Secure Medical Data Visualization over Cloud

Pradeep K. Atrey University of Winnipeg, Canada <u>p.atrey@uwinnipeg.ca</u> www.acs.uwinnipeg.ca/pkatrey/

Winnipeg

Security and Privacy Issues in Multimedia Systems

Social Networks Source: Youtube

Clerk fined for 'death watch'

A medical office clerk has been fined \$10,000 for repeatedly accessing the private records of the cancer-stricken wife of a man with whom she was having an affair.

BY THE CALGARY HERALD APRIL 14, 2007

Source: http://www.canada.com/story.html?id=3dda9b24-25ba-4ce1-b717-64588079b2e4

Video surveillance

Source: http://www.peripatetic.us/classes/SP08/time/ surveil.htm

A Secure and Privacy-aware Cloud-based Architecture for Social Networks

Targeted toward Untrusted Social Networking Operators

Developed a secret sharing based framework

V:_mqUC@2ab=[AP}PAhrSOBH(('m?) j:L3g(caWX/hz'NR/kDnpwh'ph2HZDJ)oF1A%ijRJ1 4/anjO:j:n-cZ:U]cangk0anana4.ZaaaaaaaAak4sZaaaaaaa PQ1+CSdm#PPu1?@~'dGQn Okaaaaaaaaaaaaaaaa jpaaaaa2jaaaaaaaaaa(*#5s-aaaaaa0:5017'dE]-1 B<@fSPcaaak0daaaaa,ZaaaaaaR4sZaaaaaaaaaaaa%i @:]---

Privacy in Video Surveillance

• Anonymous surveillance (Remote CCTV monitoring)

M. Saini, P. K. Atrey, S. Mehrota and M. S. Kankanhalli. Anonymous surveillance. IEEE ICME Workshop on Advances in Automated Multimedia Surveillance of Public Safety (AAMS-PS'2011), July 2011, Barcelona, Spain.

Secure Medical Data Visualization over Cloud

Pradeep K. Atrey University of Winnipeg, Canada <u>p.atrey@uwinnipeg.ca</u> www.acs.uwinnipeg.ca/pkatrey/

Collaborators

&

Manoranjan Mohanty

Wei Tsang Ooi

Outline

- Introduction and motivation
- Background and related work
- Proposed framework
- Experiments, results and analysis
- Conclusion and future work

Outline

- Introduction and motivation
- Background and related work
- Proposed framework
- Experiments, results and analysis
- Conclusion and future work

Shortage of Medical Experts

Region	(2006 census)	
Southern Ontario	27,560	
Southern Quebec	18,545	
Southern British Columbia	9,625	
Southern Alberta	7,250	
Nova Scotia	2,480	
Southern Manitoba	2,405	
Southern Saskatchewan	1,965	
New Brunswick	1,430	
Northern Ontario	1,275	
Southern Newfoundland and Labrador	1,270	
Northern Quebec	730	
Northern British Columbia	420	
Northern Alberta	345	
Prince Edward Island	215	
Yukon	115	
Northern Manitoba	105	
Northwest Territories	65	
Northern Newfoundland and Labrador	20	
Nunavut	15	
Northern Saskatchewan	10	

Northern Canada 📃 Southern Canada

http://www.centreforthenorth.ca/blogs/herethenorth/somebodycalladoctor

Remote Medical Services

http://www.centreforthenorth.ca/blogs/herethenorth/somebodycalladoctor http://www.amiconnecticut.com/images/ProstateMRI.JPG Introduction and motivation

Medical Outsourcing

http://www.offshoremedicalbilling.com/images/trends1.gif

Introduction and motivation

Outline

- Introduction and motivation
- Background and related work
- Proposed framework
- Experiments, results and analysis
- Conclusion and future work

Background and related work

Remote visualization: Client-server

approach

Background and related work

💆 THE UNIVERSITY OF WINNIPEG

Two Choices for Rendering: Client-side Rendering

Client

- Low visualization latency
- Low quality image

Background and related work

💆 THE UNIVERSITY OF WINNIPEG

Two Choices for Rendering: Server-side Rendering

Server-side Rendering: Observations

Cloud-based Rendering Framework

Cloud-based Rendering: Past Work

Security and Privacy Concerns

 How many of you would mind if your medical image data is available to an adversary?

• Who can be an adversary?

http://greenberg-art.com/.Toons/ Toons,%20social/ qqxsgMedical%20privacy.gif

What to do?

How to perform secure medical data visualization over cloud?

Outline

- Introduction and motivation
- Background and related work
- Proposed framework
- Experiments, results and analysis
- Conclusion and future work

Research Goal and Contribution

- Goal:
 - To address the security issue in cloud-based 3D medical data visualization
- Contribution:
 - A secure cloud-based medical data visualization framework that integrates cryptographic secret sharing scheme into 3D data rendering pipeline

Shamir's Secret Sharing

- Suppose we want to use (k,n) threshold scheme to share our secret S where k < n
- Choose at random (k-1) coefficients a₁, a₂,..., a_{k-1} and let S be the a₀

$$\begin{array}{l} f(x) = a_0 + a_1 x + a_2 x^2 + \dots \\ + a_{k-1} x^{k-1} \, mod \, p \end{array}$$

Construct *n* shares (*i*, *f*(*i*)) where *i* = 1, 2,..., *n*.

Breaking the secret into n shares

Shamir's Secret Sharing (Cont...)

 Given any subset of k of these pairs, we can find the coefficients of the polynomial by Lagrange interpolation, and then evaluate a₀ = S, which is the secret.

Proposed framework

Secret Sharing holds homomorphism property on binary addition and scalar multiplication which allows multiple secrets to be combined by direct computation on the shares.

Cloud-based Secure Rendering: Goal

• To hide critical color coded information of medical image from cloud data centers.

Original image

Color transformed images

Cloud-based Secured Rendering (CSR)

- Observation: data rendering must be integrated into Shamir's Secret Sharing.
- We propose secure volume ray casting by integrating one of the popular 3D data rendering technique, i.e. *preclassification volume ray-casting*, into secret sharing.

Proposed framework

Pre-classification Volume Ray-casting: Pipeline

Secure Volume Ray-casting: Challenges

- Challenge 1: Interpolation and composition consists of real number arithmetic operations and Shamir's secret sharing is not compatible with real number
- Solution: Modify pre-classification volume ray-casting to make it compatible with Shamir's secret sharing.
- Challenge 2: Which preprocessed information to secret share so that each share voxel grid is render-able and rendering can also be accelerated.
- Solution: Secret share preprocessed data (each RGB component) of pre ray-projection step into *n* number of shares. Opacity value is not shared.

Modification of pre-classification volume ray-casting

- **Goal:** Modify ray-casting so that Shamir's secret sharing is applicable to it.
- Solution:
 - Convert the real data used in interpolation to integer by rounding it off by *d* decimal places and multiplying 10^{d} to the rounded off value.
 - Convert the real data used in composition to integer by rounding it off by f decimal places and multiplying 10^{f} to the rounded off value.
 - In secret sharing, use a prime number that is greater than 255 X 10^{d+f}
- Is this scheme lossless?
- $C_r(X, V) = C(X, V) + E^{tot}(C(X, V), d, f)$. where, $E^{tot}(C(X, V), d, f)$. f) is the error in rendered color.

Cloud-based Secured Rendering (CSR)

• Information theoretically secured

• High data overhead

✓ Client needs 3kb+8 number of bits to reconstruct color of one pixel (where, *b* is no of bits required by one color component of one pixel of a shared image)

✓ For an acceptable image quality: Total data size *five* times more

than the data size of conventional rendering.

• CSR need to be optimized

Proposed framework

Optimization 1: CSR-RGB

Optimization 2: LW-CSR-RGB

- An alternate way of integrating secret sharing with preclassification volume ray-casting
 - Modify Shamir's secret sharing by excluding modular prime operation
 - Pre-classification volume ray-casting is not modified
- Use (k, k+1) secret sharing method
- Restrict the value of *x* to restrict the pixel value of a share image
- Convert real value of rendered color component to integer by rounding it off by *e* decimal places and multiplying *10^e* to the rounded off value

Optimization 2: LW-CSR-RGB

- Requires 35% less no of bits than CSR-RGB
- Is it as secure as CSR / CSR-RGB ?
- No. It does not use modular prime operation

Outline

- Introduction and motivation
- Background and related work
- Proposed framework
- Experiments, results and analysis
- Conclusion and future work

Experimental Setup

- Hardware
 - Server, Cloud data center, and Client simulated in a note book powered by:
 - Intel Core 2 Duo 2.00 GHz processor
 - 4 GB of RAM
 - Mobile Intel 965 Express Chipset Family display adapter

• Software

- Customized VTK 5.8.0 visualization package that has:
 - Pre-classification volume ray-casting
 - Integrated (3,5) Secret Sharing for CSR, CRS-RGB and (3,4) secret sharing for LW-CSR-RGB.

Data Set

	Dimension	Size	
Head	256 X 256 X 124	7.8 MB	
Foot	256 X 256 X 256	16 MB	CORES.
Iron port	68 X 68 X 68	307.3 KB	3
Bucky	32 x 32 X 32	32.2 KB	

Results: Single view point

Results: Single view point

Experiments, results and analysis

Results: Multi view point

Demo

Head MRI volume data

Rendered Image (Secret Image) Conventional Server-Side Renderina Share Image Rendered in a Data Center Cloud-based Secure Rendering

Image Reconstructed at Client

Foot volume data

Rendered Image (Secret Image) Conventional Server-Side Rendering

Analysis

We performed:

- ✓ Security Analysis.
- ✓ Privacy Analysis.
- ✓ Error Analysis.
- ✓ Performance Analysis.
- ✓ Latency Analysis.
 - n: total number of available data centers.
 - **k**: minimum no of data centers required by client

Security Analysis

- Information theoretical security:
 - CSR is information theoretically secured Use of a higher prime number does not affect.
 - CSR-RGB and LW-CSR-RGB are information theoretically secured with some information loss For LW-CSR-RGB with k = 3, the probability of an adversary being able to infer a secret pixel: 1 / 1648020.
- Perseverance of data integrity:
 - ✓ CSR and CSR-RGB preserve data integrity with probability $\omega_i = 1$ $h_a * g_i^n$, where, g_i is the probability that adversary is able to tamper medical data of a single cloud data center and h_a is the probability that all tampering are equivalent and homomorphic to secret sharing.
 - ✓ LW-CSR-RGB preserve data integrity with probability $\omega_i^{\ \prime} = 1 h_a^{\ \ast} g_i^{k+1}$.
 - $\checkmark \text{ If } n = k \text{, then } \omega_i = \omega_i' = 1 g_i$

Security Analysis Cont.

Perseverance of data recoverability:

- ✓ CSR and CSR-RGB preserve data recoverability with probability $\omega_r = 1 g_r^{n-k+1}$, where, g_r is the probability that a cloud data center is unable to send its share image to client.
- ✓ *LW-CSR-RGB* preserve data recoverability with probability $\omega_r^{I} = 1 g_r^2$.
- Perseverance of data confidentiality:
 - ✓ CSR, CSR-RGB, and LW-CSR-RGB preserve data confidentiality with probability $\omega_c = 1 g_c^k$, where, g_c is the probability that adversary is able to read medical data of one cloud data center.

Experiments, results and analysis

Security Analysis Cont.

 $n = 12, g_c = 0.2, g_i = 0.15, g_r = 0.3, \text{ and } h_a = 1$

Effect of *k* on overall security.

Privacy Analysis

- Privacy loss of a patient \(\Gamma = \Gamma_i * \Gamma_d\), where, \(\Gamma_i\) is degree of identity loss and \(\Gamma_i\) is degree of loss of disease information.
- ✤ CSR, CSR-RGB, and LW-CSR-RGB minimize Γ by:
 - ✓ not disclosing the explicit identity (I_{who} information) of a patient (minimization of Γ_i) to cloud data center.
 - ✓ not disclosing the disease information of a patient to cloud data center (minimization of Γ_d).

Experiments, results and analysis

Error Analysis

Error introduced by CSR and CSR-RGB

👿 THE UNIVERSITY OF WINNIPEG

Experiments, results and analysis

Error Analysis

where, t_i is the interpolating factor of ith share image.

📆 THE UNIVERSITY OF WINNIPEG

Performance Analysis

- Computation steps :
 - Creation of shares from secret (performed by server as preprocessing step)
 - Ray-casting of shares (Similar to normal non-secure raycasting)
- Overhead
 - **Two types:** data overhead and computational overhead
 - Both independent of dimension and size of volume data
 - Both overheads proportional to dimension of image space

Experiments, results and analysis

Performance Analysis: Computational Overhead

✓ Performed on *512 X 512* image space

Performance Analysis: Data Overhead

57

Latency Analysis: Unlimited bandwidth

Visualization latencies of *Conventional Server-side Rendering*, *Cloud-based Rendering* (DC_{Unsecured}), and *Secure Cloud-based Rendering* (DC_{Secured}).

Outline

- Introduction and motivation
- Background and related work
- Proposed framework
- Experiments, results and analysis
- Conclusion and future work

Conclusion

Proposed cloud-based rendering framework is information theoretically secure in a group of data centers and presents minimal computation and data overhead

http://www.writeawriting.com/wpcontent/uploads/2011/12/Definition-of-a-Conclusion.jpg

The broader picture !

Work done!

Center

M. Mohanty, P. K. Atrey and W.-T. Ooi. Secure cloud-based medical data visualization. The ACM International Conference on Multimedia (ACMMM'12), October 29-November 2, 2012, Nara, Japan.

On-going Research

