeXt architectures. For the baseline dataset,

BO-NSMA achieves 2.02% and 1.88% accuracy

gain over ResNet and ResNeXt, respectively, while

keeping the number of trainable parameters over

three times lower compared to ResNet. For the

extended dataset, BO-NSMA achieves 3.49% and

2.80% accuracy gain over ResNet and ResNeXt,

respectively, while keeping the number of trainable

parameters over 4.1x lower compared to ResNet.

While exploring BO-NSMA’s performance across

SNR (Fig. 8) for the baseline dataset, note that it

gets 3% higher classification accuracy at mid-SNR,

which illustrates its robustness to noise compared

to other baselines. BO-NSMA can also successfully

optimize CNN with layer stacking, achieving the ar-

chitecture with 1.7% and 2.6% higher classification

accuracy at 1.7x and 1.9x lower number of train-

able parameters compared to 1D-CNN [8] for the
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Table III. BO-NSMA top-1 accuracy and corre-
sponding #θ vs baselines

Model
Baseline dataset Extended dataset

Acc.(%) #θ Acc. (%) #θ

LSTM [7] 86.17 200,075 46.49 201,236
ResNet [8] 85.58 255,115 79.71 313,620
ResNeXt [11] 85.72 85,051 80.40 86,212
1D-CNN [8] 82.01 100,811 79.54 142,932
BO-NSMA 87.60 68,851 83.20 76,372
EvoCNN [15] 80.30 450,157 64.47 6,261,901

(layers)
BO-NSMA 83.73 83,115 82.12 72,708

(ResNet blocks)
BO-NSMA 85.07 58,591 82.09 45,284
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Figure 8: Classification accuracy across SNR (base-
line dataset).

baseline dataset and extended dataset, respectively.

Similarly, BO-NSMA finds a better architecture

with ResNet blocks which has 0.5% lower and 2.4%

higher classification accuracy at 4.0x and 6.9x lower

number of trainable parameters than ResNet for the

baseline dataset and extended dataset, respectively.

BO-NSMA with layer stacking achieves to find a

solution within 10 generations and population size

of 6 that has 3.43% and 18.2% accuracy gain at

5.41x and 78.7x lower number of trainable param-

eters than its counterpart EvoCNN for the baseline

dataset and extended dataset, respectively.

4) Statistical significance testing: Table III

shows the BO-NSMA and EvoCNN performance

of the best-found individual through multiple

runs. However, GAs have a stochastic and non-

deterministic nature; and thus, running one GA

twice on the same optimization problem usually

produces different results. A statistical test should

then be applied to establish whether there is enough

empirical evidence to claim a difference between

the two algorithms. BO-NSMA is compared with

its GA’s counterparts: EvoCNN and NSGA-Net. As

NSGA-Net has limited search space, it is unsuitable

for AMC, and it is not compared with BO-NSMA.

BO-NSMA is compared with EvoCNN for both
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datsets. The Wilcoxon signed-rank test [48], with

significance level α = 0.05, was used to quantify

the significance of the comparison. The Wilcoxon

signed-rank test is a non-parametric statistic test

used for comparing two paired sets of observations

whose difference comes from a zero median dis-

tribution. In [49], it is shown that parametric tests

are unsuitable for statistical analysis of evolutionary

algorithms for continuous optimization problems,

while non-parametric tests such as the Wilcoxon

signed-rank test are good tools for such analysis.

A null hypothesis H0 is defined as ”there is no

difference between BO-NSMA and EvoCNN”. In

this paper, the classification accuracy of the best-

found individual was used for the comparison.

The statistical analysis of best-found individuals

for BO-NSMA and EvoCNN is given in Table IV.

For the baseline dataset, the classification accuracy

of the best individuals found by BO-NSMA lies

between 85.2% and 87.6%, while the best indi-

viduals found by EvoCNN have the classification

accuracy within the wider range of [67.6, 80.3]%.

The mean value of the classification accuracy of

the best individuals found by BO-NSMA is 9.8%

lower for the baseline dataset and 24.5% for the

extended dataset. The mean value of the number of

trainable parameters of the best individuals found by

BO-NSMA is 8.9x lower for the baseline dataset

and 117.23x lower for the extended dataset. The

statistical analysis given in Table IV clearly indi-

cates that BO-NSMA outperforms EvoCNN in both

classification accuracy and network complexity for

both datasets.

The Wilcoxon signed-rank test is run to check if

those results are significant. The Wilcoxon signed-

rank test is also done for the human-crafted base-

lines. The human-crafted baselines are determinis-

tic, so the results shown in Table III can be used as

constant over multiple runs. The obtained p-value

for each BO-NSMA counterpart is lower than the

significance level (α = 0.05) (see Table V). Thus,

with a high level of confidence, it can be stated that

BO-NSMA outperforms EvoCNN and the human-

crafted baselines. Furthermore, the results are sta-

tistically significant.

VI. DISCUSSION AND RESEARCH DIRECTIONS

In this section, the findings from the experimen-

tal results are utilized to discuss BO-NSMA time

complexity and limitations, which could provide

valuable insights on the applications of the proposed

BO-NSMA method. In the end, the potential future

research directions are outlined.

A. BO-NSMA time complexity

Given the steps in Algorithm 3, the time complex-

ity of each component of BO-NSMA is as follows.

1) Population initialization: Let T (x) and E(x)

be the time to compute the number of train-

able parameters and the time to evaluate the

classification accuracy of an individual x.
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Table IV. BO-NSMA and EvoCNN statistical comparison

Metric
Baseline dataset Extended dataset

BO-NSMA EvoCNN BO-NSMA EvoCNN

Max. Acc. (%) 87.6 80.3 83.7 64.5
Min Acc. (%) 85.2 67.6 80.2 45.3
Mean. Acc. (%) 86.5 76.7 82.2 57.7
Max #θ 99,643 1,679,792 98,020 50,803,314
Min #θ 21,803 193,874 51,252 814,226
Mean #θ 68,405 611,113 81,179 9,517,301
Mean Search Time
(h)

5.65 0.57 32.2 1.85

Table V. The p-values obtained by the Wilcoxon
signed-rank test

Model
p-value

Baseline dataset Extended dataset

LSTM [7] 0.004 0.005
ResNet [8] 2.47 · 10−6 0.005
ResNeXt [11] 3.69 · 10−6 0.0068
1D-CNN [8] 1.64 · 10−6 0.005
EvoCNN [15] 1.73 · 10−6 0.005

The minimum time complexity of population

initialization is given asO(λ×(E(x)+T (x))),

while maximum time complexity is given as

O(λ × E(x) + I × λ × T (x)), where I is

the maximum number of trials allowed in the

initialization step. As E(x) >> T (x), it is the

dominant term; thus, the time complexity for

the initialization step is O(λ× E(x)).

2) Selection: the selection step is done through

binary tournament and PD. Two iterating

loops through the entire population are re-

quired to count the number of dominant indi-

viduals for each individual in the population.

Thus, the time complexity of the selection step

is O(λ2).

3) Offspring generation: Let C(x1, x2) and M(x)

be the time to perform crossover of two indi-

viduals, x1, x2, and the time to perform mu-

tation of an individual x. The time complex-

ity of the offspring generation step is given

as
∑λ/2

i=1

[
(p
x2i−1
cr + px2icr )/2× C(x2i−1, x2i)

]
+∑λ

i=1

[
pximr ×M(xi)

]
. By focusing only on

the dominant terms, the time complexity for

the offspring generation step is O(λ).

4) Local search: Local search is applied to both

parents and offspring. The time complexity

of the LS is given as
∑λ+µ

i=1

[
pxils × 2E(xi)

]
,

where pxils denotes the probability that an indi-

vidual xi satisfies the conditions for LS. LS is

applied to the best and worst individuals, and

it will likely be done for the whole population.

Thus, the time complexity of the LS step in

the worst case is O(2× (λ+ µ)) = O(4λ).

5) Elimination: The elimination step adopts FS.

Let D(x1, x2) be the time to calculate the

distance between two individuals, x1, x2 by

Eq. 8. The time required to calculate distances

for the entire population λ + µ has the time
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complexity of O((λ + µ)2 ×D(x1, x2)). The

selection of λ individuals for the next genera-

tion by using Eq. 7 has a time complexity of

O(λ(λ+ µ)).

By summing up all five steps, focusing on the

dominant terms and removing any constants, the

overall BO-NSMA time complexity, over J gen-

erations, is given as O
(
J (6λ+ 7λ2)

)
≈ O

(
J λ2

)
.

EvoCNN has a time complexity of O
(
J λ
)
, while

NSGA-Net has a time complexity of O
(
J λ log λ

)
[50]. The average time complexity in hours for

BO-NSMA and EvoCNN running for the baseline

dataset is 5.65h and 0.57h, respectively. Whereas,

the average time complexity in hours for BO-NSMA

and EvoCNN running for the extended dataset is

32.2h and 1.85h, respectively (see Table IV). The

extended dataset requires a longer time to obtain

fitness of the population.

Next it is evaluated whether EvoCNN can find

a better individual within the same time window

as BO-NSMA. Thus, one more experiment is run

where EvoCNN has 6h to search for the best in-

dividual for the baseline dataset. The λ is set to

36 and J is set to 20 for that experiment. In 6h,

EvoCNN finds the best individual with classifica-

tion accuracy of 81.89% and number of trainable

parameters of 133, 307. EvoCNN slightly improves

the classification accuracy and reduces the network

complexity by 4.5x of its best-found individual for

a longer search period. To sum up, for the same

time complexity, BO-NSMA outperforms EvoCNN

in terms of both classification accuracy and network

complexity. BO-NSMA’s best-found individual has

a 4.6% higher classification accuracy and 50% lower

network complexity.

B. BO-NSMA limitations and applications

Based on the analysis given above, the follow-

ing limitations of BO-NSMA with insights into its

potential applications are identified.

1) High time complexity: It is shown that BO-

NSMA finds a DNN architecture that outperforms

each human-crafted DNN architecture within 5.65h

and 32.2h for the baseline dataset and extended

dataset, respectively. Manual searching for an op-

timal DNN architecture can take days or months.

EvoCNN cannot find a better individual even within

the same search time window as BO-NSMA. For

offline searches where the computational resources

are not critical, BO-NSMA is an efficient tool for

NAS. No one GA will be an optimal choice for NAS

running on the edge devices with low computational

power.

2) Control parameters settings: Although BO-

NSMA features self-adaptive crossover and muta-

tion rates, a few control parameters are set manually.

The control parameters for FS are set based on prior

knowledge of the target optimal solutions (classi-

fication accuracy close to 100% and the number

of trainable parameters lower than the maximum
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allowed number of trainable parameters). The maxi-

mum number of trainable parameters is set based on

expert knowledge of the task of interest. The best-

known human-crafted DNN architectures for AMC

are explored, and their trainable parameter count

is utilized as a range for BO-NSMA. The control

parameters for FS might not be optimal if BO-

NSMA is applied to non-classification tasks. The

maximum allowed number of trainable parameters

would require some prior knowledge about a consid-

ered task. Thus, to be applied to non-classification

tasks, those control parameter values have to be

revisited.

C. Future research directions

In this paper, the performance evaluation of BO-

NSMA is done only for AMC. It would be in-

teresting to explore BO-NSMA performance for

other classification tasks such as image classification

in computer vision. BO-NSMA’s sensitivity to the

manual control parameters for other tasks should

be evaluated. Future research could also consider

learning those parameters automatically as it is

already done for crossover and mutation rates. LS

and FS are computationally costly. Having smart

policies to turn them on/off over generations would

lead to a significant decrease in the time complexity

of BO-NSMA. Those policies should achieve a

good trade-off of time complexity and convergence.

Although the number of trainable parameters is a

valuable metric of network complexity for CNN-

based architectures, future research would benefit

from a more refined metric for network complexity,

such as inference time.

VII. CONCLUSIONS

Although DNNs have achieved remarkable results

for AMC, the manual optimization of their archi-

tectures is challenging due to the immense search

space. In addition, a given optimized architecture

often does not properly transfer when input fea-

tures change, triggering repetitive and tedious opti-

mization. Automated Network Architecture Search

(NAS) using Genetic Algorithm (GA)s has received

considerable attention in computer vision. However,

a smooth transfer of those methods to time-series

problems such as modulation recognition results in

suboptimal performances, as it is shown for NSGA-

Net. Thus, this paper proposes BO-NSMA, a novel

bi-objective memetic algorithm for joint architecture

and network complexity optimization for DNN-

based modulation recognition applications. The Lo-

cal Search (LS) is added to GA to accelerate the

convergence rate and to enhance performance. Fol-

lowing extensive experimentation, it is shown that

BO-NSMA finds a diverse population very close to

the Pareto optimal front defined by performance and

complexity. The architecture found by BO-NSMA

outperforms all human-crafted DNNs. Moreover, it

is demonstrated that BO-NSMA does not have a

premature convergence problem for low population
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size, as is the case with its counterpart EvoCNN.

The significance of obtained results is proved by

using the Wilcoxon signed-rank test.
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