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Abstract

With the successful development of efficient and scalable algorithms for mining frequent
itemsets and sequences, it is natural to extend the scope of study to a more general structured
pattern mining problem: mining frequent subgraph patterns. There are many applications in
chemistry, biology, computer networks, and World-Wide Web that require mining such pat-
terns. In this paper we investigate new approaches for frequent graph-based pattern mining in
graph datasets and propose a novel algorithm called gSpan (graph-based Substructure pattern
mining), which discovers frequent substructures without candidate generation. gSpan builds a
new lexicographic ordering among graphs and maps each graph to a unique minimum DFS code
as its canonical label. Based on this lexicographic order, gSpan enumerates not only all frequent
subgraphs but also induced subgraphs. We evaluate the performance of gSpan in both synthetic
datasets and a chemical compound dataset. The experimental results show that our method
substantially outperforms FSG, the best performing frequent subgraph mining algorithm re-
ported so far, by an order of magnitude. Moreover, the algorithm shows very good parallel and
scaleup properties and can incorporate constraints nicely in graph mining.

Keywords substructure mining, frequent pattern, structured pattern, graph isomorphism, lex-
icographic order

1 Introduction

Frequent pattern mining has been an active research theme in data mining with many efficient
and scalable techniques developed for mining associate rules [1], frequent itemsets [6, 13, 27, 7],
sequential patterns [2, 17, 19], and trees [26, 3]. However, many scientific and commercial appli-
cations may require to find frequent structured patterns in large datasets, which may go beyond

sets, sequences, and trees into lattices, graphs, and other complicated structures.

As a general data structure, graph, especially labeled and/or attributed graph, can be used to
model many complicated relations among data. Labels for vertices and edges can represent different

attributes of entities and relations among them. For example, in chemical compounds, the labels



for vertices can be different types of atoms, and the labels for edges can be different types of bonds.
In electronic transactions, labels for vertices represent account owners while edges between these
owners indicate occurrences of payments. Since graph can model more complicated objects, it has
been intensively used in chemical informatics [5, 23, 4, 22], computer vision [25], video indexing
[20], text retrieval [12], etc.

The problem of frequent subgraph mining is to find frequent subgraphs over a collection of
graphs. Frequent subgraph mining delivers meaningful structured information such as hot web
access patterns, common protein structures, and shared patterns in object recognition. It can also
be used in fraud detection to catch similar fraud transaction patterns from millions of electronic
payments. Another application is to cluster XML documents based on their common structures.
Furthermore, graph is a general data structure which covers almost all previous well-researched
frequent patterns, thus, it can unify the mining process into the same framework. Therefore,

frequent subgraph mining has raised great interests.

The kernel of frequent subgraph mining is graph/subgraph isomorphism test. In the past three
decades, lots of well-known isomorphism test algorithms were developed, such as J. R. Ullmann’s
Backtracking [24] and B. D. McKay’s Nauty [18], as well as plenty of approximate ones. However,
the frequent subgraph mining problem has not been explored well. In chemical informatics, some
efficient algorithms were designed to discover common substructures possessed by a set of chemical
compounds [5, 23]. L. Dehaspe et al. [10] applied inductive logic programming to the problem of
predicting chemical carcinogenicity by using frequent substructures. However these systems are
not targeted to large scale datasets. L. B. Holder et al. [14] proposed SUBDUE to do approximate
substructure pattern discovery based on the minimum description length principle and optional
background knowledge. Since SUBDUE uses a computationally-constrained beam search, it cannot
discover the complete set of frequent patterns. Recently, Inokuchi et al. [15] proposed an Apriori-
based algorithm, called AGM, to discover all frequent substructures. Kuramochi and Karypis [16]
further developed the idea using a more efficient graph representation structure and edge-growth
instead of vertex-growth. Their algorithm, called FSG, demonstrates a dramatic performance
improvement: for the same chemical compound dataset, FSG is able to find all frequent connected
subgraphs in 10 minutes with a 6.5% minimum support, whereas it takes 40 minutes to 8 days to
discover them by AGM with a varied support from 20% to 10% [16].

AGM and FSG both take advantage of Apriori-like level-wise approaches, firstly introduced
by R. Argrawal and R. Srikant [1]. These algorithms, though reduce search space, still bear three
nontrivial but inherent problems [13, 19]: huge candidate set generation, multiple scans of database,
and difficulties at mining long patterns. Some previous work has proposed to record transaction IDs
(Tids) for each pattern to minimize the effort of multiple scans by filtering out unnecessary tests
when new patterns grow from the old ones. However, because of a huge candidate set maintained
at each level, this optimization seems unaffordable when millions of transactions are taken into

consideration. Shenoy et al. [21] introduced a vertical mining technique using compressed bitvectors



to compress T'ids for each discovered patten, while Zaki [27] developed a better one called diffset,
which significantly reduces the storage space of Tids. However, the major computational cost for
frequent subgraph mining shifts from large storage of transaction IDs to heavy candidate testings.
The cost is nontrivial in determining whether a graph is a frequent subgraph. As [16] showed,
even for a 340 chemical compounds dataset, it took 28 to 600 seconds to discover all frequent
subgraphs with minimum supports from 10% to 6.5%. Therefore, the exponential growth nature of
subgraph isomorphism test plays a major role in the total cost. The Apriori-like algorithms suffer
two additional costs:

(1) Costly subgraph isomorphism test. Since subgraph isomorphism is an NP-complete prob-
lem, no polynomial algorithm can solve it. Thus, testing of false candidates (false test or false

search) degrades the performance a lot.

(2) Costly candidate generation. The generation of size (k + 1) subgraph candidates from
size k frequent subgraphs is more complicated and costly than that of itemsets as observed by
Kuramochi and Karypis [16].

Clearly, it is necessary to develop new methods to overcome these difficulties. Recently, there
have been reports on successful algorithms, like PrefixSpan [19] and TreeMinerV [26] at mining
sequential patterns and trees, respectively. Both explore depth-first search and straightforward
pattern growth based on a single subpattern. A similar strategy is also adopted by FREQT [3].
These previous studies give us much confidence to explore new algorithms for mining frequent

graphs.

In this paper, we develop gSpan, a new graph-based substructure mining algorithm without

candidate generation, which aims to avoid the two most significant costs mentioned above.

gSpan adopts depth-first search (DFS) as opposed to breadth-first search (BFS) used inherently
in Apriori-like algrothrims. We design a new canonical labeling system (DF'S lezicographic order)
to support DFS. Each graph is assigned a unique minimum DFS code. Based on DFS codes, a hier-
archical search tree is constructed. By pre-order traversal of the tree, gSpan discovers all frequent
subgraphs with required support. Since the design combines the subgraph isomorphism test and
frequent subgraph growth into one procedure, gSpan dramatically accelerates the mining process.
We introduce methods for partitioning of the frequent graphs according to the DFS lexicographic
order and projection of graph datasets to fit the partitions. The partition and projection deliver
good parallel and scaleup properties. We demonstrate how to apply pre-pruning, post-pruning
and partial count pruning to optimize gSpan. We also extend gSpan to mine frequent induced

subgraphs, which indicates the good extensibility of gSpan.

We evaluate the performance of gSpan using a synthetic data generator kindly provided by Ku-
ramochi in University of Minnesota, which is the same generator also used in [16]. Our experimental

results indicate that gSpan outperform FSG significantly by an order of magnitude.



The remaining of the paper is organized as follows. In Section 2, we define the basic concepts
of frequent subgraph mining problem. Section 3 is an overview of the whole system and our design
consideration. The major theoretical foundation of DFS Code, Minimum DFS Code, DFS Code
Tree, and their properties are introduced in Section 4. Section 5 formulates the algorithm of gSpan.
We present the analysis of the algorithm, its extension and the performance study in Section 6,

and Section 7 summarizes our work.

2 Preliminary Concepts

In this paper, we focus on undirected labeled simple graph. However, it is trivial to fit our algorithm
to directed graph and unlabeled graph. With some modification, our algorithm can be extended
to process non-simple graphs with self-loops and multiple edges. The definition of labeled graph is

given as follows.

Definition 1 (Labeled Graph) A labeled graph can be represented by a 4-tuple, G = (V, E, L),

where

V is a set of vertices,

E CV xV is a set of edges,

L is a set of labels,

[:VUE — L, |l is a function assigning labels to the vertices and the edges.

This definition can be generalized to include partially labeled graphs if the label set L includes
an empty label.

Definition 2 (Isomorphism, Automorphism, Subgraph Isomorphism) An isomorphism is
a bijective function f: V(G) — V(G'), such that

Vu € V(G), lg(u) =1l (f(u)), and
V(u,v) € B(G), (f(u), f(v)) € B(G") and lg(u,v) =l (f(w), f (v)).

An automorphism of G is an isomorphism from G to G. A subgraph isomorphism from G to G is

an isomorphism from G to a subgraph of G'. If f is only injective, then G is monomorphic to G .

Induced subgraph is a subgraph contained in another graph that maintains edge counts. Induced
subgraph isomorphism can be considered as constrained subgraph isomorphism. In Section 5.4, a
variant of our algorithm is formulated to solve induced subgraph mining problem under the same

framework.

Definition 3 (Frequent Subgraph Mining) Given a graph dataset, GS = {G;|i = 0...n}, and
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Figure 1: A Search Space: DFS Code Tree

a minimum support, minSup, let

1 if g is isomorphic to a subgraph of G,

s(g,G) = {

0 if g is not isomorphic to any subgraph of G.

0(9,GS) = > <(g9,Gy)

Gi€GS
o(g,GS) denotes the occurrence frequency of g in GS, i.e., the support of g in GS. Frequent
Subgraph Mining is to find every graph, g, such that o(g, GS) is greater than or equal to minSup.

We assume that each frequent subgraph is connected. This restriction reduces the complexity
of the problem and also reflects the connectivity property of hidden frequent structures in most

situations.

3 An Overview

Our goal is to design an algorithm which can find frequent subgraphs one by one, from small to
large ones. Therefore, a hierarchical search space should be built to facilitate the search. Figure 1
shows a sample abstract search space. The 0-edge nodes represent subgraphs which contain a single
vertex. The 1-edge nodes represent subgraphs containing one edge, e.g., X-2Y. The n-edge nodes
are the children of the corresponding (n-1)-edge nodes. Literally, these nodes represent subgraphs
which grow from (n-1)-edge graphs by adding one more edge. We develop a lexicographic order
for these nodes to discover frequent subgraphs efficiently. We assign a lexicographic label to each
node in this search space. The smaller lexicographic label a node has, the earlier the node will be
discovered. In other words, we can enumerate subgraphs in increasing lexicographic order, which is
consistent with the depth-first traversal of the search space. The search space also should guarantee

easy-growing from high level to lower level and easy-backtracking from low level to higher level.



Figure 2: Depth-First Search Tree and its Forward/Backward Edge Set

It may be difficult to have a design that no two nodes in the search space represent the same
subgraph. However, if we know that a subgraph has been discovered, then we can discard this
duplicate one. Moreover, in our design, we prove that if the subgraph that a node represents has
been discovered, all graphs that its descendent nodes represent must have been discovered too.
Thus, we can discard them. For example, in Figure 1, if G; is the same as Gy, i.e., it has been
discovered before the node that represents GG1 is reached, then all of its children must have been
discovered too. Thus the subtree rooted from G1 can be pruned. This property is critical to keep
the algorithm efficient. The following sections illustrate the supporting theorems and the algorithm
design in detail.

4 Lexicographic Ordering in Graphs

Depth-first search is popularly used in graph algorithms. We define a DF'S code for a given DFS
tree in a graph. Using DFS code, we develop a new canonical labeling system to map a graph to
a unique sequence. We build a DFS Code Tree to model the relations among all graphs, in which
each node represents one graph and any graph can find its nodes in the DFS Code Tree although
the mapping is not one-to-one. One graph can have several DFS codes (nodes) in the DFS Code
Tree. We assign its first code (in the pre-order search of the DFS Code Tree), called Minumum
DFS Code, to that graph as its canonical label. By pruning any node which contains non-minimum

DFS code, we reduce the size of the search tree and hence the search space.

Depth-First Search (DFS) Tree. When performing a depth-first search [9] in a graph, we can
construct a depth-first search tree. For example, graphs in Figure 2(b)-2(d) are isomorphic to that
in Figure 2(a). The thickened edges in Figure 2(b)-2(d) represent three different DFS trees for the
graph in Figure 2(a). It is clear that for one graph, there are lots of ways to construct different
DFS trees by selecting different starting points and different growing edges.

DFS Subscripting. We denote DFS tree as T. The depth-first discovery of the vertices forms

a linear order. We use subscripts to label this linear order according to their discovery time [9].



Given a DFS tree T', v; <7 v; means v; is discovered before v;. Each vertex is assigned a subscript
from 0 to n — 1 if there are n vertices in G, such that the magnitude of subscripts reflects the
relation: Vi, j, v; <7 v; ff 1 < j. We call vy the root and v,_1 the rightmost vertez. The straight
path from the root to the rightmost vertex is named the rightmost path. In Figure 2(b)-2(d), three
different subscriptings are generated for the graph in Figure 2(a). The right most path is (vg, v1,v4)
in Figure 2(b), (v, v4) in Figure 2(c), and (vo,v1, v2,v4) in Figure 2(d). The rightmost vertex and
the vertices on the rightmost path play an important role in growing patterns. We denote such
subscripted G as Gr.

Forward Edge Set and Back Edge Set. Given G, forward edge (tree edge [9]) set contains
all edges in the DFS tree, and backward edge (back edge [9]) set contains all edges which are not
in the DFS tree. For the sake of simplicity, from now on, the (u,v) representation of an edge is
written as an ordered pair where the subscripts of the vertices indicate which set the edge belongs
to. We denote Efr = {e|Vi,j, i < j, e = (v;,v;) € E} as the forward edge set in G, and
Eyr ={e|Vi,j, i > j, e = (v;,v;) € E} as the backward edge set in Gr. In Figure 2(b), (vo,v1),
(v1,v2), (ve,v3), and (v1,v4) constitute the forward edge set while (v3,v1) and (ve,vy) constitute

the backward edge set.

We define two partial orders, <yr on Efr, and <y on Epr, assume e; = (v;;,vj,),e2 =

(in sz)’

el <yT ez, Vey,ex € By, (1)
if and only if j; < jo.

and

e1 <1 €2,Ve1,es € By, (2)

if and only if one of the following holds.
(i)i1 < ig; (it)i1 =iz and j1 < jo.

Canonical Labeling and Minimum DFS Code. One way to solve graph isomorphism problem
is to calculate the canonical labels of two graphs. If their canonical labels are the same, then
these graphs are isomorphic to each other. There are two well-known algorithms to compute the
canonical label. One is a variant of J. R. Ullmann’s Backtracking algorithm, the other is B. D.
McKay’s Nauty algorithm. The latter is very efficient and powerful for its successful application of
group theory [11]. For small sized graphs and sparse graphs, Cordella et al. [8] developed a better
algorithm called VF using State Space Representation (SSR).

The basic idea of Nauty comes from the property that the canonical labeling of two isomorphic
graphs should be the same. A naive but general canonical labeling system can be constructed

by concatenating rows or columns of the adjacency matrix of a graph. For each permutation of



its vertices, we can get a string representation of this graph. Among these strings, a minimum
lexicographic string is taken as the canonical label of the graph. With the construction of canonical
label, it is trivial to prove that isomorphic graphs have one and only one canonical label. Yet it is
possible that different permutations can work out the same canonical label independently because

of automorphism.

We design a new canonical labeling system, called minimum DFS encoding. Besides the above
two partial relations: <77 and <7, we introduce a third partial order between forward edge and

backward edge, <p77 on E, assume e; = (v;,,vj,),e2 = (vi,,vj,),
e1 <pf, T €2, (3)
if and only if one of the following holds.

(i) e1 € Eyr,ex € Efp,iy < joi
(it) el € Efr,ez € Eyr,j1 < io.

Theorem 1 The relation <g 1 defined by combining the partial orders, (1), (2), and (3), is a

linear order on E. (proof omitted)

The linear order <g 1 can be defined in a simplified way: for all the edges in G (assume
e1 = (i1,51),e2 = (i2,72)), (i) if &4 = 42 and j1 < jo, e1 <g,7 eg; (ii) if 41 < 71 and ji; = i,
e1 <g,r e2; and (iii) if 1 <g 1 e2 and ex <p 7 €3, €1 <pT €3.

Definition 4 (DFS Code) Given a DFS tree T for a graph G, an edge sequence (e;) can be
constructed based on <g 1, such that e; <g,1 eiy1, wherei =0,...,|E| —1. (e;) is called a DFS
code, denoted as code(G,T).

Basically, a DFS code can be constructed in the following way. First, add a new vertex and a
forward edge that connects one vertex in the old code with this new vertex. Then, add all backward
edges that connect this new vertex to other vertices in the old code. Repeat this procedure to grow
the code until all edges are included in the DFS code. For example, for the DFS tree shown in
Figure 2(b), the DFS code of the graph is ((vo,v1), (v1,v2),(v2,v0),(v2,v3),(v3,v1),(v1,v4)). For the
DFS tree in Figure 2(c), the DFS code is ((vg,v1),(v1, v2),(v2, v0), (v2,v3),(v3,v0),(v0,v4)). We can
see that, for the same graph, different DF'S trees can generate different DFS codes.

We represent an edge as (v;, v;), its two vertices’ labels I(v;), [(v;), and its own label I(v;, v;). For
the sake of simplicity, we combine all of them into a 5-tuple: (4, 7,1, 1(; jy,l;)- The values of i and
j agree with DFS Subscripting for a given T'. For example, (vg,v1) in Figure 2(b) is represented
by (0,1,X,a,Y). Table 1 shows the corresponding DFS codes for Figure 2(b), 2(c), and 2(d).
Since DFS code is a representation of a graph based on a depth-first search tree, there are some

restrictions.



edge no. ‘ (b) « ‘ (c) B ‘ (d) v

0 0,1,X,a,Y) | (0,1,Y,a,X) | (0,1, X,a,X)
1 (1,2,Y,6,X) | (1,2, X,a,X) | (1,2, X,a,Y)
2 (2,0,X,a,X) | (2,0,X,b,Y) | (2,0,Y,b,X)
3 (2,3,X,c,Z) | (2,3,X,c,Z) | (2,3,Y,b,2)
4 (3,1,2,b,Y) | (3,0,2,b,Y) | (3,0,2,c,X)
5 (1,4,Y,d, Z) | (0,4,Y,d,Z) | (2,4,Y,d,Z)

Table 1: DFS code for Figure 2(b), 2(c), and 2(d)

Property 1 (DFS Code’s Neighborhood Restriction) Given G, T, a = code(G,T), assume
a = (ag,a1,.,am), m = 2, and two neighbors are ay and a1 (0 < k < m).
(it ko Li s Ui i) o i )» and @1 = (Gt 1y Jk+15 bigyr s Uiy jogn) bingn ). Then ax, and agq1 must agree
with the following rules:

Let a =

rule 1. if ag is a backward edge, then either of the following holds.

(i) if axy1 is a forward edge, ix1 < ig and jpr1 =ik + 1;

(i) if ak+1 is a backward edge, ix11 =g and jr < Jr41-
rule 2. if ar is a forward edge, then either of the following holds.

(i) if ag+1 is a forward edge, ixi1 < ji and jgi1 = jr +1;

(ii) if axy1 is a backward edge, ix11 = jx and jri1 < i

The forms of rule 1 and rule 2 share some similarity. The property restricts that, for example,
we cannot exchange the positions of edge 2 and edge 3 in code « in Table 1. Among the codes
generated by all possible DFS trees for a graph, we have to pick one as its canonical label. The
following discussion focuses on how to design a linear order among these codes. Since we are dealing

with labeled graphs, we need to consider the label information as one of the ordering factors.

Definition 5 (DFS Lexicographic Order) Suppose Z = {code(G,T) |T is a DFS tree of G},
.e., Z is a set containing all DFS codes for all the connected labeled graphs. Suppose there is a
linear order (<r) in the label set (L), then the lexicographic combination of <gr and <r is a
linear order (<) on the set Er x Lx L x L. DFS Lexicographic Order is a linear order defined
as follows. If a = code(Gq,To) = (ag,a1,...,am) and B = code(Gg,Tp) = (bo,b1,....,b,), 0, € Z,

then a < B iff either of the following is true.

(1) 3Ft,0<t< min(m,n),ar = by for k <t,a; < by

(1%) ap =bg for 0 < k< m, andn > m.



In another word, DFS Lexicographic Order in Z is a linear order defined as follows. If a =
code(Gq,Ts) = (ao, a1, ...,ar) and § = code(Gg,Tg) = (bo, b1, ...,by),, B € Z, then o < f iff either
of the following is true. Assume the forward edge set and backward edge set for T, and T are E,, f,
Eop, Ep,p, and Eg respectively. Also let a; = (ia, o, ligs U(ig,ja)» lia) a0d bt = (ips Jby Liy s Uiy, )0 L)

(1) for somet,0 <t < min{m,n}, we have ay = by for k <t, and*
[ true if at € Eqp and by € Eg ;.
trueif a; € Eqp, by € Egp, and jo < Jp.
trueif ai € Eqp, bt € Egp, jo = Jb, and L, j.) <l )
at < by =< trueif a; € Eqf, by € Eg s, and iy < iq.
trueif a; € Eop, by € Eg 5, i = 1p, and l;, <I;,.

trueif a; € Ea,fa by € E&f, iq = 1p, i, = lib, and l(ia,ja) < l(

ib:jb).
| true if a; € Euf, by € Eg g, iqg = 1p, iy =1y, l(ia,ja) = l(ib,jb)’ and l;, <l;,.

(17) ar =bg for 0 <k < m, andn > m.

(2

For the graph in Figure 2 (a), there exist tens of different DFS codes. Three of them, which are
based on the DFS trees in Figure 2(b)-2(d) are listed in Table 1. According to DFS lexicographic

order, code +y is less than code a, which is less than code .

Definition 6 (Minimum DFS Code) Given a graph G, Z(G) = {code(G,T) |VT, T is a DFS
tree for G }, based on DF'S lexicographic order, the minimum one, min(Z(QG)), is called Minimum
DFS Code of G. It is also the canonical label of G.

We use min(G) to denote min(Z(QG)), and min(a) to denote the minimum DFS code of the
graph represented by the DFS code a. It is clear that among all codes generated by the possible
DFS trees for the graph in Figure 2(a), v in Table 1 is its minimum DFS code. Figure 2(d) shows
the corresponding DFS tree for this code. DFS Lexicographic Order in graphs is that, given
two graphs G and G', G < @', if and only if min(G) < min(G’'). Without explicit mentioning, the
DFS lexicographic ordering discussed below is that on DFS codes instead of graphs. Till now, we

have built minimum DFS encoding for graphs.

Theorem 2 Given two graphs G and G, G is isomorphic to G if and only if min(G) = min(G).
(proof omitted)

Thus the problem of mining frequent connected subgraphs is equivalent to mining their corre-
sponding minimum DFS codes. This problem turns to be a sequential pattern mining problem with

slight difference, which conceptually can be solved by existing sequential pattern mining algorithms.

*Implied by DFS Code’s Neighborhood Restriction, because ar = by for k < t, if ax € Eqap, by € Egyp, then
io = ip and l;, = l;,; if ar € Eqo.f, b € Eg,f, then jo = j» in this case.
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Figure 3: DFS Code/Frequent Pattern Growing

Definition 7 (DFS Code’s Parent and Child) Given a DFS code a = (ag,a1,...,am), any
valid DFS code B = (ag,a1,...,am,b) is called a’s child, and « is called B’s parent. We denote
children(a) = {B | VB, ais f's parent}.

According to DFS Code’s Neighborhood Restriction (Property 1), a valid DFS code which grows
from another DFS code cannot have arbitrary edge growth. In the definition of DFS Code’s Parent
and Child, the code 8 cannot add a new edge b to an arbitrary position in the graph that its
parent code represents. In fact, to construct a valid DFS code, b must be an edge which only
grows from the vertices on the rightmost path. In Figure 3, the graph shown in 3(a) has several
potential children with one edge growth, which are shown in 3(b)-3(f) (assume the darkened vertices
constitute the rightmost path). Among them, 3(b), 3(c), and 3(d) grow from the rightmost vertex
while 3(e) and 3(f) grow from other vertices on the rightmost path. Backward edges can only
grow from the rightmost vertex while forward edges can grow from vertices on the rightmost path.
This restriction is similar to TreeMinerV’s equivalence class extension [26] and FREQT’s rightmost
expansion [3] in frequent tree discovery. The enumeration order of these children is enhanced by
the DFS lexicographic order, i.e., it should be in the order of 3(b), 3(c), 3(d), 3(e), and 3(f).
3(b.0)-3(b.3) are children of 3(b), and 3(e.0)-(e.2) are children of 3(e).

Definition 8 (DFS Code Tree) In a DFS Code Tree, each node represents a DFS code, the
relation between parent node and child node complies with the relation described in Definition 7.
The relation between siblings is consistent with the DFS lexicographic order. That is, the pre-order
search of DFS Code Tree follows the DFS lexicographic order. The Tree is denoted as T.

Given a label set L, a DFS Code Tree can be constructed by Definition 8, which should contain
all possible graphs for this label set. Later, we will illustrate how to enumerate frequent subgraphs
by following the pre-order traversal of this tree. Figure 1 shows a DFS Code Tree, the (n + 1),
level of the tree has nodes which contain DFS codes of n-edge graphs. DF'S code and node in the

11



DFS Code Tree are equivalent in the sense that one can be derived from the other. Any valid DFS
code has a unique corresponding node in the DFS Code Tree, and any node in the DFS Code Tree
contains a valid DFS code. Certainly, some of the nodes contain a minimum DF'S code while others

do not.

Property 2 (DFS Code Tree Covering) DFS Code Tree contains minimum DFS codes for all
graphs.

Definition 9 (DFS Code’s Ancestors and Descendants) Given two DFS codes, a and (3, in
T, if there is a straight path from « to [, then « is called an ancestor of B, and B is called a
descendant of «, denoted by anc(B) = {all ancestors of B}, and des(a)) = {all descendants of a}.

Theorem 3 (Frequency Antimonotone) If a graph G is frequent, then any subgraph of G is
frequent. If G is not frequent, then any graph which contains G is not frequent. It is equal to say,
if a DFS code « is frequent, ¥V B € anc(a), B is frequent. If a is not frequent, ¥V B € dec(a), B is

not frequent.

It is observed that in the DFS Code Tree T there probably exist different DFS codes for a graph.
According to the definition of Minimum DFS Code, the first occurrence of DFS code of a graph
in T (pre-order) is its minimum DFS code. By Theorem 4, we want to prove that the pruning of
non-minimum DFS codes for the same graph and their descendants still preserves the DFS Code

Tree Covering property.

Algorithm 1 Construction of a DFS code.

step 1. initialize 1 = 0, compare ag with e;
if ag > e, select e as the first element for the DFS code, goto step 3.
step 2. if (ag,...,a;—1,€) is invalid or (ag, ..., a;) < (ag, ..., @i—1,€)
1 =1+ 1;
if (i < n) goto step 2;
otherwise, (ag,...,a;—1,€) forms the first 4 + 1 elements for the DFS code. goto step 3.

step 3. build the remaining elements from ¢ 4+ 1 to n + 1.

Theorem 4 (DFS Code Growth) Given a DFS code B, if a = min(f),a < . Let D, =
{n|Vn, n <~}, V6,6 € children(p), i.e. any valid DFS code generated by one edge growth from f,
min(6) € D, U children(a) C Dg.

Proof. Suppose 8 = (bg,b1,...,b,), @ = min(B) = (ap,a1,...,a,), @ € Dg. We grow a new
edge e from G to Gg .. Using the rightmost expansion, one code for Gg . can be (by, b1, ..., by, €).
However, we can apply Algorithm 1 to build another DFS code for Gg . based on «.
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The DFS code from step 3 is in two cases: (i) (ao,-..,ai-1,€,a;,...,a,), and (ii) (ao,- - -, an,€).
Both of them belong to D, U children(«), which is a subset of Dg. [

This theorem shows that if a node in the DFS Code Tree does not contain a minimum DFS
code, then its minimum DFS code must appear before this node in the pre-order search of the DFS
Code Tree. For the sake of simplicity, a code (or node) is called duplicate code (or duplicate node)
if and only if it is not minimum, i.e., the graph it represents (or its minimum code) must have
appeared (or have been discovered) before this code (node) is reached in the pre-order search of the

DFS Code Tree. The subgraph that a duplicate code (node) represents is called duplicate subgraph.

Theorem 5 (DFS Code Pruning) Given a graph G, its DFS codes in T, ag, 0, ..., 0n, Vi, <
n,0; < oj(by DFS lexicographic order), and ag is the minimum DFS code for G. The remaining
DFS Code Tree after pruning o;(1 < i < n) and all its descendants (its subtree) still preserves
Property 2.

Proof. Given 3, § # min(8). Let Dg = {n|Vn, n < B}. Suppose we can prove the following
proposition,

Vp € des(B),if min(p) € Dg, then Vq € children(p), min(q) € Dg.

Because 8 # min(B), V4,0 € children() we have min(é) € Dg, and by induction, Vp € des(8) U
{B}, then min(p) € Dg. Now we prove this proposition.

Let p € des(B), min(p) € Dg. Vq € children(p), by DFS Code Growth theorem, min(q) €
Dynin(p) U children(min(p)) C Dg. O

Theorem 6 (DFS Duplicate Code Cardinality) Given a graph G, |E(G)| > 2, Z(G) = {p|Vp €
Z(@), da,a = min(a), B € children(a)}, then |Z(G)| < |E(G)| x |V(G)|, that is, the number of
G’s codes which are children of other minimum codes is bounded by the product of the number of

its edges and vertices.

Proof. Assume G has m edges (m > 2), i.e., m = |E(G)|. G has at most m different connected
subgraphs, each of which has m — 1 edges (remove one edge from G). These subgraphs generate at
most m different minimum DFS codes. For each minimum DFS code, we add back the my, edge
to form possible codes of G. If the removed edge is a forward edge, there are at most |V (G)| — 1
vertices from which a new forward edge can grow. Otherwise, if it is a backward edge, it must grow
from the rightmost vertex. There are at most |V(G)| — 2 vertices (If self-loop and multi-edge are

permitted, it is |[V(G)|), one of which can be the vertex to form this backward edge. Therefore,
1Z2(G)| < |E(G)| x [V(G)]. O

This bound is not tight because the my, edge cannot be added to an arbitrary position mentioned
above in order to keep the topology of G. For many graphs, |Z(G)| is less than |E(G)|. Since we
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prune all duplicate codes and their descendants, we do not have chance to access the duplicate
codes which are children of other duplicate codes. Our algorithm gSpan formulated below only
accesses those duplicate codes which are children of other minimum DFS codes. Therefore, for
each frequent subgraph, the number of duplicate codes gSpan accesses is bounded by the product

of the number of its edges and vertices.

These theorems build a solid foundation for discovering all frequent subgraphs. By pre-order
searching of the DFS Code Tree, it is guaranteed that we can enumerate all potential frequent
subgraphs. The DFS Code Pruning of duplicate nodes in the tree still makes this searching complete
and sound while Frequency Antimonotone helps finding all frequent subgraphs without violating

the completeness and soundness.

5 The gSpan Algorithm

In this section, we formulate our gSpan algorithm based on DFS lexicographic order and its prop-
erties given and proved above. gSpan uses a sparse adjacency list representation to store graphs.
Algorithm 2 lays out the pseudo code of the framework.

Algorithm 2 GraphSet_Projection(GS,S).

: sort labels of the vertices and edges in GS by their frequency;
: remove infrequent vertices and edges;
: relabel the remaining vertices and edges in descending frequency;

: St « all frequent 1-edge graphs in GS;

: S+ St
: for each edge e € S! do
initialize s with e, set s.GS = {g|Vg € GS, e € E(g)}; (only graph ID is recorded)
:  Subgraph_Mining(GS, S, s);
10: GS « GS —¢;
11:  if |GS| < minSup;
12: break;

1
2
3
4
5: sort S! in DFS lexicographic order;
6
7
8
9

Step 1 (line 1-6): Remove infrequent vertices and edges from the graph set GS. Relabel the
remaining ones in descending frequency. Add all frequent 1-edge graphs into S! and sort them in
DFS lexicographic order. For example, we have a label set {A,B,C,...} for vertices, {a,b,c,...}
for edges. Each l-edge graph has only one edge such as (0,1, 4,a,4), (0,1,4,a,B), ..., and
the like. According to DFS lexicographic order, (0,1, 4,a,4) < (0,1,A,a,B) < ... . Since we
resort the labels of vertices and edges separately, it is possible that even a vertex labeled “A” has

the most frequent occurrences and an edge labeled “a” has the most frequent occurrences, but
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the combination, (A,a, A), may not occur most frequently. Thus, if (0,1, A4,a,A) is a frequent
subgraph in GS, then (0,1, A, a, A) has a very high support in GS if “highest” cannot be claimed.
St is important in both Step 2 and Step 3. In Step 2, the 1-edge frequent subgraphs are the seeds
that generate lots of children (2-edge frequent subgraphs) followed by more descendants (3 or more
edges frequent subgraphs). In Step 3, we use the elements in S! to project the whole graph set GS.

Step 2 (line 8-9): For each 1l-edge frequent subgraph, Subgraph_Mining grows all nodes in the
subtree (Figure 1) rooted at this 1-edge graph. This part will be elaborated later.

Step 3 (line 10): Shrink each graph in the graph set GS by removing the edge after all de-
scendants of this 1-edge graph have been searched. For example, say (A4,a, A), (B,b,C), (C,c,C)
are all frequent edges in GS, in the first round (line 7), Subgraph Mining finds out all frequent
subgraphs which contain (A4,a, A). In the second round, Subgraph Mining finds out all frequent
subgraphs which contain (B,b,C) but do not contain any edge of (A, a, A). In the third round,
Subgraph Mining finds out all structures which contain only (C, ¢, C). Therefore, (A, a, A) can be
removed from the dataset before the second round runs. The same happens to (B,b,C) before
the third round runs. This step projects GS into a smaller graph set with less vertices, edges and

graphs. Thus it makes the successive mining procedure faster and faster.

Step 4 (line 7,11): Terminate when all frequent 1-edge graphs and their descendants are gener-
ated. The program should terminate at line 7 instead of line 11 in all cases. Line 11 is included for

completeness.

Subprocedure 1 Subgraph Mining(GS, S, s).
if s # min(s)

return;
: S+ SuU{s};

: generate all s’ potential children with one edge growth;*

: Enumerate(s);

: for each ¢, cis s’ child do

if support(c) > minSup
5+ ¢
Subgraph_Mining(GS, S, s);

R B U A A e

In each recursive run, Subgraph Mining(GS, S, s) grows one edge from s and discover all frequent
children of s (s is a DF'S code or a node in the DFS Code Tree). The recursion in Subgraph Mining
follows the pre-order traversal of DFS Code Tree in Figure 1. Thus, the discovery order of frequent
subgraphs follows DFS lexicographic order, i.e., the minimum DFS code of previously discovered
subgraphs should be less than that of later discovered ones. s # min(s) prunes duplicate subgraphs

and all their descendants. Theorem 5 proves that such pruning does not affect Property 2. There-

tThis is not efficient. A better one is given in Section 5.2.
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fore, it is guaranteed that the pruning does not affect the completeness of the result. The pruning
efficiently reduces the search space and redundant computation. (Remember that any test of false
frequent subgraphs costs a lot, and even a less costly test to determine s # min(s) is computation-
ally expensive.) If s is the minimum DFS code of the graph it represents, Subgraph Mining adds
s to its frequent subgraph set. Then it generates all potential children with one edge growth, and
recursively runs Subgraph_Mining on each child. The generation of potential children is not costly.
It is trivial to do so by following the rules forced by Property 1. A more efficient approach will be
introduced by Section 5.2.

Subprocedure 2 Enumerate(s).
1: for each g € s.GS do

2:  enumerate the next occurrence of s in g;

3: for each c, c is s’ child and occurs in g do
c.GS + ¢.GS U{g};

4:  if g covers all children of s break;

By enumerating all occurrences (more accurately until all possible children are discovered) of s
in each graph, Enumerate(s) (Subprocedure 2) counts the occurrences of all the children of s in the
graph. For example, Figure 4(a) shows a frequent subgraph discovered through previous routines,
the possible children are shown in Figure 3(b)-3(f). Figure 4(b) is a graph in a graph dataset. In
Figure 4(c), a thickened line or cycle marks an occurrence of 4(a) in 4(b). Dotted lines and cycles
are illustrated as potential candidates of 4(a)’s children (with one more edge). By Property 1,
(W, a, Z) is not a valid child. By counting the occurrences of the children over all the graphs where
s takes place, we know which child is a frequent subgraph too. Furthermore, we record IDs of all
graphs which contain the frequent subgraph. It is used by Enumerate in the next round to find its
children. By executing Subgraph Mining and Enumerate alternately, the complete set of frequent

subgraphs is generated in DFS lexicographic order.

There is no requirement for specific subgraph isomorphism testing procedure in line 2 of Sub-
procedure 2 Enumerate(s). J. R. Ullmann’s backtracking [24] can be used, and B. D. Mckay’s
Nauty algorithm works too. We design our own enumerating engine which basically backtracks
in the depth-first search tree. It combines the subgraph matching and DFS code growth into one
process, thus it saves lots of computation and makes the algorithm work for induced subgraph
isomorphism problem too. The enumerating engine works as follows. Given a minimum DFS code
of a subgraph, we want to find all occurrences of this subgraph in another graph from a dataset.
We start from the first edge in the DFS code to try to find a matching to one of the edges in that
graph. Then we repeatedly do the same work by adding new edges. Sometimes we have to do one
edge backtracking if we cannot find a new edge for the current matching. This process repeats until

either we find a matching or fail. Since gSpan needs to find all occurrences of a graph, once we find
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a matching and do some children counting, we continue trying to find a new matching. Because
all occurrences are discovered in one scan, the total cost is not much. In the next part, we discuss
several optimizations. At the end of this section, we give out the analysis of the algorithm and its

extension.

5.1 The Nontrivial s # min(s) Pruning

s # min(s) prunes all DFS codes which are not minimum. It significantly reduces unnecessary
computation on duplicate subgraphs and their descendants. There are two ways to do that. The
first is cutting off any child whose code is not minimum after line 4 of Subgraph_Mining. It is called
pre-pruning which happens before the real counting in line 5. The second is cutting off them in
line 1. It is called post-pruning which happens after the real counting. The first approach is costly
since most of duplicate subgraphs are not even frequent. However, we cannot completely postpone
the pruning since the counting of duplicate frequent subgraphs, which have been discovered before,
is a waste. Therefore, our algorithm adopts a trade-off between pre-pruning and post-pruning. It
first prunes any child that explicitly has been discovered. The pruning happens in four stages: (1)
If the first edge of s’ minimum DFS code is ey, then a potential child of s does not contain any
edge which is smaller than ep. (2) For any backward edge growth from s, assume (v;,v;), (i > j7),
this edge should be no smaller than any edge which is connected to v; in s. For example, in Figure
4(b), the edge (X, a, Z) should not be added to the graph 4(a) to form a new child since (X, a, Z)
is less than (X,c,Y). The adding of (X, a,Z) makes the minimum DFS code of the new graph
less than that of its parent in Figure 4(a), thus, it must have been discovered before. (3) Since all
edges grow from vertices on the rightmost path, to some extent, it prunes those children growing
from vertices in other positions. For example, by Property 1, (W, a, Z) is pruned. (4) Post-pruning
is applied to the remaining unpruned nodes. A naive way to calculate min(s) is to generate all
the DFS codes of the graph that s represents and then pick up the smallest one. The generation
procedure is almost the same as enumerating all automorphisms of s. A heuristic way is to take
advantage of Definition 5 and Definition 6, i.e., whenever some part of DFS code is generated, it is
compared with s. If it is less than s, it can be concluded that s is not the minimal one and thus it
can be discarded. After these four steps, all duplicate codes and their descendants are discarded.
Thus gSpan does not generate any duplicate subgraphs.

5.2 Partial Count Pruning

In Subprocedure 1, given a frequent subgraph s, we need to generate all potential children of s with
one edge growth. There are three approaches to do that with small cost. In the first approach,
all possible children are generated at the beginning. When we search the occurrences of s in the
graph set, any valid child of s is counted. In this way, some counts for possible children may

be zero. This approach is too naive. The second approach uses an ad hoc way, which need not
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Figure 4: Subgraph Growing

generate any possible children before counting. Instead, whenever we find a new child of s, we add
it into the children list of s, and count it. In this way, each count for a child must be at least one.
Given a graph s = (eg,e1,...,ey), its possible children set PS = {c| Veg,c = (ep,e1,--.,€n,€z)},
its available children set V.S = {c|c¢ € PS, c¢ is a subgraph in GS}, VS C PS. The first
approach generates PS and then counts. The second approach generates V.S in an ad hoc way
and then counts. The possible optimizations of pruning duplicates in these two approaches have
been discussed in Section 5.1. The third approach takes advantage of Frequency Antimonotone.
By analyzing the DFS code growing in Figure 3, we find that there are lots of information that can
be used to prune unnecessary counting. For example, In Figure 3, all children of 3(a) in 3(c) form
can provide enough information to generate the potential children of 3(b) in 3(b.0) form. The same
phenomena happens in 3(d) for 3(b.1), 3(e) for 3(b.2), and 3(f) for 3(b.3). If (eq,€1,...,en, ez, €y)

is frequent, then (eg,e1,...,en,e;) and (eg,€1,...,€n,€e,) must be frequent if both of them are
valid. Therefore, (eg, €1, .., en,e;) and (eg, €1,. .., ey, ey) provide a good indication for the possible
frequent occurrence of (eg,e1,..., ey, ey, €y). Sometimes (eq,e1,...,en,ey) may be invalid. For

example, it seems that for 3(e.1) no child of 3(a) can provide any hint for possible candidates of
3(e.1) without complicated computation done. Therefore, in such case, we still use one of the first
two approaches. The bottom line is that such case only represents a small portion of all frequent
subgraphs. For the first two approaches, we have to count all s’s children no matter whether they
are frequent or not. The third approach proposes partial count pruning. That is, for all s’ children
in V.S, we still need to access them, but we don’t update counter for those obvious infrequent ones.
It only counts some of s’ children. This pruning is different from the popular one that Apriori-like
algorithms use, where the pruning of any (k+ 1)-subgraph (if one of its k-subgraphs is not frequent)
is to reduce unnecessary testing. In gSpan, partial count pruning is to reduce unnecessary counter
updating. It does not rely on any complicated hash function to check k-closure in this case. Our
experiments show that its cost is nearly negligible, but this optimization makes the program run
one time faster. It is one of the most significant speedups we obtain besides what the algorithm

itself achieves.
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5.3 Analysis

gSpan does a pre-order search of the DF'S Code Tree. Property 2 and Theorem 5 guarantee that the
DFS Code Tree covers all the graphs. Theorem 3 shows gSpan does not miss any frequent subgraph
after pruning. Therefore, its completeness and soundness are proved. The major advantages of
gSpan against AGM and FSG are listed as follows:

e No Candidate Generation and False Test. In gSpan, just as PrefixSpan, the frequent
(k + 1)-edge subgraphs grow from k-edge frequent subgraphs directly. It does not perform
candidate generation and test any false candidate opposed to Apriori-like algorithms. Fur-
thermore, compared with those for mining frequent itemsets, candidate generation and false
test for subgraph mining is quite costly. FSG does some optimization on it. gSpan completely

avoids the computation of this part.

e Space Saving from Depth-First Search. gSpan is a depth-first search algorithm, while
Apriori-like ones, such as AGM and FSG, adopt breadth-first search strategy. All of them can
take advantage of recording relevant transaction IDs to avoid some redundant false search and
test. However, BFS suffers from much higher I/O and memory usage than DFS, especially in
their peak space usage situation. It is highly possible that a DFS algorithm can fit in memory

while its corresponding BF'S one cannot.

e Quickly Shrunk Graph Dataset. As depicted in Algorithm 2, at each iteration the
mining procedure is performed in such a way that the whole graph dataset is shrunk to the
one containing a smaller set of graphs, with each having less edges and vertices. The speedup

is larger when less graphs and edges are involved during the mining process.

Subgraph isomorphism problem is an NP-complete problem. Therefore, the runtime of gSpan
should be exponential. If measured by the number of subgraph and/or graph isomorphism tests,
the runtime can be bounded by O(kFS + rF), where k is the maximum number of subgraph
isomorphisms existing between a frequent subgraph and a graph in the dataset, F' is the number
of frequent subgraphs, S is the dataset size, and r is the maximum number of duplicate codes of a
frequent subgraph that grow from other minimum codes. kF'S bounds the number of isomorphism
tests that should be done in order to find frequent supergraphs from discovered frequent subgraphs.
rF bounds the maximum number of s # min(s) operations. When considering the value of k, in
some extreme situations, for example, two complete graphs without labels, k& (the possible subgraph
isomorphisms between them) can be PJ" , where m and n are the number of these two graphs’
vertices (m < n). However, k is pretty small for sparse graphs with diverse labels. Another
important factor is r. It has been proved in Theorem 6 that for any subgraph G, the number of
duplicate nodes of G which grow from other minimum DFS codes is bounded by the product of the

number of its edges and vertices. Therefore, r is bounded by the maximum product of the number
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of edges and vertices that a frequent subgraph has. Because of pre-pruning, r is much smaller than

that number for real datasets.

5.4 From Subgraph Isomorphism to Induced Subgraph Isomorphism

In previous sections, we discussed how to find frequent subgraphs in a graph dataset. Here, we
formulate a modified version of gSpan, called induced-gSpan, which can discover frequent induced
subgraphs. The induced subgraph definition says if H is an induced subgraph of G, then V(H) C
V(G), E(H) C E(G), and if two vertices appear in both graphs, the edge between them must also
be present in both of them. Therefore, it is a subgraph with constraint(s). We make the following
modification on gSpan. First, we cannot shrink the graph set any more since we have to check
whether some edges in G are present in H if H is induced subgraph isomorphic to G. But we still
can shrink the graph set by vertices. Second, we grow the patterns in the same way of gSpan,
however, we need to test whether those patterns are really isomorphic to induced subgraphs with a
minimum support. We define an intermediate graph, I. I is subgraph isomorphic to G and I — {v}
is induced subgraph isomorphic to G, where v is the rightmost vertex of I for a DFS tree in G.
Generation of frequent induced subgraphs is conducted in two phases: (1) generate intermediate
graphs which are frequent in the graph set above minSup; and (2) when growing and counting
the children of frequent intermediate graphs, induced subgraph isomorphism is checked for these
intermediate graphs, and a new count is calculated and compared with minSup. If it is still greater
than minSup, output it. The easy fitness of gSpan to induced subgraph problem indicates that
gSpan can be flexibly extended to solve other constrained frequent subgraph mining problems.

6 Experiments and Performance Study

A comprehensive performance study has been conducted in our experiments on both synthetic and
real world datasets. We use a synthetic data generator provided by Kuramochi and Karypis [16].
The real data set we tested is a chemical compound dataset. Our performance tests show that
gSpan outperforms FSG by 6 to 45 times on synthetic datasets whereas about 15-100 times faster
on the chemical compound dataset. gSpan also demonstrates a better scalability over FSG since it

succeeds in completing the mining processes with lower thresholds and larger datasets.

All experiments of gSpan and induced-gSpan are done on a 500MHZ Intel Pentium III PC with
448 MB main memory, running Red Hat Linux 6.2. We also implemented our version of FSG
which achieves similar performance as that reported in [16]. Here we compare the performance
of gSpan with that of FSG reported in [16] if the result is available, otherwise we show our own
implementation result based on the same datasets. They did the test on a 650MHZ Intel Pentium
ITT PC with 2GB main memory, also running the Linux OS. Although there exist some differences

in these two testing environments, the great speedup achieved by gSpan makes such inaccuracy
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Figure 5: Runtime: gSpan vs. FSG

irrelevant. We use the VFLib Graph Matching Library (Version 2.0) provided by Cordella, et al.
[8] to verify and debug the experimental results. The frequent subgraphs discovered are double

checked by their package and no duplicate or missing pattern is observed.

Synthetic Datasets. The synthetic datasets are generated using a similar procedure described
in [1]. Kuramochi et al. applied a simplified procedure in their graph data synthesis. The details
about how to generate the datasets were described in [16]. We use the data generator provided by
Kuramochi. The synthetic data sets can be described by five parameters: (1) |D|, the total number
of graphs generated, (2) |T'|, the average size of graphs in terms of edges, (3) |I|, the average size of
potential frequent subgraphs (frequent kernels), (4) |L|, the number of potentially frequent kernels,
and (5) |N|, the number of possible labels, as denoted in [16]. For a dataset which has 10000 graphs,
each graph has 20 edges in average, the potential frequent subgraph has 10 edges in average, 200
potential frequent kernels, and 4 available labels, we represent this dataset as D10k N4110720L200.
Since |L| is always set to 200, we omit L200. Another parameter is the minimum support, . We

use percentage to represent it.

We test the performance of gSpan in various synthetic datasets and compare it with FSG. Then
we illustrate the situations where gSpan works better above its average performance. The third

experiment shows that gSpan scales linearly in the size of dataset.

Figure 5(a) shows the runtime comparison between gSpan and FSG for datasets with fixed
|D| = 10k, |L| = 200, and o = 0.01. The datasets vary by possible labels (|V|), the size of frequent
kernels (|I]), and the average size of graphs (|T'|). In this series of datasets, gSpan outperforms
FSG by a factor from 6 to 30.

Figure 5(b) and 5(c) show the runtime comparisons on two other series of datasets. One has
fixed |D| = 10k, |L| = 200, |I| = 5, |T'| = 20, and ¢ = 0.01. The other has fixed |D| = 10k,
|L| = 200, |[I| =7, |T| = 40, and ¢ = 0.01. Both of them have various |N| from 5 to 40. We
find that, compared with FSG, the fewer labels the dataset has, the faster gSpan runs; the larger
each graph is, the faster gSpan performs. As the experiments show in Figure 5(b), the speedup for

21



600

T T
—5- 00.02-gSpan —5- 00.02-gSpan
—+— 60.02-induced-gSpan —+— 60.02-induced-gSpan
-6~ 60.01-gSpan 90 &~ 60.01-gSpan
— 60.01-induced-gSpan 1 — 60.01-induced-gSpan

500

M)

Runtime (sec)
@
8
]

200

Number of Isomorphism Tests (x1

100~

I | | | | | I | | | | |
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Size of Graph Set (x1K) Size of Graph Set (x1K)

(a) runtime (b) # of isomorphism tests
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dataset D10kI1572000.01 is down to around 6 for small graphs with lots of labels. In that case,
the structure of frequent subgraphs turns to be simple and the total number of frequent subgraphs
turns to be small. However, the performance gain is enlarged to 15~45 when the graphs turn to
be bigger and denser, as the runtime result of D10kI774000.01 shows in Figure 5(c).

Figure 6 shows the scalability of gSpan and induced-gSpan. The experiments are done for
synthetic datasets whose sizes vary from 10k to 320k. The other parameters are fixed, |N| = 10,
|I| =5, and |T'| = 20. It tests two different minimum supports, 0.01 and 0.02. With the increasing
size of graph datasets, the runtime increases linearly. It is an inherent result since the synthetic data
generator controls the number of frequent subgraphs by the parameters, L, I, and T. Therefore,
the number of frequent subgraphs is not sensitive to the size of datasets, but to the minimum
support ¢ if other parameters are fixed. This property is not valid for extreme parameters. Our
experiment shows under fixed |L|, |I|, |T'|, and o, the number of frequent subgraphs does not change
a lot. Figure 6(b) shows the total number of graph isomorphism tests is proportional to the size of
the datasets. It is proved that only the magnitude of dataset size S is increased in O(kF'S + rF)
for this series of datasets. Therefore, the runtime is proportional to the size of the datasets too.
Figure 6(a) also shows the performance of induced-gSpan, which is used to mine frequent induced
subgraphs. It is observed that generally the runtime of mining frequent induced subgraphs is less
than that of mining frequent subgraphs. The reason is although more computation is needed to
enumerate induced subgraphs in the graph dataset, the number of frequent induced subgraphs is
less than that of frequent subgraphs.

Chemical Compound Dataset. This chemical compound dataset is the same one used in
[16]. Readers can refer to this URL ! to retrieve it. We apply the same construction method used
in [16] to transform the data into a graph set. Figure 7 illustrates the runtime and the number of

discovered frequent patterns as the minimum support varies from 2% to 30%. The total memory

http://oldwww.comlab.ox.ac.uk/oucl/groups/machlearn/PTE.
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consumption is less than 100M for any point of gSpan and induced-gSpan shown in the figure.
The runtime in Figure 7(a) shows the scalability of gSpan. gSpan achieves better performance by
15-100 times compared with FSG. For example, if we use ¢ = 0.06, gSpan spends 5.29 seconds
compared with 248 seconds used by FSG. While FSG aborts computation under 5% because of too
long running time or exhausted main memory, gSpan can continue the mining process until 1.5%
support threshold is reached. Figure 7(b) shows the number of frequent patterns we find for both
subgraphs and induced subgraphs.

We try to understand why gSpan has such a higher speedup rate in this chemical compound
dataset compared with that in synthetic datasets. After analyzing the structures of the data and
discovered frequent subgraphs, we find those chemical compounds have lots of tree-like structures.
It is consistent with the inherent DFS tree structure used in gSpan. Therefore, it reduces the search
space more efficiently. Another reason is that there are only four kinds of bonds connecting atoms,
which make the occurrences of labels in each compound very dense and possibly generates long
patterns. Thus, it takes advantage of gSpan. The dense distribution of labels results in bigger
performance loss of FSG than that of gSpan. Considering the runtime curve in Figure 5(b), the
runtime gap between gSpan and FSG is widened while |N| turns to be smaller for the dataset
D10k15T2000.01.

7 Conclusions

In this paper, we investigated issues for frequent subgraph mining and addressed the possible inef-
ficiencies in the previous work. We introduced a new lexicographic ordering system and formulated
gSpan to mine frequent subgraphs more efficiently than the existing ones. gSpan outperforms FSG
by an order of magnitude and is capable to mine larger frequent subgraphs in a bigger graph set

with lower minimum supports. gSpan is promising not only because it mines various kinds of
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subgraphs efficiently but also because it can be applied (with some minor extensions or revisions)
to mining nearly all kinds of frequent substructures, including sequences, trees, and lattices. It
provides a general framework for scalable mining of more complicated patterns. The practice of
extending gSpan to mine frequent induced subgraphs indicates the flexibility of gSpan to solve

other constraint problems.

There are many interesting research problems related to gSpan that should be pursued further.
For example, the extension of gSpan to mining frequent closed- and max- subgraphs is an important
problem for further study because this will lead to the generation of a much less number of frequent

subgraphs without loss much useful information.
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