Secure Multimedia Processing over Cloud

Pradeep K. Atrey University of Winnipeg, Canada <u>p.atrey@uwinnipeg.ca</u> www.acs.uwinnipeg.ca/pkatrey/

Winnipeg

Winnipeg Summer

Winnipeg Winter

Acknowledgement

• This research is partly supported by

Natural Sciences and Engineering Research Council of Canada

Conseil de recherches en sciences naturelles et en génie du Canada

Other Contributors

Manoranjan Mohanty

Wei Tsang Ooi

Ankita Lathey

Nishant Joshi

THE UNIVERSITY OF WINNIPEG

Cloud-based Multimedia Computing

- Very popular these days
- Companies Offering 2D Imaging

 AT&T, Dell, Intel etc.
- Companies Offering 3D Imaging
 - Microsoft, KDDI, Sinha Systems etc.

Image source:

http://www.msimaging.com/Content/themes/MSI/im ages/cloud-based-software-image-silo-cloud-file.jpg

2D Image Visualization

3D Image Visualization

Image Zooming and Cropping

Security and Privacy Challenges in Cloudbased Storage and Processing

- How many of you mind if your medical image is available to an adversary?
- What can an adversary do with an image?

Image source: http://greenberg-art.com/.Toons/ Toons,%20social/ qqxsgMedical%20privacy.gif

Rest of the talk

- Introduction and Motivation
- Addressing the Challenges
 - Finding a Cryptosystem
 - Using Real Numbers in a Cryptosystem
- Three Frameworks
 - Secure Cloud-based Image Scaling/Cropping
 - Secure Cloud-based Pre-classification Volume Raycasting
 - Secure Cloud-based Surveillance Video Enhancement
- Conclusions

Addressing the Challenges

💆 THE UNIVERSITY OF WINNIPEG

Security and Privacy Challenges: Secure Storage over Cloud

Smoking is not good for health

Encryption techniques – Watermarking – Secret sharing

Addressing the Challenges

Security and Privacy Challenges: Insecure Processing over Cloud

Smoking is not good for health

Introduction and Motivation

Security and Privacy Challenges: Secure Processing over Cloud

Smoking is not good for health

Still to be addressed

Our Objective: Secure Cloud-based Multimedia Processing

- Confidentiality
- Integrity
- Availability
- Privacy

Smoking is not good for health

💆 THE UNIVERSITY OF WINNIPEG

Our Objective: Secure Cloud-based Multimedia Processing

- Confidentiality
- Integrity
- Availability
- Privacy
- Computational Efficiency
- Bandwidth Efficiency
- High Quality Image

Smoking is not good for health

Technical Challenges

- Finding a Cryptosystem
 - Fully homomorphic cryptosystem is not practical
 E(A) + E(B) = E(A+B)
 - Somewhat homomorphic cryptosystem cannot hide all information

Technical Challenges

- Finding a Cryptosystem
 - Fully homomorphic cryptosystem is not practical
 E(A) + E(B) = E(A+B)
 - Somewhat homomorphic cryptosystem cannot hide all information
- Using Real Numbers in a Cryptosystem
 - Modular prime operation of a cryptosystem is not compatible with real number operations of a data/image processing algorithm

Rest of the talk

- Introduction
- Addressing the Challenges
 - Finding a Cryptosystem
 - Using Real Numbers in a Cryptosystem
- Three Frameworks
 - Secure Cloud-based Image Scaling/Cropping
 - Secure Cloud-based Pre-classification Volume Raycasting
 - Secure Cloud-based Surveillance Video Quality Enhancement
- Conclusions

💆 THE UNIVERSITY OF WINNIPEG

Finding a Cryptosystem

- Key Observations
 - Shamir's (k,n) Secret Sharing (SSS) or (l,k,n) Multi-Secret Sharing (MSS) can be used as principal cryptosystem
 - Other cryptosystems can be used to support operations that are not supported by SSS and MSS

Finding a Cryptosystem

• Review of (k, n) SSS

Breaking the secret into n shares

Finding a Cryptosystem

• Review of (k, n) SSS

Reconstructing the secret using $k \leq n$ shares

Finding a Cryptosystem

• Review of (*I*, *k*, *n*) MSS

$\frac{\text{Sharing a Secret}}{F(x) = \left(\sum_{i=0}^{l-1} s_i x^i + \sum_{i=l}^{k-1} a_i x^i\right) \mod q}$ \downarrow $i^{th} \text{Secret}}$

Rest of the talk

- Introduction
- Addressing the Challenges
 - Finding a Cryptosystem
 - Using Real Numbers in a Cryptosystem
- Three Frameworks
 - Secure Cloud-based Image Scaling/Cropping
 - Secure Cloud-based Pre-classification Volume Raycasting
 - Secure Cloud-based Surveillance Video Quality
 Enhancement
- Conclusions

Using Real Numbers in a Cryptosystem

- Excluding Modular Prime Operation from the Cryptosystem
 - Example: Shamir's secret sharing

$$F(x) = S + \sum_{i=1}^{k-1} a_i x^i$$

Side Effect: Degradation of Security
 ✓ For (2, n) Shamir's secret sharing, the probability of finding the secret from *F(x_i)* is:
 With mod *q*: 1/*q* Without mod q: *INT(x_i / F(x_i))*

Using Real Numbers in a Cryptosystem

• Modifying Real number to an Integer

Using Real Numbers in a Cryptosystem

• Modifying Real number to an Integer

Side Effect: Roundoff Error
 ✓ Is bounded by ± (5 × 10^{-(d+1)})
 ✓ Expands with addition and scalar multiplication

Rest of the talk

- Introduction and Motivation
- Addressing the Challenges
 - Finding a Cryptosystem
 - Using Real Numbers in a Cryptosystem
- Three Frameworks
 - Secure Cloud-based Image Scaling/Cropping
 - Secure Cloud-based Pre-classification Volume Raycasting
 - Secure Cloud-based Surveillance Video Enhancement
- Conclusions

- Why scaling/cropping in data centers?
 - Streaming a large image
 - Downloading a large image (e.g. histopathology image that can be 40 GB in size 80000 × 80000 in dimension) is not feasible
 - Previewing an image before viewing
- Why dynamic scaling/cropping on shadow (or hidden) images?
 - Pre-cropping required additional data to be sent
 - Pre-scaling cannot ensure step-less zooming

M. Mohanty, W.-T. Ooi and P. K. Atrey. Scale me, crop me, know me not: Supporting scaling and cropping in secret image sharing. *IEEE International Conference on Multimedia and Expo (ICME'2013)*, July 15-19, 2013, San Jose, CA, USA.

• Architecture and Workflow

- Proposed Secret Image Sharing Scheme
 - Inter-pixel correlation is hidden by using a set of random numbers as coefficient in the secret sharing polynomial
 - (3*,k,n*) MSS

$$H(x) = \left(R + Gx + Bx^2 + \sum_{i=3}^{k-1} a_i x^i\right) \mod q$$

- Experiments
 - Server, datacenters, and user are simulated in a PC
 - Two test images
 - ✓ A histopathology image (size 5.2 MB, dimension: 2756 × 3663)
 - ✓The Lena Image (size 205.5 KB, dimension: 512 × 512)

• Results: Scaling

Recovered Zoomed Image

• Results: Cropping

Image

Secure Cloud-based Image Scaling/Cropping

- Security Analysis
 - Confidentiality
 - ✓ Perceptual security
 - ✓ Multi-secret sharing is not perfectly secure

Secure Cloud-based Image Scaling/Cropping

• Security Analysis

Integrity \checkmark if n > k, then ${}^{n}C_{k}$ ways to reconstruct an image

Corrupted shadow image(s) implies different reconstructed images

Secure Cloud-based Image Scaling/Cropping

• Performance Analysis

Data Overhead

✓ $\frac{bk-24}{24}$ times more than the conventional streaming, where *b* is the number of bits required to represent *q* ✓ For *d* = 2 and *k* = 4, 1.5 times more than the conventional

Computational Overhead

✓ For a PC with Intel Core 2 Quad 2.83 Ghz processor and 4GB of RAM, approximately 76.35 ms is required to recover a 512 × 512 secret image (0.3 µs per pixel)

Rest of the talk

- Introduction
- Addressing the Challenges
 - Finding a Cryptosystem
 - Using Real Numbers in a Cryptosystem
- Three Frameworks
 - Secure Cloud-based Image Scaling/Cropping
 - Secure Cloud-based Pre-classification Volume Ray-casting
 - Secure Cloud-based Surveillance Video Enhancement
- Conclusions

Pre-classification Volume Ray-casting Architecture and Workflow

M. Mohanty, P. K. Atrey and W.-T. Ooi. Secure cloud-based medical data visualization. *The ACM International Conference on Multimedia (ACMMM'12)*, October 29-November 2, 2012, Nara, Japan.

Pre-classification Volume Ray-casting

• Review: Pre-classification Volume Ray-casting

Pre-classification Volume Ray-casting

• Review: Pre-classification Volume Ray-casting

Pre-classification Volume Ray-casting

Review: Pre-classification Volume Ray-casting

- Securing Post Ray-projection
 - Hiding computation on colors

Original

Hidden Color

Not hiding computation on opacities

Pre-classification Volume Ray-casting

- Experiment
 - Server, Datacenters, and Client are simulated in a PC
 - Customized VTK 5.8.0

✓ Pre-classification volume ray-casting

✓ Integrated (3,5) Secret Sharing

Pre-classification Volume Ray-casting

• Data Set

	Dimension	Size	
Head	256 X 256 X 124	7.8 MB	
Foot	256 X 256 X 256	16 MB	CONS.
Iron port	68 X 68 X 68	307.3 KB	3
Bucky	32 x 32 X 32	32.2 KB	

• Results: Single View Point

• Results: Single View Point

• Results: Multiple View Point

Rendered Image (Secret Image) Conventional Server-Side Rendering

Head MRI volume data

Share Image Rendered in a Data Center Cloud-based Secure Rendering

Image Reconstructed at Client

Foot volume data

Rendered Image (Secret Image) Conventional Server-Side Rendering

Rest of the talk

- Introduction
- Addressing the Challenges
 - Finding a Cryptosystem
 - Using Real Numbers in a Cryptosystem
- Three Frameworks
 - Secure Cloud-based Image Scaling/Cropping
 - Secure Cloud-based Pre-classification Volume Raycasting
 - Secure Cloud-based Surveillance Video Quality Enhancement
- Conclusions

Video Quality Enhancement Framework

Encrypted-domain Video Quality Enhancement over Cloud

Architecture and Workflow

A. Lathey, P. K. Atrey and N. Joshi. Homomorphic low pass filtering on encrypted multimedia over cloud. *IEEE International Conference on Semantic Computing (ICSC'2013)*, September 2013, Irvine, CA, USA.

THE UNIVERSITY OF WINNIPEG

THE PROBLEM:

Non-terminating averaged value

SOLUTION BASED ON PREVIOUS METHOD

Multiply each pixel intensity value by a factor of 10^d , where d depends upon the precision of the desired decimal digits up to which we want to process the real numbers. The prime number should always be chosen as greater than (255+51×10^d) ×10^d

APPLIED TO THE PROBLEM:

PROPOSED SOLUTION:

pre-process the image data in such a way that averaging is performed on completely divisible values only.

Encrypted-domain Video Quality Enhancement over Cloud

Scheme I: Multiplying each original intensity value by the mask size, $(m \times n)$. In other words, convert each pixel l(u,v) to a multiple of $(m \times n)$ by,

$$I^{'}(u,v) = I(u,v) \times (m \times n)$$

Scheme II: Changing each original intensity value to the nearest multiple of $(m \times n)$ by adding or subtracting a maximum of values to or from its current value, where the range of lies between 1 and Γ m-n/2 \square . In other words, convert each pixel I(u, v) to a multiple of $(m \times n)$ by,

$$I'(u,v) = I(u,v) \pm \Delta$$

Video Quality Enhancement Framework

💆 THE UNIVERSITY OF WINNIPEG

Encrypted-domain Video Quality Enhancement over Cloud

• Results – Scheme 1

http://www.youtube.com/watch?v=hJg67v3IbmU&feature=youtu.be

Video Quality Enhancement Framework

💆 THE UNIVERSITY OF WINNIPEG

Encrypted-domain Video Quality Enhancement over Cloud

• Results – Scheme 2

and when any second stand of the paper of the second s	
Go Cell Tuch Debug Dealton Window Help	
BOOR BE MARK NICE OF BELLEN MARKE	A
+ + + + + + + + + + + + + + + + + + + +	
(Kun wad prop. 2 m (51))	
11.4 March 1997 1997 1997 1997 1997 1997 1997 199	
ALL CONTRACTOR OF A DESCRIPTION OF A DES	
a an array of filenance that make up the image requests	
<pre>der = fullfile("Cl\", "Deere", Windowsty, "Minimetics", "Minimetics</pre>	
ms = {dxr9stput.nams}*/	
es = sums1(fileNemes);	
11.20,1.19,1.10,3.91,1.59,2.01,1.00,1.00,1.59,1.20,2.01,1.06,1.55	
	179688.0.042969.0.018531.0.062500.0.019531.0.019131.0.625000.0.079125.0.117 1 9468.0.042969.0.019531.0.062500.0.019531.0.119411.0.425000.0.079125.0.117
	1. 5. 51. 5. 79. 1. 41. 1. 51. 1. 10. F 39. 1. 21. 1. 49. 2. 21. 2. 59. 1. 18. 2. 21. 1. 18. 1. 21. 1. 18.
· LimitTranes	
aread (fileWames(p)) /	
II by (]_i (T	
(1); (19139(1,2)	
291.este(1,2)	
68 416,33>250	
\$(1,2)=250)	
HE ALL THE REAL PROPERTY AND A REAL PROPERTY A	

http://www.youtube.com/watch?v=TqRHJ6KrZY0&feature=youtu.be

Conclusions

- Addressed incompatibility of a cryptosystem with real number
- Proposed three frameworks using Shamir's secret sharing as principal cryptosystem
- More secure cloud-based systems can be built using somewhat homomorphic cryptosystems

Publications

- A. Lathey, P. K. Atrey and N. Joshi. Homomorphic low pass filtering on encrypted multimedia over cloud. *IEEE International Conference* on Semantic Computing (ICSC'2013), September 2013, Irvine, CA, USA.
- M. Mohanty, W.-T. Ooi and P. K. Atrey. Scale me, crop me, know me not: Supporting scaling and cropping in secret image sharing. *IEEE International Conference on Multimedia and Expo (ICME'2013)*, July 15-19, 2013, San Jose, CA, USA.
- M. Mohanty, P. K. Atrey and W.-T. Ooi. Secure cloud-based medical data visualization. The ACM International Conference on Multimedia (ACMMM'12), October 29-November 2, 2012, Nara, Japan.

What Next?

- This is not the end of the world.
- Need to examine the suitability of the proposed frameworks in other cloud-based applications such as:
 - Scaling/cropping on compressed images/videos
 - Compression in encrypted domain
 - Processing other media e.g. text documents and audio