
Algorithmic Aspects of
Topology Control Problems

for Ad hoc Networks

R. Liu & E. L. Lloyd
University of Delaware

M. V. Marathe
Los Alamos National Laboratory

R. Ramanathan
BBN, Cambridge, MA

S. S. Ravi
University at Albany - SUNY

Conference: ACM MobiHoc, June 2002.

1



Topology Control

� Assign powers to the nodes of an ad hoc
network so as to induce a graph with ap-
propriate properties (e.g. induced graph
is connected).

� Battery power is a precious resource.

� Two objectives: Minimizing maximum power
and minimizing total power.

Power Threshold Values

� Power threshold p(x; y): Minimum trans-
mission power to be assigned to x so
that a signal from x can reach y.

� Assumed to be symmetric; i.e., for all
nodes x and y, p(x; y) = p(y; x).
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Graph from Power Assignment

� Model used in [Ramanathan & Rosales-
Hain, 2000].

� First, construct the directed graph (using
the radio propagation model): Add di-
rected edge (x; y) if the power assigned
to x is at least p(x; y).

� For each pair of nodes u and v, if both
(u; v) and (v; u) are present, then replace
them by the undirected edge fu; vg.

� Delete all of the remaining directed edges.

� Two way communication model.

� The directed graph model can also be
used.
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Problem Formulation and Notation

� A topology control problem is specified
by a triple hM , P , O i.

– M 2 fDIR, UNDIRg represents the graph
model.

– P represents the desired graph
property.

– O 2 fMAX P, TOTPg represents the min-
imization objective (Max Power or
Total Power).

Example: hUNDIR, 1-NC, MAX Pi

Interpretation: Assign powers so that result-
ing undirected graph is connected and the
maximum power assigned to nodes is min-
imized.
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Summary of Previous Work

� Minimizing Max Power [Ramanathan &
Rosales-Hain, 2000]

– Model for topology control problems.
– Algorithms for hUNDIR, 1-NC, MAX Pi

and hUNDIR, 2-NC, MAX Pi.
– Heuristics for distributed versions.

� Minimizing Total Power

– NP-completeness of hUNDIR, 1-NC, TOTPi
[Chen & Huang, 1989].

– NP-completeness of hUNDIR, 1-NC, TOTPi
for points in 2D space [Clementi et al,
1997].

– 2-approximation for hUNDIR, 1-NC, TOTPi
[Chen & Huang, 1989, Kirousis et al,
1997].
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Main Contributions

� A general approach leading to a polyno-
mial algorithm for minimizing maximum
power for monotone graph properties.

� NP-completeness results showing the ne-
cessity of monotone properties.

� A general approach leading to an approx-
imation algorithm for minimizing the total
power for some monotone properties.

– A new approximation algorithm for the
problem of minimizing the total power
for inducing a 2-node-connected graph.

� Empirical results showing the performance
of the algorithm.
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Monotone Graph Property

� Property unaffected by the addition of edges
to the induced graph.

� Allows us to increase powers of nodes
without affecting the property.

Examples:

� Monotone:

– Connectedness.
– Diameter � k.

� Not monotone:

– Acyclicity.
– Max node degree � d.

7



Algorithm for Minimizing
Maximum Power

Main Ideas:

1. There is an optimal solution in which each
node is assigned the same power.
(Reason: Monotonicity of P .)

2. For a system with n nodes, the number
of candidate solution values is O(n2).

3. Binary search over the candidate solu-
tion values – O(logn) calls to the algo-
rithm for testing property P suffice.

Other Results for Minimizing M AXP

� If P is not monotone, then minimizing max-
imum power is NP-complete.

� Minimizing the number of nodes with max-
imum power is NP-complete even for mono-
tone properties.
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General Heuristic for Total Power

Assumptions: Property P monotone and
efficiently testable; power thresholds are sym-
metric.

Outline:

1. Construct complete graphGc(V;Ec), where
each edge fx; yg has weight w(x; y) =
p(x; y) (power threshold).

2. Construct an edge subgraph G0(V;E0) of
Gc so that G0 satisfies P and the total
weight of edges inE0 is minimum or near-
minimum.

3. For each node x, power(x) is given by

Maxfw(x; y) : fx; yg is an edge in G0g.

Note: Step 2 depends on P .
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Examples from the General Outline

Ex 1: Approximating hUNDIR, 1-NC, TOTPi

� In Step 2, construct a minimum spanning
tree for Gc [Kirousis et al, 1997].

Ex 2: Approximating hUNDIR, 2-NC, TOTPi:

� In Step 2, use the heuristic for minimum
weight 2-NC subgraph from [Khuller &
Raghavachari,1996].
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Experimental Results

� Results are for hUNDIR, 2-NC, TOTPi.

� Experimental setup similar to that discussed
in [Ramanathan & Rosales-Hain, 2000].

� Comparison with the results for
hUNDIR, 2-NC, MAX Pi from [RR, 2000].

� Both uniform node density and skewed
node density were considered.
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Uniform Node Density
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Power vs Node Density

� Average power less than that of [RR, 2000]
by 5% to 15%.

� Maximum power is 14% to 31% larger.
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Uniform Node Density (continued)
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Degree vs Node density

� Average node degree consistently smaller
than [RR, 2000].
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Skewed Node Density
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Power vs Node density

� Average power less than that of [RR, 2000]
by 6% to 14%.

� Maximum power is 12% to 20% larger.
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Skewed Node Density (continued)
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Degree vs Node density

� Average node degree consistently smaller.
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Additional Recent Results

� Approximation algorithm for minimizing
total power for inducing a network of small
diameter.

� An O(logn) approximation algorithm for
minimizing the total power for inducing
a connected network under asymmetric
power threshold values.
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