
Mobile Agent in Concordia

Jian Peng, Binglin Li
Mathematics and Computer Science Department

Kent State University, Ohio, USA
email: {jpeng,binli}@mcs.kent.edu

Abstract
This paper first introduces the Concordia, including its principle, its components and its
features. Then we focus our emphasis on agent collaboration and the facilities that Concordia
provides us, which are the most important parts in concordia. In the end, the concordia’s
merits and drawbacks are analyzed briefly.

1. Introduction

As the Internet and World Wide Web have become enormous popular in recent days, more
and more attentions have been paid to the distributed applications development. Moreover,
the network is being viewed as one of the most popular development platforms. However,
there are still some shortcomings in this distributed development environment. The
scalibility, reliability and security of distributed applications are still too far as desired. Some
new software paradigms have been designed to enhance this distributed application
development, such as IBM’s Aglets, General Magic’s Odyssey and etc.. One of which is
Concordia.

Simply speaking, a Concordia system includes: a Java Virtual Machine, a Concordia Server,
and Concordia Agents(at least one). The Java Virtual Machine, which is a standard
environment, can be on any machine. The Concordia Server is a Java program which runs
there, and at any other nodes on the network where agents may need to travel. The agent is
also a Java program which the Concordia Server manages, including its code, data, and
movement.

Generally, there can be many Concordia Servers and they are distributed each of the various
nodes of a network, both user and server nodes. The Concordia Servers are aware of one
another and connect on demand to transfer their agents in a secure and reliable fashion. The
agent initiates the transfer by invoking the Concordia Servers methods. The Concordia
Server inspects an object called the Itinerary, created and owned by each agent, to determine
the appropriate destination. That destination is contacted and the agents image is transferred,
where it is again stored persistently before being acknowledged. In this way the agent is
given a reliable guarantee of transfer.

After being transferred, the agent is queued for execution on the receiving node. This
happens promptly but possibly subject to certain administrative constraints. When the agent
again begins executing, it is restarted on the new node according to the method specified in
its itinerary, and it carries with it those objects which the programmer requested. Its security

credentials are transferred with it automatically and its access to services is under local
administrative control at all times.

The work that the agent performs depends on its purpose, that is, the code which it was
programmed to execute. Generally, agents have several components, just as any program
has. An agent might start interactively, by prompting the user for search information, then
may travel to a server to perform the query. As its methods complete, the itinerary causes the
agent to be moved to other Concordia nodes. Therefore, agents with different purposes will
typically have different itineraries.

In all cases, Concordia provides a robust and highly reliable framework for the development
and execution of secure, intelligent, mobile agent applications. Furthermore, Concordia’s
collaboration and Service Bridge features provide an ideal framework for enabling
Cooperative Information Gathering, a multi-agent based approach for combining information
from multiple, heterogeneous, information sources. The need for an efficient approach to
information gathering is becoming increasingly important because of the changing and
growing amount of information available in the World Wide Web and other complex
information spaces. the Concordia agent is autonomous and self-determining in its operation.
In this way, it is unique since it is in control of its own itinerary.

2. Architecture of Concordia

The Concordia system is made up of numerous components, each of which integrates
together to create the full Mobile Agent framework. It is similar to a number of existing
agent infrastructures and tool kits with respect to its support for the basic communication
plumbing that is required for agent mobility. The Concordia Server is the major building
block, inside which the various Concordia Managers reside. Certain Concordia components
have a user interface, such as the Concordia Administrator. In any case, each Concordia
component is responsible for a portion of the overall Concordia design, in a modular and
extensible fashion. Concordia was developed based on java language. It consists of the
followings:

Figure 2.1. Concordia Architecture

(1) Concordia Server is the name of the complete Concordia component installed and
running on a machine in the Concordia network. It serves as a communication server is
responsible for concordia’s agent transferring among the networks. At first, this transferring
is activated by agent’s invoking the server’s methods. Then the agent traverses among the
network until it reaches its destination. In the end, it brings the required data back.

(2) Agent Manager provides the communications infrastructure that allows for agents to be
transmitted from and received by nodes on the network. Moreover, Concordia’s agent
mobility mechanism extends beyond the functionality provided in other Java-based agent
systems. It offers a flexible scheme to dynamically invoke arbitrary method entry points
within a common agent application. It abstracts the network interface in order that Agent
programmers need not know any network specifics nor need to program any network
interfaces. The Agent Manager Server also manages the life cycle of the agent. It provides
for agent creation and destruction, and provides an environment in which the agents execute.
It is highly mobile and its mobility can extend to a nimbler of local as well as wide area
networks. to alleviate potential performance and reliability problems associated with the
transmission of agents across networks with different characteristics in the underlying
communication medium, the concordia infrastructure also provides support for transactional
query of agents between conduit servers residing in different networks. And many
applications can be achieved by users’ programming their own agents, in the assistance of
concordia’s basic agents.

(3) Administrator is mainly responsible for the network administration of the Concordia. It
resides on a separate Java virtual machine, and can cooperate with Concordia services which
are running on the various nodes under administration. The Administration Manager
manages all of the services provided by Concordia, including Agent Managers, Security
Managers, Event Managers, etc. The Administration Manager supports remote
administration from a central location, so only one Administration Manager is required in the
Concordia network, although more can be employed as desired. The Administration
Manager has a user interface component which is its primary means of use. The
Administrator also monitors the progress of agents throughout the network and maintains
agent and system statistics.

(4) Security Manager: Security is one of important criteria of programming languages. In
concordia, the security manager is responsible for identifying users, authenticating their
agents, protecting server resources and ensuring the security and integrity of agents and their
accumulated data objects as the agent moves among systems. The Security Manager is also
responsible for authorizing the use of dynamically loaded Java classes which satisfy the
needs of agents. The Security Manager has a user interface component, in order to configure
and monitor the security attributes of the various users and services known to Concordia.
This user interface function is integrated into the Administration Manager interface. Security
credentials used by the Security Manager may come from a number of sources. For secure,
self-contained systems, it may be that no credentials are needed. For systems that traverse
public or semi-public networks, encryption may be required but credentials may need only
reflect user identity, such as user name or group id. For fully fledged agent systems deployed
on the Internet, strong authentication and security can be provided from external authorities
such as Version. All these security levels can be supported by Concordia’s Security
Manager.

(5) Persistence Manager is required to ensure that the concordia agents can recover from the
system crash successfully. It maintains the state of agents in transit around the network. As a
side benefit, it allows for the checkpoint and restart of agents in the event of system failure.
Additionally, it can checkpoint objects upon request by agents, to provide finer granularity
of reliability guarantees for critical procedures. The Persistence Manager is completely
transparent in its operation, that is, neither the agents nor the administrator need control or
monitor its operation. However, management access is available if needed.

(6) Event Manager: Concordia can provide two kinds of asynchronous distributed events:
selected events and group oriented events and they are managed by the Event Manager. It
handles the registration, posting and notification of events to and from agents. The Event
Manager can pass event notification to agents on any node in the Concordia network. The
Event Manager works in conjunction with the Concordia Server to distribute events as
needed. An important function of the Event Manager is to support Concordia agent
collaboration.

(7) Queue Manager: Queues are needed in the Concordia to store message produced by the
concordia agents. The Queue Manager is responsible for scheduling and possibly retrying
the movement of agents between Concordia systems. These features include the maintenance
of agents as they await the opportunity to perform their work, maintaining their persistent
state as they enter and leave a system, and retrying as necessary when Concordia systems are

disconnected from the network. The Queue Manager provides the mechanism for prioritizing
and managing the execution of agents on entry to Concordia nodes.

(8) Directory Manager enables mobile agents to locate the application servers they wish to
interact with on each host. It maintains a registry of application services available on each
host it manages. A Concordia distributed system may be configured to include one or more
Directory Managers (at most one per host). Application servers export their services to
mobile agents by registering them with the Directory Manager. Mobile agents then obtain
references to application servers via the Directory Manager’s lookup operation.

The Directory Manager provides naming service in the Concordia network. The
administrator may configure the name service in a number of ways, chosen according to the
needs of the programmer and services. The Directory Manager may consult a local name
service or may be set up to pass requests to other, existing name servers.

(9) Service Bridge provides the interface from Concordia agents to the services available at
the various machines in the Concordia network. It comprises a set of programming
extensions to provide access the native APIs as well as interfacing these to the Directory
Manager and Security Manager.

(10) Agent Tools Library is a library which provides all the classes needed to develop
Concordia Mobile Agents. This of course includes the Agent class, and others derived from
Java base classes, with interfaces to the Concordia infrastructure.

3. Main Features of Concordia

3.1 Overview of main features

(1) Concordia employs existing TCP/IP communications services. Concordia does not
impose a protocol or distributed computing service of its own.

(2) Advanced management function
This feature allows thousands of mobile agents to run on a single workstation. Concordia
administration can start, stop, suspend, and resume Concordia Servers; view, stop, suspend,
and resume agents at a Concordia Server; create, modify, delete users and/or permissions;
upgrade and install Concordia Servers, monitor Concordia Server performance, and manage
the components.

(3) Collaboration
It means that your agents can cooperate with each other to perform specific tasks. An
application can be composed of several agents with specific sub-tasks. it can provide a
number of benefits, such as enabling parallel operation over multiple servers or multiple
networks. Using collaboration, an application can divide a task into subtask, the subtask can
be carried out in the most appropriate places. The results of these sub-tasks are then
assembled by the collaboration framework. A decision is made based upon the results, which
can be used to determine destination, action, or other appropriate behavior.

(4) Service Bridge

It allows a developer to add services to a Concordia Server. Service Bridges may be
managed remotely via the Concordia Administration Manager. For example, you can
provide access to an application-specific service so the service does not need to travel with
the mobile agent . The Service Bridge also provides a way out of the Virtual Machine to the
outside world.

(5) Persistence and Queuing
Persistence and Queuing can provide for automatic retries of agent transmission and queue
storage recovery in case of server and/or network failures. These 2 features also provides for
load balancing when machines in a network provide different response time and the order of
execution is important.

(6) Itinerary
It specifies where a mobile agent travels. It provides a method to allow destinations to be
added or removed either by the application, mobile agent or the Concordia Administration.

(7) Service Naming
It is a name service for applications and agents. In an environment where information is
dynamic (i.e. the internet), this provides an easy way to establish a list of locations where
services reside.

(8) The Concordia Security Structure
Unlike most agent systems, it provides security based on the rights of the user of the
applications - not the permissions given by the developer of the application. This provides
for more control of which files, databases, resources, etc., are available to a specific end
user. In addition , the security system protects resources from access by unauthorized mobile
agents and protects mobile agents from being tampered with by unauthorized users.

(9) The Lightweight Agent Transporter API
It allows the developer to embed within a client application the ability to receive, execute,
and launch Concordia Agents. The application can receive notifications from the mobile
agent and can directly interact with mobile agent.

(10) Encryption
Concordia can provide users with the following two options: (i) Concordia provides
Encryption as a security measure; (ii) the developers can plug in their own encryption
scheme.

3.2 Concordia Security for Agent

There are general four types of security problems in mobile agent systems:
(1) secure network transfer of agents,
(2) protection of a host from attack or misuse by malicious agents,
(3) protection of an agent from attack by a another malicious agent, and
(4) the protection of an agent from attack from a malicious host.

The current Concordia security administrator only provides the first three types of
protection. Within Concordia, once a server has been identified as a valid Concordia Server,

it is considered to be a trusted environment and the Concordia security package does in fact
take steps to ensure server integrity. It provides agent protection and resource protection.

Since the object store saves an agent and its state information to disk, it could also become a
potential security risk. Concordia agent protection addresses securing this on-disk
representation as well. Concordia does not attempt to protect an agent when it is present in
memory, but relies on the protection offered by the operating system and the Java virtual
machine. Concordia uses the term resource protection to refer to the process of protecting
server resources from unauthorized access. This area of protection addresses the problem of
securing a host from attack or misuse by agents. In addition, this protection is applied to
protect agents from attack by other agents.

Agent protection refers to the process of protecting an agent’s contents from tampering or
inspection during transmission across a network connection or when stored on-disk. Such
protection exists to ensure the privacy and integrity of the agent and the potentially sensitive
information it carries. This problem can be thought of as being composed of two
sub-problems: (i) transmission protection dealing with the network protection of an agent
and (ii) storage protection protecting an agent when represented on disk.

(a) Transmission Protection

Protection of an agent during transmission is a generally recognized problem in agent
systems. For more reliability, Concordia uses a persistent object store for periodically saving
agent state. In case of system failure, this server uses the object store to reconstruct
executing agents and resume agent travels.

Concordia provides transmission protection using Secure Sockets Layer version 3. SSL is a
general-purpose network security protocol, which can provide authentication and encryption
services for TCP connections.

Another choice for ensuring transmission protection is a public-private key encryption
scheme independent of the socket communications level. However, SSL provides a more
attractive solution primarily because it encapsulates security mechanisms below the
application level and can be made to work with our existing RMI infrastructure.

b) Storage Protection

Storage protection guards an agent from access or modification when stored in Concordia’s
persistent store. This type of protection is particularly useful when Concordia is running on
an operating system that does not have a secure file system.

When an agent is stored, its bytecodes, internal and travel status are all written to disk. This
agent’s information is encrypted using a symmetric key encryption algorithm and a
generated agent-specific symmetric key. Concordia takes advantage of the Java
Cryptography Extension to allow any of the following symmetric algorithms to be used:
IDEA, DES, RC4, RC5, Misty, or Triple DES. The symmetric key used in the encryption is
automatically generated by the Concordia Server when the Agent arrives. After the
encrypted agent is written to disk, the symmetric key is then encrypted using a

server-specific public key and then stored with the Agent. Decrypting an agent requires the
server’s private key. System administrators must ensure the security of this private key. This
can be accomplished by storing the key on a secured file system or on removable media
which can be physically secured by the administrator.

c) User Identities

In order to identify an agent with a particular user, Concordia associates a user identity with
agents executing in the system. This identity is a Java object and is composed of three pieces
of information: (i) a user name, (ii) a user group, and (iii) a password. These are roughly
equivalent to the user names, groups and password found in secure operating systems.
Within the user identity, the password is always stored in a secure hashed form and is never
represented in clear text. Construction of an agent requires supplying the clear text password.
Thus knowledge of the hashed password is not sufficient for assigning a user identity to an
agent.

The user identity is usually represented in a shorthand form which looks like the following:
username@group. So if a user named john were a member of the group accounting, this
user’s identity would be represented as john@accounting.

3.3 Mobile Agents in Concordia

Commonly Agent is defined as an independent software program which runs on behalf of a
network user. It may run even if the user is disconnected from the network. Some agents run
on specialized servers, others run on standard platforms. Concordia Mobile Agent can
perform work on behalf of the users, such as collecting information or delivering requests.
This mobility greatly enhances the productivity of each computing element in the network
and creates a uniquely powerful computing environment well suited to a number of tasks.

The Concordia allows the creation of Mobile Agent programs written in the Java language.
These programs use Concordia services to move about in a network of distributed machines
and to access services available on them. Common examples are user GUIs, databases, and
other agents. By using Concordia, a new class of simple, easy-to-write and easy-to-run
programs is enabled.

Mobile Agent facilitates high quality, high performance, economical mobile applications.
Therefore these applications can transparently use the network to accomplish their tasks,
while taking full advantage of resources local to the many machines in the network. They
process data at the data source, rather than fetching it remotely, therefore, allowing higher
performance operation. They make best use of the network as they travel.

They permit secure Intranet-style communications on public networks. Security is an integral
part of the Mobile Agent framework, and it provides for secure communications even over
public networks. Agents carry user’s credentials with them as they travel. And these
credentials are authenticated during executing at every point in the network. Agents and their
data are fully encrypted as they traverse the network. All this occurs with no programmer
intervention.

Concordia agents are highly mobile and their mobility can extend to a number of local as
well as wide area networks. To alleviate potential performance and reliability problems
associated with the transmission of agents across networks with different characteristics in
the underlying communication medium, the Concordia infrastructure also provides support
for transactional queuing of agents between Conduit Servers residing on different networks.

(1) Agent Mobility

Since the agent objects are composed of a combination of code and data, object mobility
means the network transportation of both code and data. Concordia also provides interfaces
allowing agents to create other agents and to clone themselves. As stated earlier, agent
mobility is accomplished by the Conduit Server. In the Mobile Agent, the following
information should be provided: (i) destinations, (ii) itineraries and (iii) methods.

How does an agent travel? It is described by its Itinerary. The Itinerary is a data structure
which is stored and maintained outside of the agent object itself. The Itinerary is composed
of multiple Destinations. Each Destination describes a location to which an agent is to travel
and the work the agent is to accomplish at that location. In the current implementation,
location is defined by a hostname of a machine on the network and the work to accomplish is
by a particular method of the agent class.

There are some important characteristics of this Itinerary model that is worth noting. The
Itinerary is a completely separate data structure from the agent itself. Thus where the agent
travels is maintained in a separate logical location than what the agent does. A design
decision was better than the method of Telescript’s. For flexibility reasons, the system
allows agent’s to modify their Itineraries at runtime. While this can introduce the same type
of complexity as is seen with the Telescript’s go, it was felt that this functionality will only
be needed in very exceptional cases.

Mobility of an agent’s data was accomplished using the Java Object Serialization facility.
Transfer an agent state is a matter of serializing an agent’s data down into a format suitable
for network transmission, transmitting the data in this format, and then deserializing the data
back into the original agent. This is very similar to the mechanism used by Java Remote
Method Invocation (RMI) for passing an object by value between distributed objects. RMI
itself does not provide for true object mobility as it provides for no mobility of an object’s
code and in fact requires that the code for any objects passed by value be pre-installed on
both sides of the network connection. Java’s Object Serialization features provide an almost
transparent mechanism by which Java objects can be serialized into data streams and
provided suitable technology for implementing agent mobility.

(2) Collaboration

Concordia’s collaboration framework facilitates this type of interaction by enabling multiple
agents to work together to solve complex problems. Suppose the agents visit local travel
agencies and then share their intermediate results and collaborate before migrating to travel
agency sites in other cities. If an agent determines that a particular resort does not have any
available lodging meeting the user’s criteria, the agents may determine to drop queries about
trips to that destination. As more information is gathered, agents may also make other

decisions. As this example demonstrates, agents can perform complex distributed
computations more effectively if they correlate their results and alter their behavior based on
the combined results. Concordia’s collaboration framework facilitates this process.

The class of application described above divides a complex task into smaller pieces and
delegates them to agents that migrate throughout the network to accomplish them. These
agents perform computations, synchronously share results, and collaboratively determine
any changes to future actions. Concordia employs a simple programming paradigm for this
type of collaboration. The goals of the collaboration framework include: (i) A simple
programming interface for synchronous collaboration. (ii) Asynchronous notification of
exceptional conditions via events. (iii) Reliable and robust implementation utilizing proxy
objects to shield agents from the effects of software failures within the collaboration
framework. (iv) An infrastructure that enables location transparent inter-agent
communication.

Agents within an application may form one or more collaboration units, known as agent
groups. Concordia provides base classes for collaborating agents and agent groups.
AgentGroups are implemented as distributed objects which export a simple interface to
CollaboratorAgents. These agents hold remote references to AgentGroup distributed objects
and access them via Java’s Remote Method Invocation (RMI) facility.

AgentGroup collaboration is implemented as follows: The AgentGroup abstraction provides
the distributed synchronization. Each application need only supply its own implementation
of analyzeResults to analyze the collective results of the agents in the group and to allow
each agent to adapt its behavior based on those results. Both the synchronization point and
invocation of analyzeResults are encapsulated within the AgentGroup’s collaborate method.
This distributed synchronization scheme requires that each agent "arrive" at the collaboration
point before collaboration may commence. Hence, it is ideally suited to applications that
subdivide a complex problem into sub-tasks that correlate heir results. When each agent
arrives at the collaboration point, it posts the results of its computation to the AgentGroup
and blocks until all the agents in the group arrive. The AgentGroup collects the results of the
agents’ computations, and when all agents in the group arrive at a collaboration point, its
collaborate method invokes analyzeResults on behalf of each agent, passing it the collective
result set. The AgentGroup abstraction supports both parallel and serialized execution of the
analysis stage of collaboration.

The AgentGroup also uses time-outs to detect potential deadlocks. Note that since
AgentGroup collaboration is designed for closely coordinated agents, deadlocks are
generally caused by programming errors. Hence, the AgentGroup does not need to use a
more sophisticated scheme for deadlock detection or avoidance. An additional benefit of
AgentGroup collaboration is that it enables location-transparent inter-agent communication.
As each agent migrates, it carries a remote reference to an agentGroup distributed object and
utilizes the AgentGroup as a gateway for communicating with the other members of the
group.

As mentioned earlier, AgentGroups facilitate both synchronous collaboration and
asynchronous notifications. This is possible because the AgentGroup object derives from the
PersistentEventGroup object. AgentGroups forward any events they receive from their

members to the remainder of the group. Occasionally, they may also initiate events that they
deliver to the group.

As detailed above, Concordia’s collaboration paradigm offers several benefits:
(1) simple programming interface for synchronous collaboration;
(2) asynchronous distributed event management;
(3) support for agent mobility;
(4) location-transparent inter-agent communication;
(5) reliability, persistence, and transparent recovery from failure;
(6) deadlock detection;
(7) a portable implementation.

4.Programming Methodology in Concordia

4.1 Writing Mobile Agents

Writing a Concordia Mobile Agent is in many ways little different from developing a
non-mobile Java program. This section will give a brief introduction to the concept of
writing a Concordia Mobile Agent.

4.1.1 Client/Server-Based Database Lookup

Assume we will perform a database lookup. Such an application will have three basic steps:
searching the database, performing the lookup, and displaying the results.

Figure 4.1. Java SQL Lookup

A Java program invoking this remote SQL database might look like this:

class DBQueryProgram {
 public static void main(String args[]) {
 String url = "jdbc:odbc:foxdatasource";
 String query = "SELECT sname, sid, average FROM FoxDatabase";
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Connection con = DriverManager.getConnection(url);
 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery(query);
 while (rs.next()) {
 System.out.println("Student Name = " + rs.getString("sname"));
 System.out.println("Student ID = " + rs.getString("sid"));
 System.out.println("Average Score= " + rs.getFloat("average"));
 System.out.print("\n");
 }
 }
}

In the above example, "foxdatasource" is a data source which can be accessed through jdbc:odbc.
"FoxDatabase" is a FoxPro database which has at least three fields: sname,sid, average. The
database is presumably located on some accessible machine. We connect to the database and
execute an SQL query, then print three fields in the result. It is very simple to code a database
lookup example in Java.

4.1.2 Agent-based Database Lookup

Now let’s take advantage of Query Agent to travel across the network to perform the database
query.

Figure 4.2. Agent SQL Lookup

First, we need to change our SQL query method to store the results into an object which we will
move across the network. Our agent will travel to the server, execute the query and store the
results, then return to the user and print them. We partition these tasks into individual methods,
which we will instruct Concordia to invoke at the appropriate locations in the network.

Here is the updated Java code:

class QueryResult {
 public String sname;
 public String sid;
 public String average;
}

public class QueryAgent extends Agent {
 Vector itsResults;
 public QueryAgent() {
 itsResults = new Vector();
 }

 public void queryDatabase() {
 String url = "jdbc:odbc:foxdatabase";
 String query = "SELECT sname, sid, average FROM FoxDatabase";
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 Connection con = DriverManager.getConnection(url);
 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery(query);
 while (rs.next()) {
 QueryResult result = new QueryResult();
 result.sname = rs.getString("sname");
 result.sid = rs.getString("sid");
 result.average = rs.getFloat("average");
 itsResults.addElement(result);
 }
 }

 public void reportResults() {
 Enumeration enum = itsResults.elements();
 while (enum.hasMoreElements()) {
 QueryResult result = (QueryResult)enum.nextElement();
 System.out.println("Student Name = " + result.sname);
 System.out.println("Student ID = " + result.sid);
 System.out.println("Average Score = " + result.average);
 System.out.print("\n");
 }
 }
}

In agent-base database lookup, we coded our application in three distinct parts. First ,we create the
object to store the results, then we generate the results and storing them in the object, and finally
report them. Concordia will use the individual parts to schedule execution of our program at the
appropriate locations in the network next.

Now that we have the itsResults object, the SQL query and the reporting, we need only to provide
the "launcher" for the agent. Here we specify the itinerary, codebase, and classes to be used in
constructing the agent, then set its task. First, we create the agent, then create an itinerary to move
it first to a machine specified by host1, then back to another machine specified by host2. The
agentsCodebase and relatedClasses specify the objects containing the methods and data necessary
to complete our task.

public class QueryLauncher {
 public static void main(String args[]) {
 QueryAgent agent = new QueryAgent();
 Itinerary itinerary = new Itinerary();
 String host1 = "pc02.pcnet.mcs.kent.edu";
 String host2 = "vg20.vgnet.mcs.kent.edu";
 itinerary.addDestination(new Destination(host1, "queryDatabase"));
 itinerary.addDestination(new Destination(host2, "reportResults"));
 String agentsCodebase = "file:///C|/Query";
 String relatedClasses[] = {"QueryResult"};
 agent.setItinerary(itinerary);
 agent.setRelatedClasses(relatedClasses);
 agent.setHomeCodebaseURL(agentsCodebase);
 agent.launch();
 }
}

In the above example, the programmer created the Itinerary. When an agent is ready to travel in
the network, it prepares a list of its intended destinations. The agent’s itinerary is used by the
Concordia Server to determine the network destination of the agent. As each method in the
itinerary is completed, the local Concordia Server will move the agent and its objects to node
specified in the next itinerary entry. When the itinerary is exhausted, the agent’s journey is
complete.

Here, the itinerary caused the agent to move to host1 and execute the queryDatabase method, then
to move back to host2 and execute reportResults. The setRelatedClasses and
setHomeCodebaseURL method of agent will cause the QueryResult class definitions and
agentsCodebase to travel with the agent since the agent may use them when it travels.

The agent-based example performs exactly the same function as the client/server version in the
previous example, but with the significant added features of agents.

4.2 Writing Collaborating Agents

The previous examples shows us how to create a simple Concordia Mobile Agent. An even more
powerful feature available with Concordia is collaboration between agents.

4.2.1 Collaborating Agent-based Database Lookup

Let’s consider an SQL query, one which results in a report of the average score for one class. Then
we will consider this for several classes, in this case "class1", "class2", and "class3", with the aim
to determine the class with the highest average score. We will use collaboration to return the
results of the individual queries and also to analyze them by sorting the results.

class QueryResult implements Serializable {
 public String classname;
 public float average;
}

public class QueryAgent extends CollaboratorAgent {
 private String className;
 private AgentGroup itsGroup;
 private FinalResult combinedResult = null;
 public QueryAgent(AgentGroup group, String name) {
 super(group);
 itsGroup = group;
 className = name;
 }

 public void queryDatabase() {
 String url = "jdbc:odbc:foxdatasource";
 String query = "SELECT AVG(average) From FoxDatabase"
 + " WHERE classname =’" + className + "’";
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 Connection con = DriverManager.getConnection(url);
 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery(query);
 rs.next();
 QueryResult result = new QueryResult();
 result.classname = className;
 result.average = rs.getFloat(1);
 combinedResult = (FinalResult)(collaborate(itsGroup, (Object)result));
 }
 public void reportResults() {
 System.out.println("Other classes were");
 for(int i=0; i<combinedResult.others.length; i++) {
 System.out.println("Class Name: " +
 combinedResult.others[i].classname+
 "\tAverage: " + combinedResult.others[i].average);
 }
 System.out.println("\tClassname of Max average: " +
 combinedResult.highest.classname+
 "\tMaximum average: " + combinedResult.highest.average
 }
 }

First, we code the basid SQL queries, assemble their results, then provide them to the
collaboration. Second, we need to provide the collaboration routine, which will analyze the results.
In this case, we will sort the results to determine the highest average. We do this by overriding the
analyzeResults method of the AgentGroupImpl, which will be called only after all members of the
AgentGroup have completed their tasks.

class CollaborationResult {
 public QueryResult highest;
 public QueryResult[] others;
}

class QueryAgentGroup extends AgentGroupImpl {
 protected synchronized Object analyzeResults(Enumeration results) {
 QueryResult highest = null;
 QueryResult[] others = new QueryResult[getGroupSize()-2];
 int i = 0;
 while (results.hasMoreElements()) {
 AgentResult result = (AgentResult)results.nextElement();
 QueryResult query = (QueryResult)result.getResult();
 if (query != null) {

 if (highest == null) {
 highest = query;
 } else if (query.average > highest.average) {
 others[i++] = highest;
 highest = query;
 } else {
 others[i++] = query;
 }
 }
 }
 CollaborationResult result = new CollaborationResult();
 result.highest = highest;
 result.others = others;
 return result;
 }
}

The Concordia collaboration resulted in an enumeration of the results of each QueryAgent,
which was passed to the analyzeResults method While iterating over all the results. Next,
we need a Launcher to launch each QueryAgent. First, we define a group, then we can define
several QueryAgent, as following codes:

 QueryAgentGroup group;
 String host1 = "vg20.vgnet.mcs.kent.edu";
 String host2 = "pc16.pcnet.mcs.kent.edu";
 String relatedClasses[] = {"QueryAgentGroup", "FinalResult", "QueryResult"};
 String codebase = "file:///c|/collaborate";
 QueryAgent agent1 = new QueryAgent(group, "class1");
 Itinerary itinerary1 = new Itinerary();
 itinerary1.addDestination(new Destination(host1, "queryDatabase"));
 agent1.setItinerary(itinerary1);
 agent1.setRelatedClasses(relatedClasses);
 agent1.setHomeCodebaseURL(codebase);
 QueryAgent agent2 = new QueryAgent(group, "class2");
 Itinerary itinerary2 = new Itinerary();
 itinerary2.addDestination(new Destination(host2, "queryDatabase"));
 itinerary2.addDestination(new Destination(host2, "reportResults"));
 agent2.setItinerary(itinerary2);
 agent2.setRelatedClasses(relatedClasses);
 agent2.setHomeCodebaseURL(codebase);
 agent1.launch();
 agent2.launch();

After all QueryAgents are launched, they will travel to each host to perform their tasks
specified in each agent’s Itinerary. After all agents are exhausted, they will come to a
collobaration point to collaborate their results. In this example, we have two agents. Agent1
will move to host1 to query the average score of "Class1". Agent2 will move to host2 to
query the average score of "Class2". Then They will collaborate their results and the final
results will be stored in "combinedResult". Then agent2 will move to host2 to report the final
results, just as defined in its Itinerary. Note that in this example, three classes
"QueryAgentGroup", "FinalResult", "QueryResult" will travel with each agent since each
agent will use them at each host.

5. Critical Analysis of features of Concordia

5.1 Compare Client/Server and Mobile Agents Programming

5.1.1 The Limitations of Client/Server

In distributed applications created with "client/server" programming, an operation is split
into two parts: Client and Server. The Client making requests from a user machine to a
Server which services the requests. A protocol is agreed upon and both the client and server
are programmed to implement it. A network connection is established between them and the
protocol is carried out.

The client/server model works well for certain applications. However it breaks down under
other situations, including highly distributed systems, slow and/or poor quality network
connections, and especially in the face of changing applications.

In a system with a single central server and numerous clients, there is only a problem of
simple scaling. When multiple servers become involved, the scaling problems multiply
rapidly, as each client must manage and maintain connections with the multiple servers.

With client/server comes a need for good quality network connections. First, the client needs
to connect reliably to its server, because only by setting up and maintaining the connection
may it be authenticated and secure. Second, the client needs to be assured of a predictable
response, since its many requests of the server require full round trips to be completed.
Third, it needs good bandwidth, since due to its very nature, client/server must copy data
across the network.

Finally, the protocol which a client and server agree upon is by its very nature specialized
and static. Often, specific procedures on the server are codified in the protocol and become a
part of the interface. Certain classes of data types are bound to these procedures. These
classes are extensible, but only at the high cost of recoding the application, providing for
protocol version compatibility, software upgrade, etc. As the applications grow and the
needs increase, client/server programming rapidly becomes an impediment to change.

5.1.2 Advantage of Mobile Agents Compared to Client/Server Model

Some limitations in Client/Server are overcomed by mobile agents.

With Mobile Agents, every node is a server in the agent network. The agent travels to the
location specified by its Itinerary, then it will perform tasks at each point in its execution. So
the flow of control actually moves across the network, instead of using the request/response
architecture of client/server.

Since each agent moves with necessary information such as Itinerary, relatedClasses,
HomeCodebaseURL, etc., the relationship between users and servers is coded into each
agent instead of being pieced out across clients and servers. In fact, the agent creates the
system, rathe than the network or the system administrators. Server administration becomes
a matter simply of managing systems and monitoring local load.

The problem of robust networks is greatly diminished, for several reasons. The hold time for
connections is reduced to only the time required to move the agent in or out of the machine.
Because the agent carries its own credentials, the connection is simply a conduit, not tied to
user authentication or spoofing. No requests flow across the connection, the agent itself
moves only once. This allows for efficiency and optimization at several levels.

Last and most important, no application-level protocol is created by the use of agents.
Therefore, compatibility is provided for any agent-based application. Complete upward
compatibility becomes the norm rather than a problem to be tackled, and upgrading or
reconfiguring an application may be done without regard to client deployment. Servers can
be upgraded, services moved, load balancing interposed, security policy enforced, without
interruptions or revisions to the network and clients.

5.2 Advantages of Concordia

Since Concordia is written in Java, it has all the advantages Java. It is portable, it runs on
platforms large and small, and integrates easily with existing applications and frameworks.

Concordia agents provide for mobile applications. Agents support mobile computing as well
as off-line processing and disconnected operation. These applications are in turn written with
little or no knowledge of the underlying communications that they will employ. Concordia
both hides the details from the programmer and user, as well as allows the agent to adapt to
its environment and administration.

Concordia agents are secure. Security is an integral part of the Mobile Agent framework,
and it provides for secure communications even over public networks. Agents carry user
credentials with them as they travel, and these credentials are authenticated during execution
at every point in the network. Agents and their data are fully encrypted as they traverse the
network. All this occurs with no programmer intervention.

 Concordia agents are reliable. All Concordia agents are checkpointed before execution by
the Persistence Manager, and they may return to these checkpoints if necessary. Objects the
agents may create are checkpointed as well. Coupled with the services of the Queue
Manager while they are being exchanged across the network, Concordia agents are assured
of reliability at every stage of their operation.

Concordia agents can collaborate. Collaboration provides a number of benefits, such as
enabling parallel operation over multiple server or multiple networks. Using collaboration,
an application can divide a task into subtasks, the subtasks can be carrried out by the
colloboration framework. A decision is made upon the resuls, which can be used to
determine destination, action, or other appropriate behavior.

5.3 Concordia and Java

5.3.1 The advantages of Java

The Java language has a number of advantages that make it particularly appropriatae for
Mobile Agent technology. Java’s main appeal for agents is its portability. Its use of byecodes

and its interpreted execution environment mean that any system with sufficient resources can
host Java programs. A second advantage comes from the ubiquitous nature of Java on the
Internet. Because it is embedded in many Web browsers, as well as application servers, there
are many platforms deployed already. Another major advantage is the proliferation of tools
that support Java programmers. Many programmers are already familiar with C++, which
Java resembles in many ways. Finally, there is the movement of major segments of the
software industry to Java. Not only will Java be here for many years to come, it will be
employed in ever increasing applications.

5.3.1 The Disadvantages of Java

Java has brought about a lot advantages to Concordia, at the same time, Java has brought
about some disadvantages to Concrodia too. Since Concordia uses Java Compiler to compile
its application programs, it lost some flexibilities of its own. Let’s see one simple example as
follows :

 String host = "pc16.pcnet.mcs.kent.edu";
 String method1 = "queryDatabase";
 String method2 = "reportResults";
 itinerary.addDestination(new Destination(host, method1);
 itinerary.addDestination(new Destination(host, method2);

A very interesting thing here is: Concordia uses the String method1 to denote a member
function of the Agent. If there is something wrong with the String such as the method1 is not
a member function of the Agent , the compiler can not detect any compiling error! It is the
programmar’s responsibility to make sure that it is right. It is one main reason why
Concordia codes can easily pass compiling, but it is prone to fail when they are executed. If
Concordia uses compiler of its own, such kind of errors should be easily detected. Another
situation happens when a SQL statement is executed. Only executing the program can the
programmers know the SQL statement is right or wrong. That wastes a lot of time. Since
querying a database and seting itinerary are back and bone of Concordia, when a large
amount of complicated tasks need to be performed, it is very difficult for the programmers to
make sure that the program can work or can not.

6. Conclusion

Concordia offers a complete frame work for the development and management of
network-efficient mobile agent applications. The design goals of Concordia have centered
on providing support for flexible agent mobility, agent collaboration, agent persistence,
reliable agent transmission, and agent security.

Concordia’s agent mobility mechanism extends beyond the functionality found in current
Java-based agent systems by offering a flexible scheme for dynamic invocation of arbitrary
method entry points within a common agent application. The Concordia framework offers
support for agent interaction via the notion of agent collaboration, which allows agents to
interact, modify external states, as well as internal agent states.

Through the use of proxies and object persistence, Concordia provides a highly robust
environment where applications can gracefully recover from system or network failures.
Using a transactional message queuing system, Concordia provides for reliable network
transmission of agents even over unreliable network connections.

The infrastructure provided by Concordia extends the standard security mechanisms of the
Java language to provide an identity-based system where the right given to an agent are
determined from the identity of the user who launched the agent. Concordia also protects an
agent and the information it carries from tampering when stored on disk or when transmitted
over a network connection.

Mobile agents programming has many advantages. Mobile agents facilitates high quality,
high performance, economical mobile applications. They enable use of portable, low-cost,
personal communications devices. They permit secure Intranet-style communications on
public networks. They efficiently and economically use low bandwidth, high latency, error
prone communications channels

7. References

[1] Aglets: Mobile Java Agents, IBM Tokyo Research Lab,
URL=http://www.ibm.co.jp/trl/projects/aglets
[2] D. T. Chang, D. B. Lange, "Programming Mobile Agents in Java"
URL=http://www.trl.ibm.co.jp/aglets/
[3] Security and Reliability inConcordia, Mitsubishi Eletric ITA,
URL=http://www.meitca.com/HSL/Projects/Concordia
[4] Concordia: An Infrastructure for Collaborating Mobile Agents, Mitsubishi Eletric ITA,
URL=http://www.meitca.com/HSL/Projects/Concordia
[5] Concordia as Enabling Technology for Cooperative Information Gathering, Mitsubishi
Eletric ITA, URL=http://www.meitca.com/HSL/Projects/Concordia
[6] D. T. Chang, D. B. Lange, "Mobile Agents: A New Paradigm for Distributed Object
Computing on the WWW", In Proceedings of the OOPSLA96 Workshop: Toward the
Integration of WWW and Distributed Object Technology, October 1996.
[7] D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, "Itinerant Agents for Mobile
Computing", IEEE Personal Communications Magazine, 2(5), October 1995.
[8] D.S. Milojicic, M. Condict, F. Reynolds, D. Bolinger, and P. Date, "Mobile Objects and
Agents"
[9] "Object Serialization for Java", Javasoft Corporation,
URL=http://chatsubo.javasoft.com/current/serial/index.html
[10] "Remote Method Invocation for Java", Javasoft Corporation,
URL=http://chatsubo.javasoft.com/current/rmi/index.html
[11] T. Walsh, N. Paciorek, D. Wong, "Security and Reliability in Concordia™", In
Proceedings of the 31st Annual Hawaii International Conference on System Sciences
(HICSS31), Kohala Coast, Big Island, Hawaii, January 1998.
[12] D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young, B. Peet, "Concordia: An
Infrastructure for Collaborating Mobile Agents", In Mobile Agents: First International
Workshop, Lecture Notes in Computer Science, Vol. 1219, Springer-Verlag, Berlin,
Germany, 1997.

