
Incremental Cluster Evolution Tracking from
Highly Dynamic Network Data

Pei Lee #1, Laks V.S. Lakshmanan #2, Evangelos E. Milios ∗3

# Computer Science Department, University of British Columbia, Vancouver, BC, Canada
1,2 {peil,laks}@cs.ubc.ca

∗ Computer Science Department, Dalhousie University, Halifax, NS, Canada
3 eem@cs.dal.ca

Abstract—Dynamic networks are commonly found in the cur-
rent web age. In scenarios like social networks and social media,
dynamic networks are noisy, are of large-scale and evolve quickly.
In this paper, we focus on the cluster evolution tracking problem
on highly dynamic networks, with clear application to event
evolution tracking. There are several previous works on data
stream clustering using a node-by-node approach for maintaining
clusters. However, handling of bulk updates, i.e., a subgraph
at a time, is critical for achieving acceptable performance over
very large highly dynamic networks. We propose a subgraph-by-
subgraph incremental tracking framework for cluster evolution
in this paper. To effectively illustrate the techniques in our
framework, we take the event evolution tracking task in social
streams as an application, where a social stream and an event
are modeled as a dynamic post network and a dynamic cluster
respectively. By monitoring through a fading time window, we
introduce a skeletal graph to summarize the information in the
dynamic network, and formalize cluster evolution patterns using
a group of primitive evolution operations and their algebra. Two
incremental computation algorithms are developed to maintain
clusters and track evolution patterns as time rolls on and the
network evolves. Our detailed experimental evaluation on large
Twitter datasets demonstrates that our framework can effectively
track the complete set of cluster evolution patterns in the whole
life cycle from highly dynamic networks on the fly.

I. INTRODUCTION

People easily feel overwhelmed by the information deluge
coming from social connections which flow in from channels
like Twitter, Facebook/LinkedIn, forums, blog websites and
email-lists. There is thus an urgent need to provide users
with tools which can automatically extract and summarize
significant information from highly dynamic social streams,
e.g., report emerging bursty events, or track the evolution of
one or more specific events in a given time span. There are
many previous studies [1], [2], [3], [4], [5], [6] on detecting
new emerging events from text streams; they serve the need
for answering the query “what’s happening?” over social
streams. However, in many scenarios, users may want to know
more details about an event and may like to issue advanced
queries like “how’re things going?”. For example, for the
event “SOPA (Stop Online Piracy Act) protest” happening
in January 2012, existing event detection approaches can
discover bursty activities at each moment, but cannot answer
queries like “how SOPA protest has evolved in the past few
days?”. An ideal output to such an evolution query would

be a “panoramic view” of the event history, which improves
user experience. In this paper, we model social streams as
dynamically evolving post networks and model events as
clusters over these networks, obtained by means of a clustering
approach that is robust to the large amount of noise present
in social streams. Accordingly, we consider the above kind
of queries as an instance of the cluster evolution tracking
problem, which aims to track the cluster evolution patterns
at each moment from such dynamic networks. Typical cluster
evolution patterns include birth, death, growth, decay, merge
and split. Event detection can be viewed as a subproblem of
cluster evolution tracking in social streams.

There are several major challenges in cluster evolution
tracking. In many scenarios, dynamic networks are of large
scale and evolve quickly. Thus, the first challenge is the
effective design of incremental computation. The traditional
approaches [7], [8] based on decomposing a dynamic network
into snapshots and processing each snapshot independently
from scratch are prohibitively expensive. An efficient single-
pass incremental computation framework is essential for clus-
ter evolution tracking over social streams that exhibit very
large throughput rates. To our knowledge, surprisingly this
not yet been studied. The second challenge is the formal-
ization and tracking of cluster evolution operations under an
incremental computation framework, as the network evolves.
Most related work reports cluster activity by volume over the
time dimension [2], [1]. While certainly useful, this is just
not capable of showing the evolution behaviors about how
clusters are split or merged, for instance. The third challenge is
handling of bulk updates. Since dynamic networks may change
rapidly, a node-by-node approach to incremental updating will
lead to poor performance. A subgraph-by-subgraph approach
to incremental updating is critical to achieve good performance
over very large, fast-evolving dynamic networks such as post
networks. But this in turn brings new challenge to incremental
cluster maintenance against bulk updates.

To handle the above challenges, we propose an incremental
tracking framework for cluster evolution over highly dynamic
networks. To illustrate the techniques in this framework, we
take the event evolution tracking task in social streams as an
application, where a social stream and an event are modeled
as a dynamic post network and a post cluster respectively.
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Fig. 1. Post network captures the correlation between posts in the time
window at each moment, and evolves as time rolls on. The skeletal graph is
shown in bold. From moment t to t+ 1, the incremental tracking framework
will maintain clusters and monitor the evolution patterns on the fly.

The reasons we deploy our framework on this application are,
social streams usually surge very quickly, making it ideal for
the performance evaluation, and events are human-readable,
making it convenient to assess the quality. In detail, since a
significant portion of social posts like tweets are just noise, we
first define a Skeletal Graph as a compact summary of the orig-
inal post network, from which post clusters can be generated.
Then, as we will discuss later, we monitor the network updates
with a fading time window, and capture the evolution patterns
of networks and clusters by a group of primitive evolution
operations and their algebra. Moreover, we extend the node-
by-node evolution to the subgraph-by-subgraph evolution to
boost the performance of evolution tracking of clusters. Figure
1 shows an overview of major modules we use for cluster
evolution tracking in social streams.

We notice that at a high level, our method resembles
previous work on density-based clustering over streaming data,
e.g., DenStream in [9] and cluster maintenance in [10] and
[11]. However, there are several major differences with this
body of work. First, our approach works on highly dynamic
networks and provides users the flexibility in choosing the
scope for tracking and monitoring new clusters by means of a
fading time window, unlike these works. Second, the existing
work can only process the adding of nodes/edges one by one,
while our approach can handle adding, deleting and fading of
nodes, in bulk mode, i.e., subgraph by subgraph. This is an
important requirement for dealing with the high throughput
rate of dynamic networks. Third, the focus of our approach
is tracking and analyzing the cluster evolution dynamics in
the whole life cycle. By contrast, the previous works focus on
clustering streaming data, which is a sub-task in our problem.

On the application side, comparing with traditional topic
tracking approaches, we note that they are usually formulated
as a classification problem [12]: when a new story arrives,
compare it with topic features in the training set by decision
trees or k-NN, etc. [13], and if it matches sufficiently, declare
it to be on a topic. Since these approaches assume that topics
are predefined before tracking, we cannot simply apply them
to event evolution tracking in social streams. To compare
with existing event detection and tracking approaches [1], [2],
[3], [4], our framework has advantages in tracking the whole
life cycle and capture composite evolution behaviors such as
merging and splitting.

In summary, the problem we study in this paper is captured

SF (p1, p2) the fading similarity between posts p1 and p2
(ε, δ) similarity threshold, priority threshold
wt(p) the priority of post p at moment t

Gt(Vt, Et) the post network at moment t
Gold the old subgraph that lapses at moment t+ 1
Gnew the new subgraph that appears at moment t+ 1

Gt(V t, Et) the skeletal graph at moment t
C, St a component, a component set in Gt

C, St a cluster, a cluster set in Gt

N (p) post p’s neighbor set with similarity larger than ε
Nc(p) the cluster set of post p’s neighboring core posts

TABLE I
NOTATION.

by the following questions: how to incrementally and effi-
ciently track the evolution behaviors of clusters in large-scale
weighted networks, which are noisy and highly dynamic? In
this paper, we develop a framework and algorithms to answer
these questions. Our main contributions are the following:
• We propose an incremental computation framework for

cluster evolution on highly dynamic networks (Sec. III);
• We filter out noise by introducing a skeletal graph (Sec.

IV-B)), based on which we define a group of primitive
evolution operations for nodes and clusters, and introduce
their algebra for incremental tracking (Sec. V);
• We leverage the incremental computation by proposing

two algorithms based on bulk updating: ICM for the in-
cremental cluster maintenance and eTrack for the cluster
evolution tracking, respectively (Sec. VI);
• Our application on event evolution tracking in large

Twitter streams demonstrates that our framework can
effectively track all kinds of cluster evolution patterns
from highly dynamic networks in real time (Sec. VII).

More related work is discussed in Sec. VIII. The problem
is formalized in Sec. II. For convenience, we summarize the
major notations used in this paper in Table I.

II. PROBLEM FORMALIZATION

We formally define dynamic network and dynamic clusters
here, and then introduce the problem this paper seeks to solve.

Dynamic Network. A dynamic network is a network with
node and edge updates over time. We define a snapshot
of an dynamic network at moment t as a weighted graph
Gt(Vt, Et), where an edge e(u, v) ∈ Et connects nodes u, v
in Vt and s(u, v) is the similarity between them. For the
problem studied in this paper, we assume a dynamic network
is the input and s(u, v) ∈ (0, 1] is a value usually set by
a specific similarity function. From time t to t + 1, we use
∆Gt+1 to describe the updating subgraph applied to Gt,
i.e., Gt + ∆Gt+1 = Gt+1. Naturally, a dynamic network
G1:i from moment 1 to i can be described as a continuous
updating subgraph sequence applied at each moment. The
formal definition is given below.

Definition 1: A dynamic network Gi:j from moment i to j
is denoted as (Gi; ∆Gi+1, · · · ,∆Gj), where Gi(Vi, Ei) is a
weighted graph with node set Vi and edge set Ei, and ∆Gt+1
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Fig. 2. (a) The commutative diagram between dynamic networks Gt, Gt+1

and cluster sets St, St+1. The “divide-and-conquer” baseline and our Incre-
mental Tracking are annotated by solid and dotted lines respectively. (b) The
workflow of incremental tracking module, which shows our framework tracks
cluster evolution dynamics by only consuming the updating subgraph ∆Gt+1.

(i ≤ t < j) is an updating subgraph at moment t + 1 such
that Gt + ∆Gt+1 = Gt+1.

When the network evolves from Gt to Gt+1, we reasonably
assume that at moment t + 1, only a small portion of Gt is
incrementally updated, i.e., |Vt+1 − Vt| + |Vt − Vt+1| � |Vt|
and |Et+1 − Et| + |Et − Et+1| � |Et|. This assumption
generally holds in practice, and when it doesn’t, we can
shorten moment interval sufficiently to make the assumption
hold. For simplicity, we express ∆Gt+1 as a sequence of
node additions and deletions, e.g., ∆Gt+1 := +v1−v2 means
adding node v1 and all the edges incident with v1 in a single
operation, and analogously, deleting node v2 and its incident
edges in a subsequent operation.

Dynamic Clusters. Let’s suppose that Ct is a subgraph in Gt,
and isCluster(Ct) is a boolean function to validate whether
Ct is a cluster or not, with the exact definition given in Sec.
IV-C. In the following, we define a dynamic density cluster.

Definition 2: A dynamic cluster Ci:j from moment i to j
is denoted as (Ci; ∆Ci+1, · · · ,∆Cj) where isCluster(Ci) =
True, and ∆Ct+1 (i ≤ t < j) is an updating subgraph
at moment t + 1 that makes Ct + ∆Ct+1 = Ct+1 and
isCluster(Ct+1) = True.

The Problem. We focus on addressing the following problem:

Problem 1: Supposing Gi:j = (Gi; ∆Gi+1, · · · ,∆Gj) is
a large dynamic network and isCluster(Ct) is a binary
validation function for cluster candidate Ct, the problem of
incremental cluster evolution is to generate an updating sub-
graph sequence (∆Ci+1, · · · ,∆Cj) with Ct+∆Ct+1 = Ct+1

and isCluster(Ct+1) = True, where i ≤ t < j.

The cluster evolution patterns can be observed from the
updating sequence. For example, if Ct 6= ∅ but Ct+1 = ∅, it
means Ct dies at moment t + 1. Ct = ∅ but Ct+1 6= ∅, a
new cluster Ct+1 is born at moment t + 1. Typical cluster
evolution patterns include birth, death, growth, decay, merge
and split. In this paper, we aim to track the complete set of
cluster evolution patterns in real time.

III. INCREMENTAL TRACKING FRAMEWORK 0.5

We illustrate the relationship between dynamic networks
Gt, Gt+1 and cluster sets St, St+1 at consecutive moments
as a commutative diagram in Figure 2(a). The traditional
approaches for tracking dynamic network related problems
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Fig. 3. The functional relationships between different types of objects defined
in this paper, e.g., the arrow from Gt to Gt with label Ske means Gt =
Ske(Gt). Refer to Table I for notations.

usually follow a “divide-and-conquer” spirit [7], [8], which
consists of three components: (1) decompose a dynamic net-
work into a series of snapshots for each moment, (2) apply
graph mining algorithms on each snapshot to find useful
patterns, (3) match patterns between different moments to
generate a dynamic pattern sequence. Applied to our problem,
to track cluster evolution patterns, these steps are:

Step 1©: At moment t, identify the cluster set St from Gt;
Step 2©: At moment t+ 1, as the network evolves, generate

Gt+1 from Gt using ∆Gt+1;
Step 3©: Again, identify the cluster set St+1 from Gt+1;
Step 4©: Generate cluster evolution patterns from time t to

t+ 1 by tracing the correspondence between St and St+1.
However, this approach suffers from both performance and

quality. Firstly, repeated extraction of clusters from large
networks from scratch is a very expensive operation (steps 1©
and 3©), and tracing the correspondence between cluster sets
at successive moments is also expensive (step 4©). Secondly,
the step of tracing correspondence, since it is done after two
cluster sets are generated, may lead to loss of accuracy. In
contrast, the method we propose is incremental tracking of
cluster evolution, which corresponds to step 5© in Figure 2(a).
The workflow of this incremental tracking from moment t to
t+ 1 is illustrated in Figure 2(b). More precisely, for the very
first snapshot of the dynamic network, say G0, our approach
will generate the corresponding event set S0 from scratch.
After this, this step is never applied again. In the steady state,
we only apply step 5©, i.e., we incrementally derive St+1 from
St and ∆Gt+1. The experiments on real data set show that
our incremental tracking approach outperforms the traditional
baselines in both performance and quality.

IV. SKELETAL GRAPH CLUSTERING

The functional relationships between different types of
objects defined in this paper are illustrated in Figure 3. As
an example, the arrow from Gt to Gt with label Ske means
Gt is derived from Gt by function Ske, i.e., Gt = Ske(Gt).
See Table I for notations used. The various objects and their
relationships will be explained in the rest of the paper.

A. Post Network Construction

Our approach is based on constructing a network of posts
and maintaining the network over a moving time window, as
posts stream in and fade out. This network is used for subse-
quent analysis. In this section, we describe the construction.



Social Stream Preprocessing. Social posts such as tweets are
usually written in an informal way. Simply treating each post
text as a bag of words [14] will lead to loss of accuracy, since
different words have different weights in deciding the post’s
topic. To design a processing strategy that can quickly and
robustly extract the topic of a post, we focus on the entity
words. However, traditional Named Entity Recognition tools
[15] only support a narrow range of entities like Locations,
Persons and Organizations. NLP parser based approaches
[16] are not appropriate due to the informal writing style of
posts and the need for high processing speed. To broaden
the applicability, we treat each noun in the post text as a
candidate entity. Technically, we obtain nouns from a post
text using a Part-Of-Speech Tagger1, and if a noun is plural
(POS tag “NNS” or “NNPS”), we obtain its singular form. In
practice, we find this preprocessing technique to be robust and
efficient. In the Twitter dataset we used in experiments (see
Section VII), each tweet contains 4.9 entities on an average.
We formalize a post p as a triple (L, τ, u), where pL is the
list of entities, pτ is the time stamp, and pu is the author.
Fading Similarity. Traditional similarity measures such as TF-
IDF based cosine similarity, Jaccard Coefficient and Pearson
Correlation [14] only consider the post content. However,
clearly time stamps should play an important role in determin-
ing post similarity, since posts created closer together in time
are more likely to discuss the same event. We introduce the
notion of fading similarity to capture both content similarity
and time proximity. E.g., with Jaccard coefficient as the
underlying content similarity measure, the fading similarity
is defied as

SF (pi, pj) =
|pLi ∩ pLj |

|pLi ∪ pLj | · e
|pτi −pτj |

(1)

. where we use an exponential function to incorporate the
decaying effect of time lapse between the posts. It is trivial to
see that 0 ≤ SF (pi, pj) ≤ 1 and that SF (pi, pj) is symmetric.

Post Network. To find the correlation between posts, we build
a post network Gt(Vt, Et) based on the following rule: if the
fading similarity between two posts (pi, pj) is higher than a
given threshold λ, we create an edge e(pi, pj) between them
and set the edge similarity s(pi, pj) = SF (pi, pj). Obviously,
a lower λ retains more semantic similarities but results in much
higher computation cost, and we set λ = 0.3 empirically on
Twitter streams to gain a balance between edge sparsity and
information richness. Consider a time window of observation
and consider the post network at the beginning. While we
move forward in time and new posts appear and old posts
fade out, Gt(Vt, Et) is dynamically updated at each moment,
with new nodes/edges added and old nodes/edges removed.
On the scale of Twitter streams with millions of tweets per
hour, Gt(Vt, Et) is truly a large and fast dynamic network.

Linkage Search. Removing a node and associated edges from
Gt(Vt, Et) is an easy operation. In contrast, when a new post
pi appear, it is impractical to compare pi with each node
pj in Vt to verify the satisfaction of SF (pi, pj) > λ, since
the node size |Vt| can easily go up to millions. To solve this

1POS Tagger, http://nlp.stanford.edu/software/tagger.shtml

problem, first we construct a post-entity bipartite graph, and
then perform a two-step random walk process to get the hitting
counts. The main idea of linkage search is to let a random
surfer start from post node pi and walk to any entity node in
pLi on the first step, and continue to walk back to posts except
pi on the second step. All the posts visited on the second step
form the candidates of pi’s neighbors. Supposing the average
number of entities in each post is d1 and the average number
of posts mentioning each entity is d2, then linkage search can
find the neighbor set of a given post in time O(d1d2). In our
Twitter dataset, d1 and d2 are usually below 10, which supports
the construction of a post network on the fly.

B. Node Prioritization
In reality, many posts tend to be just noise, so it is

essential to identify those nodes that play a central role in
describing clusters. On web link graph analysis, there is a lot of
research on node authority ranking, e.g., HITS and PageRank
[14]. However, most of these methods are iterative and not
applicable to the single-pass computation on streaming data.
Node prioritization is a technique to quickly differentiate and
rank the processing order of nodes by their roles in a single
pass. It is extremely useful in big graph mining, where there
are too many nodes to be processed and many of them are
of little significance. However, to the best of our knowledge,
there is a lack of the study on single-pass node prioritization
in a streaming environment.

In this paper, we perform node prioritization based on
density parameters (ε, δ), where 0 < ε < 1, and ε ≤ δ. In
density-based clustering (e.g., DBSCAN [17]), the threshold
MinPts is used as the minimum number of nodes in an ε-
neighborhood, required to form a cluster. We adapt this and
use a weight threshold δ as the minimum total weight of
neighboring nodes, required to form a cluster. The reason
we choose density-based approaches is that, compared with
partitioning-based approaches (e.g., K-Means [18]) and hierar-
chical approaches (e.g., BIRCH [18]), density-based methods
such as DBSCAN define clusters as areas of higher density
than the remainder of the data set, which is effective in finding
arbitrarily-shaped clusters and is robust to noise. Moreover,
density-based approaches are easy to adapt to support single-
pass clustering. In the post network, we consider ε to be a
similarity threshold to decide connectivity, and can be used to
define the post priority.

Definition 3: Given a post p = (L, τ, a) in post network
Gt(Vt, Et) and similarity threshold ε, the priority of p at
moment t (t ≥ pτ ), is defined as

wt(p) =
1

e|t−pτ |

∑
q∈N (p)

SF (p, q) (2)

where N (p) is the subset of p’s neighbors with SF (p, q) > ε.

Notice that post priority decays as time moves forward.
Thus, post priority needs to be continuously updated. In
practice, we only store the sum

∑
q∈N (p) SF (p, q) with p to

avoid frequent updates and compute wt(p) on demand.

Skeletal Graph. With post priority computed, we use δ as a
priority threshold to differentiate nodes in Gt(Vt, Et):



• A post p is a core post if wt(p) ≥ δ;
• It is a border post if wt(p) < δ but there exists at least

one core post q ∈ N (p);
• It is a noise post if it is neither core nor border, i.e.,
wt(p) < δ and there is no core post in N (p).

Intuitively, a post is a core post if it shares enough common
entities with many other posts. Neighbors of a core post are at
least border posts, if not core posts themselves. Core posts play
a central role: if a core post p is found to be a part of a cluster
C, its neighboring (border or core) posts will also be a part of
C. This property can be used in the single-pass clustering: if
an incoming post p is “reachable” from an existing core post
q, post p will be assigned to the cluster with q. Core posts
connected by edges with similarity higher than ε will form a
summary of Gt(Vt, Et), that we call the skeletal graph.

Definition 4: Given post network Gt(Vt, Et) and density
parameters (ε, δ), we define the skeletal graph as the subgraph
of Gt(Vt, Et) induced by posts with wt(p) ≥ δ and edges with
similarity higher than ε. We write Gt = Ske(Gt).

Ideally, Gt(V t, Et) will retain important information in Gt.
Empirically, we found that adjusting the granularity of (ε, δ)
to make the size |V t| roughly equal to 20% of |Vt| leads to
a good balance between the quality of the skeletal graph in
terms of the information retained and its space complexity.
More tuning details can be found in Section VII-A.

C. Skeletal Cluster Identification

One of the key ideas in our incremental cluster evolution
tracking approach is to use the updating subgraph ∆Gt+1

between successive moments to maintain the skeletal clus-
ters. Post clusters are constructed from these skeletal clusers.
Maintaining skeletal clusters can be done efficiently since the
skeletal graph is much smaller in size than the post graph
it’s obtained from. Besides efficiency, skeletal cluster has the
advantage of giving the correspondence between successive
post clusters in a very small cost.

Definition 5: Given Gt(Vt, Et) and the corresponding
skeletal graph Gt(V t, Et), a skeletal cluster C is a connected
component of Gt. A post cluster is a set of core posts and
border posts generated from a skeletal cluster C, written as
C = Gen(C), using the following expansion rules:
• All posts in C form the core posts of C.
• For every core post in C, all its neighboring border posts

in Gt form the border posts in C.

In what follows, by cluster, we mean a post cluster, distin-
guished from the explicit term skeletal cluster. By definition,
a core post only appears in one (post) cluster. If a border post
is associated with multiple core posts in different clusters, this
border post will appear in multiple (post) clusters.

V. INCREMENTAL CLUSTER EVOLUTION

In this section, we discuss the incremental evolution of
skeletal graph and post clusters under the fading time window,
which forms the theoretical basis for the algorithms in Sec. VI.

U
se

r S
pa

ce

1tt

oldG
newG

Len

1t old t newG G G G

t
Moments

Fig. 4. An illustration of the fading time window from time t to t+1, where
post priority may fade w.r.t. the end of time window. Gt will be updated by
deleting subgraph Gold and adding subgraph Gnew .

A. Fading Time Window

Fading (or decay) function and sliding time window are two
common aggregation schemes used in time-evolving graphs
(e.g., see [9]). Fading scheme puts a higher emphasis on newer
posts, as captured by fading similarity in Eq. (1). Sliding
time window scheme (posts are first-in, first-out) is essential
because it provides a scope within which a user can monitor
and track the evolution. Since clusters evolve quickly from
moment to moment, even within a given time window, it is
important to highlight new posts and degrade old posts using
the fading scheme. Thus, we combine these two schemes and
introduce a fading time window, as illustrated in Figure 4.
In practice, users can specify the length of the time window
to adjust the scope of monitoring. Users can also choose
different fading functions to penalize old posts and highlight
new posts in different ways. Let ∆t denote the time interval.
For simplicity, we abbreviate the moment (t+i ·∆t) as (t+i).
When the time window slides from moment t to t+1, the post
network Gt(Vt, Et) will be updated to be Gt+1(Vt+1, Et+1).
Suppose Gold(Vold, Eold) is the old subgraph (of Gt) that
lapses at moment t + 1 and Gnew(Vnew, Enew) is the new
subgraph (of Gt+1) that appears (see Figure 4). Clearly,

Gt+1 = Gt −Gold +Gnew (3)

Let Len be the time window length. We assume Len > 2∆t,
which makes Vold ∩ Vnew = ∅. This assumption is reasonable
in applications, e.g., we set Len to 1 week and ∆t to 1 day.

B. Network Evolution Operations

We analyze the evolution process of networks and clusters
at each moment and abstract them into five primitive operators:
+, −, �, ↑, ↓. We classify the operators based on the objects
they manipulate: nodes or clusters, and define them below.

Definition 6: Primitive node operations:
• Gt + p: add a new post p into Gt(Vt, Et) where p 6∈ Vt.

All the new edges associated with p will be constructed
automatically by linkage search (explained in Sec. IV-A);
• Gt−p: delete a post p from Gt(Vt, Et) where p ∈ Vt. All

the existing edges associated with p will be automatically
removed from Et.
• �Gt: update the post priority scores in Gt.
Composite node operations:
• Gt⊕p = �(Gt+p): add a post p into Gt(Vt, Et) where
p 6∈ Vt and update the priority of related posts;



• Gt 	 p = �(Gt − p): delete a post p from Gt(Vt, Et)
where p ∈ Vt and update the priority of related posts.

Definition 7: Primitive cluster evolution operations:
• +C: generate a new cluster C;
• −C: remove an old cluster C;
• ↑ (C, p): increase the size of C by adding post p;
• ↓ (C, p): decrease the size of C by removing post p.
Composite cluster evolution operations:
• Merge(S) = +C − S: merge a set of clusters S into a

new single cluster C and remove S;
• Split(C) = −C + S: split a single cluster C into a set

of new clusters S and remove C.

In particular, composite node operations are designed to
conveniently describe the adding/deleting of posts with pri-
ority scores updated in the same time, and composite cluster
operations are designed to capture the advanced evolution
patterns of clusters. Each operator defined above on a single
object can be extended to a set of objects, i.e., for a node set
X = {p1, p2, · · · , p}, Gt +X = Gt + p1 + p2 + · · ·+ p. This
is well defined since + is associative and commutative. We
use the left-associative convention for ‘−’: that is, we write
A−B−C to mean (A−B)−C. These operators will be used
later in the formal description of the evolution procedures.
Figure 5(a) depicts the role played by the primitive operators
in the tracking of cluster evolutions from dynamic networks.

C. Skeletal Graph Evolution Algebra

The updating of skeletal graphs from Gt to Gt+1 is the
core task in cluster evolution tracking. If we ignore the node
priorities for a moment, the following formula shows different
ways to compute the overlapping part in Gt+1 and Gt, as
illustrated in Figure 4(b):

Gt+1 −Gnew = Gt −Gold = Gt+1 	Gnew = Gt 	Gold (4)

However, at the skeletal graph level, Ske(Gt+1−Gnew) 6=
Ske(Gt−Gold): some core posts in Gt−Gold may no longer
be core posts due to the removal of edges incident with nodes
in Gold or simply due to the passing of time; some non-
core posts may become core posts because of the adding of
edges with nodes in Gnew. To measure the changes in the
overlapping part, we define the following three components.

Definition 8: Updated components in overlap:
• S+ = Ske(Gt+1 − Gnew) − Ske(Gt+1 	 Gnew): com-

ponents of non-core posts in Gt−Gold that become core
posts in Gt+1 −Gnew due to the adding of Gnew;

• S− = Ske(Gt − Gold) − Ske(Gt 	 Gold): components
of core posts in Gt − Gold that become non-core posts
in Gt+1 −Gnew due to the removing of Gold;

• S� = Ske(Gt	Gold)−Ske(Gt+1	Gnew): components
of core posts in Gt − Gold that become non-core posts
in Gt+1 −Gnew due to the passing of time.

Based on Definition 8, from moment t to t+1, the changes
of core posts in the overlapping part, i.e., Gt+1 − Gnew

Post Network Clu Skeletal Clusters

Skeletal GraphSke Gen

(a)

|Nc(p)| 0 1 ≥ 2
Add a core post p + ↑ Merge

Delete a core post p − ↓ Split
(b)

Fig. 5. (a) The relationships between primitives and evolutions. Each
box represents an evolution object and the arrows between them describe
inputs/outputs. (b) The evolutionary behavior table for clusters when adding
or deleting a core post p.

(equivalently, Gt−Gold – see Figure 4), can be updated using
the components S+, S− and S�. That is,

Ske(Gt+1 −Gnew)− Ske(Gt −Gold)

= (Ske(Gt+1 −Gnew)− Ske(Gt+1 	Gnew))

−(Ske(Gt −Gold)− Ske(Gt 	Gold))

−(Ske(Gt 	Gold)− Ske(Gt+1 	Gnew))

= S+ − S− − S� (5)

Let Sold and Snew denote the sets of skeletal clusters
in Gold and Gnew respectively. The following theorem
characterizes the iterative and incremental updating of skeletal
graphs from moment t to t+ 1, and it plays a central role in
the cluster evolution.

Theorem 1: From moment t to t + 1, the skeletal graph
evolves by removing core posts in Gold, adding core posts in
Gnew and updating core posts in the overlapping part. That is

St+1 = St − Sold − S− − S� + Snew + S+ (6)

Proof Sketch: Since operator ‘−’ does not update post
priority, we have Ske(Gt+1 − Gnew) = Ske(Gt+1) −
Ske(Gnew) = St+1 − Sn, Ske(Gt − Gold) = Ske(Gt) −
Ske(Gold) = St − Sold. Then, St+1 − Snew − St + Sold =
S+ − S− − S� and we get the conclusion. 2

Theorem 1 indicates that we can incrementally maintain
skeletal clusters St+1 from St. Since we define (post) clusters
based on skeletal clusters, this incremental updating of skeletal
clusters benefits incremental updating of cluster evolution
essentially.

D. Incremental Cluster Evolution

Let St = Clu(Gt) denote the set of clusters obtained from
the post network Gt. Notice that noise posts in Gt do not
appear in any clusters, so the number of posts in St is typically
smaller than |Vt|. Next, we explore the incremental cluster
evolution problem from two levels: the node-by-node updating
level and subgraph-by-subgraph updating level.

Node-by-Node Evolution. The basic operations underlying
cluster evolution are the cases when St is modified by the
addition or deletion of a cluster that includes only one post.
In the following, we analyze and show the evolution of clusters
by adding or deleting a post p. When adding p, we let Nc(p)



denote the set of clusters that p’s neighboring core posts belong
to before p is added. When deleting p, let Nc(p) denote the
set of clusters that p’s neighboring core posts belong to after
p is removed. |Nc(p)| = 0 means p has no neighboring core
posts. Notice that Merge and Split are composite operations
and can be decomposed into a series of cluster primitive
operations. We show the evolution behaviors of clusters in
Figure 5(b) and explain the detail below.

(a) Addition: St + {p}
If p is a noise post after being added into Gt, ignore p. If

p is a border post, add p to each cluster in Nc(p). Else, p is
a core post and we do the following:
• If |Nc(p)| = 0: apply +C, where C = {p} ∪ N (p);
• If |Nc(p)| = 1: apply ↑ (C, {p} ∪N (p)), where C is the

lone cluster in Nc(p);
• If |Nc(p)| ≥ 2: apply Merge = +C −

∑
C′∈Nc(p) C

′

and C = Nc(p) ∪ {p} ∪ N (p).
(b) Deletion: St − {p}
If p is a noise post before being deleted from Gt, ignore

p. If p is a border post, delete p from each cluster in Nc(p).
Else, p is a core post and we do the following:
• If |Nc(p)| = 0: apply −C where p ∈ C;
• If |Nc(p)| = 1: apply ↓ (C, {p} ∪ N (p));
• If |Nc(p)| ≥ 2: apply Split = −C +

∑
C′∈Nc(p) C

′,
where p ∈ C before the deletion.

Subgraph-by-Subgraph Evolution. When dynamic networks
such as post networks in social streams surge quickly, the
node-by-node processing for cluster evolution will lead to
a poor performance. To accelerate the performance, we
consider the subgraph-by-subgraph updating approach. Let
Clu(Gnew) = Snew and Clu(Gold) = Sold be the cluster
sets of the graphs Gnew and Gold, and St be the set of all
clusters at moment t. As the time window moves forward to
moment t + 1, if we add Gnew to the network Gt, clusters
will evolve as follows:

Clu(Gt +Gnew) = Gen(Ske(Gt +Gnew))

= Gen(Ske(Gt) + Ske(Gnew) + S+ − S�) (Definition 8)
= St + Snew + S+ − S� (7)

where S+ = Gen(S+) and S� = Gen(S�). Similarly, if we
remove Gold from the network Gt, clusters evolve as follows:

Clu(Gt −Gold) = Gen(Ske(Gt −Gold))

= Gen(Ske(Gt)− Ske(Gold)− S−) (Definition 8)
= St − Sold − S− (8)

where S− = Gen(S−). Based on Equation (7) and (8), from
moment t to t + 1, the set of clusters can be incrementally
updated by the iterative computation

St+1 = Clu(Gt+1) = Clu(Gt −Gold +Gnew)

= St − Sold − S− + Snew + S+ − S� (9)

Equation (9) can be also verified by applying Gen function
on both sides of Equation (6). Naturally, Equation (9) provides
a theoretical basis for the incremental computation of cluster
evolution: as the post network evolves from Gt to Gt+1, we

do not compute St+1 from Gt+1. Instead, we incrementally
update St by means of the five cluster sets appearing in
Equation (9), using simple set operations. Since the sizes of
Gold and Gnew are usually very small compared with Gt,
these five cluster sets are also of small size and so we can
generate St+1 quickly from them. The details of incremental
computation are discussed in Section VI.

VI. INCREMENTAL ALGORITHMS

The traditional approach of decomposing an evolving graph
into a series of snapshots suffers from both quality and perfor-
mance, since clusters are generated from scratch and matched
heuristically at each moment. To overcome this limitation, we
propose an incremental tracking framework, as introduced in
Section V and illustrated in Figure 2(b). In this section, we
leverage our incremental computation by proposing Algorithm
1 for the incremental cluster maintenance (ICM) and Algo-
rithm 2 for the cluster evolution tracking (eTrack) respectively.
Since at each moment |Vold|+ |Vnew| � |Vt|, our algorithms
can save a lot computation by adjusting clusters incrementally,
rather than generating them from scratch.

Bulk Updating. Traditional incremental computation on dy-
namic graphs usually treats the addition/deletion of nodes or
edges one by one [19], [20]. However, in a real scenario,
since social posts arrive at a high speed, the post-by-post
incremental updating will lead to very poor performance. In
this paper, we speed up the incremental computation of St by
bulk updating. Clearly, updating St with a single node {p} is
a special case of bulk updating. Here, a bulk corresponds to a
cluster of posts and we “lift” the post-by-post updating of St to
the bulk updating level. Recall that Nc(p) is the neighboring
cluster set of p where p is a core post. To understand the
bulk updating in Algorithm 1, for a cluster C, we define
Nc(C) as the neighboring cluster set of posts in C, i.e.,
Nc(C) = ∪p∈CNc(p) where C = Ske(C). When C is added
into or deleted from St as a bulk, the size of Nc(C) will decide
the evolution patterns of clusters from moment t to t+ 1 after
C is added or deleted, as shown in Figure 5(b). Since C is
usually a small subgraph, we consider a bulk operation can be
done in constant time.

Incremental Cluster Maintenance (ICM). The steps for
incremental cluster maintenance (ICM) from any moment t
to t+ 1 are summarized in Algorithm 1. The ICM algorithm
follows the iterative computation shown in Equation (9), that
is St+1 = St − Sold − S− − S� + Snew + S+. As analyzed
in Section V-D, each bulk addition and bulk deletion has
three possible evolution behaviors, decided by the size of
Nc(C). Lines 3-13 deal with deleting a bulk C, where three
patterns {−, ↓, Split} are handled. Lines 15-26 deal with
adding a bulk C and handle another three patterns {+, ↑,
Merge}. Supposing there are n bulk updates in ICM, the time
complexity of ICM is O(n). Since a bulk operation is generally
completed in constant time, ICM is an efficient single-pass
incremental computation algorithm.



Algorithm 1: ICM: Incremental Cluster Maintenance
Input: St, Sold, Snew, S−, S+, S�
Output: St+1

1 St+1 = St;
// Delete Sold ∪ S−

2 for each cluster C in Sold ∪ S− ∪ S� do
3 C = Ske(C);
4 Nc(C) = ∪p∈CNc(p);
5 if |Nc(C)| = 0 then
6 remove cluster C from St+1;

7 else if |Nc(C)| = 1 then
8 delete C from cluster C′ where C′ ∈ Nc(C);

9 else
10 remove the cluster that C belongs to from St+1;
11 for each cluster C′ ∈ Nc(C) do
12 assign a new cluster id for C′;
13 add C′ into St+1;

// Add Snew ∪ S+

14 for each cluster C in Snew ∪ S+ do
15 C = Ske(C);
16 Nc(C) = ∪p∈CNc(p);
17 if |Nc(C)| = 0 then
18 assign a new cluster id for C and add C to St+1;

19 else if |Nc(C)| = 1 then
20 add C into cluster C′ where C′ ∈ Nc(C);

21 else
22 assign a new cluster id for C;
23 for each cluster C′ ∈ Nc(C) do
24 C = C ∪ C′;
25 remove C′ from St+1;

26 add C into St+1;

27 return St+1;

Cluster Evolution Tracking (eTrack). Given a dynamic
network Gi:j and the set of clusters Si at the start moment i,
the eTrack algorithm will track the primitive cluster evolution
operations at each moment, working on top of the ICM
algorithm (Line 3). We summarize the steps of eTrack in Alg.
2. Basically, eTrack monitors the changes of clusters effected
by ICM at each moment. If the cluster is not changed, eTrack
will take no action; otherwise, eTrack will determine the
corresponding cases and output the cluster evolution patterns
(Lines 4-12). Notice that in Lines 5-8, if a cluster C in St has
ClusterId id, we use the convention that St(id) = C to access
C by id, and St(id) = ∅ means there is no cluster in St with
ClusterId id. Especially, lines 7-8 mean a cluster in St evolves
into a cluster in St+1 by deleting the posts in St(id)−St+1(id)
first and adding the posts in St+1(id) − St(id) later. As an
efficient monitoring algorithm, once we get St+1 incrementally
by ICM, the time complexity of eTrack is linear in the number
of clusters in St and St+1 at each moment.

VII. EXPERIMENTS

In this section, we first discuss how to tune the construction
of post network and skeletal graph to find the best selection

Algorithm 2: eTrack: Cluster Evolution Tracking
Input: G = {Gi, Gi+1, · · · , Gj}, Si

Output: Primitive cluster evolution operations
1 for t from i to j do
2 obtain Sold, Snew, S−, S+ from Gi+1 −Gi;
3 St+1 = ICM(St, Sold, Snew, S−, S+, S�);
4 for each cluster C ∈ St+1 do
5 id = ClusterId(C);
6 if St(id) 6= ∅ then
7 output ↓ (C, St(id)− St+1(id));
8 output ↑ (C, St+1(id)− Si(id));

9 else +C;

10 for each cluster C ∈ Si do
11 id = ClusterId(C);
12 if St+1(id) = ∅ then −C;
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Fig. 6. The trends of the number of core posts, core edges and events when
increasing δ from 0.3 to 0.8. We set δ = ε = 0.3 as the 100% basis.

of entity extraction and density parameters. Then, we test
the quality and performance of cluster evolution tracking
algorithms on two social streams: Tech-Lite and Tech-Full that
we crawled from Twitter. Our event detection baseline covers
the major techniques reported in [1], [2], [3], [4]. Our evolution
tracking baseline captures the essence of the state of the art
algorithms reported in [7], [8]. All experiments are conducted
on a computer with Intel 2.66 GHz CPU, 4 GB RAM. All
algorithms are implemented in Java. We use the graph database
Neo4J2 to store and manipulate the post network.

Datasets. All datasets are crawled from Twitter via Twitter
API. Although our cluster evolution tracking algorithm works
regardless of the domain, in order to facilitate evaluation, we
make the dataset domain specific. The crawling of datasets is
performed as follows. We built a technology domain dataset
called Tech-Lite by aggregating all the timelines of users listed
in the Technology category of “Who to follow”3 and their
retweeted users. Tech-Lite has 352,328 tweets, 1402 users and
the streaming rate is about 11700 tweets/day. Based on the
intuition that the followees of users in Technology category
are most likely to be in the same domain, we obtained a larger
technology social stream called Tech-Full by collecting all the
timelines followed by users in the Technology category. Tech-
Full has 5,196,086 tweets, created by 224,242 users, whose
streaming rate is about 7216 tweets/hour. Both Tech-Lite and
Tech-Full include retweets and have a time span from Jan. 1
to Feb. 1, 2012. Since each tweet corresponds to a node in the

2http://neo4j.org/
3http://twitter.com/who_to_follow/interests



(a) Results of different entity extraction approaches.

Methods #edges #coreposts #coreedges #events
Hashtags 182905 6232 28964 196
Unigrams 142468 15070 46783 430

POS-Tagger 357132 21509 47808 470

(b) Precision and recall of top 50 events.

Methods Precision Recall Precision
(major events) (major events) (G-Trends)

HashtagPeaks 0.40 0.30 0.25
UnigramPeaks 0.45 0.40 0.20

Louvain 0.60 0.55 0.75
eTrack 0.80 0.80 0.95

TABLE II
TUNING POST NETWORK.

post network, both Tech-Lite and Tech-Full produce highly
dynamic networks. Notice that the performance of our single-
pass incremental approach is mainly affected by the streaming
rate, rather than the dataset size.

A. Tuning Post Network and Skeletal Graph

Post Preprocessing. As described in Section IV, we extract
entities from posts by POS tagger. One alternative approach
to entity extraction is using hashtags. However, only 11%
of the tweets in our dataset have hashtags, which results
in lots of posts in the dataset having no similarity score
between them. Another approach is simply tokenizing tweets
into unigrams and treating unigrams as entities, and we call
it the “Unigrams” approach, as discussed in [2]. Table 2(a)
shows the comparison of the three entity extraction approaches
in the first time window of the Tech-Full social stream. If we
use “Unigrams”, obviously the number of entities is larger than
other two approaches, but the number of edges between posts
tends to be smaller, because tweets written by different users
usually share very few common words even when they talk
about the same event. The “Hashtags” approach also produces
a smaller number of edges, core posts and events, since it
generates a much sparser post network. Overall, the “POS-
Tagger” approach can discover more similarity relationships
between posts and produce more core posts and events given
the same social stream and parameter setting.

Density Parameters. The density parameters (ε, δ) control
the construction of the skeletal graph. Clearly, the higher the
density parameters, the smaller and sparser the skeletal graph.
Figure 6 shows the number of core posts, core edges and
events as a percentage of the numbers for ε = 0.3, as δ
increases from 0.3 to 0.8. Results are obtained from the first
time window of the Tech-Full social stream. We can see the
rate of decrease of #events is higher than the rates of #core
posts and #core edges after δ > 0.4, because events are
less likely to form in sparser skeletal graphs. More small
events can be detected by lower density parameters, but the
computational cost will increase because of larger and denser
skeletal graphs. However, for big events, they are not very
sensitive to these density parameters. We set ε = 0.3, δ = 0.5
as a trade-off between the size and number of events one hand

Jan 15, 2012 Jan 22, 2012 Jan 29, 2012

SOPA 
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SOPA 
Facebook SOPA 
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Fig. 7. Examples of Google Trends peaks in January 2012. We validate
the events generated by cTrack by checking the existence of volume peaks
at a nearby time moment in Google Trends. Although these peaks can detect
bursty events, Google Trends cannot discover the merging/splitting patterns.
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Fig. 8. Lists of top 10 events detected from Twitter Technology streams
in January 2012 by baseline HashtagPeaks, UnigramPeaks, Louvain and our
incremental tracking approach eTrack.

and processing efficiency on the other.

B. Cluster Evolution Tracking

Ground truth. To generate the ground truth, we crawl news
articles in January 2012 from famous technology websites
such as TechCrunch, Wired, CNET, etc, without looking at
tweets. Then we treat the titles of news as posts and apply our
event tracking algorithm to extract event evolution patterns.
Finally, a total of 20 major events with life cycles are identified
as ground truth. Typical events include “happy new year”,
“CES 2012”, “sopa wikipedia blackout”, etc. To find more
small and less noticeable events, we use Google Trends for
Search4, which shows the traffic trends of keywords that
appeared in Google Search along the time dimension. If an
event-indicating phrase has a volume peak in Google Trends
at a specific time, we say this event is sufficiently validated
by the real world. We validate the correctness of an event Ci
by the following process: we pick the top 3 entities of Ci
ranked by frequency and search them in Google Trends, and
if the traffic trend of these top entities has a distinct peak at a
nearby time to Ci, we consider that Ci corresponds to a real
world event widely witnessed by the public. Four examples of
Google Trends peaks are shown in Figure 7. It is not surprising
to find that the birth of events in social streams is usually
earlier than its appearance in Google Trends.

Cluster Annotation. Considering the huge volume of posts
in a cluster, it is important to summarize and present a post
cluster as a conceptual event to aid human perception. In
related work, Twitinfo [2] represents an event it discovers from
Twitter by a timeline of tweets, showing the tweet activity by
volume over time. However, it is tedious for users to read

4http://www.google.com/trends/



tweets one-by-one to figure out the event detail. In this paper,
we summarize a snapshot of a cluster by a word cloud [21].
The font size of a word in the cloud indicates its popularity.
Compared with Twitinfo, word cloud provides a summary of
the cluster at a glance and is much easier for human to read.

Baseline 1: Peak-Detection. In recent works [1], [2], [3],
[4], events are generally detected as volume peaks of phrases
over time in social streams. These approaches share the same
spirit that aggregates the frequency of event-indicating phrases
at each moment to build a histogram and generates events
by detecting volume peaks in the histogram. We design two
variants of Peak-Detection to capture the major techniques
used by these state-of-the-art approaches.
• Baseline 1a: HashtagPeaks which aggregates hashtags;
• Baseline 1b: UnigramPeaks which aggregates unigrams.
Notice, both baselines above are for event detection only.

Lists of the top 10 events detected by HashtagPeaks and Un-
igramPeaks are presented in Figure 8. Some highly frequent
hashtags like “#opengov” and “#opendata” are not designed
for event indication, hurting the precision. UnigramPeaks
uses the unigrams extracted from the social stream prepro-
cessing stage, which has a better quality than HashtagPeaks.
However, both of them are limited in their representation of
events, because the internal structure of events is missing.
Besides, although these peaks can detect bursty words, they
cannot discover cluster evolution patterns such as the merg-
ing/splitting. For example, in Figure 7, there is no way to
know “Apple announced iBooks” is a split from the big event
“SOPA” earlier, as illustrated in detail in Figure 9.

Baseline 2: Community Detection. A community in a large
network refers to a subgraph with dense internal connections
and sparse connections with other communities. It is pos-
sible to define an event as a community of posts. Louvain
method [22], based on modularity optimization, is the state-
of-the-art approach community detection method in terms
of performance. We design a baseline called “Louvain” to
detect events defined based on post communities. The top 10
events generated by Louvain are shown in Figure 8. As we
can see, not every result detected by the Louvain method is
meaningful. For example, “Apple iphone ipad” and “Internet
people time” are too vague to correspond to any concrete
real events. The reason is, although Louvain method can
make sure every community has relatively dense internal and
sparse external connections, it cannot guarantee that every
node in the community is important and has a sufficiently high
connectivity with other nodes in the same community. It is
highly possible that a low-degree node belongs to a community
only because it has zero connectivity with other communities.
Furthermore, noise posts are quite prevalent in Twitter and
they negatively impact Louvain method.

Baseline 3: Pattern-Matching. We design a baseline to track
the evolution patterns of clusters between snapshots. In graph
mining, the “divide-and-conquer” approach of decomposing
the evolving graph into a series of snapshot graphs at each
moment is a traditional way to tackle evolving graph related

problems [7], [8]. As an example, Kim et al. [8] first cluster
individual snapshots into quasi-cliques and then map them
in adjacent snapshots over time. Inspired by this approach,
we design a baseline for cluster evolution tracking, which
characterizes the cluster evolution at consecutive moments, by
identifying certain heuristic patterns:
• If |Ct∩Ct+1|

|Ct∪Ct+1|
≥ κ and |Ct| ≤ |Ct+1|, Ct+1 =↑ Ct;

• If |Ct∩Ct+1|
|Ct∪Ct+1|

≥ κ and |Ct| > |Ct+1|, Ct+1 =↓ Ct.
where Ct and Ct+1 are any two clusters detected at moment
t and t + 1 respectively, κ% is the minimal commonality to
say Ct and Ct+1 are different snapshots of the same cluster.
A higher κ% will result in a higher precision but a lower
recall of the evolution tracking. Empirically we set κ% = 90%
to guarantee the quality. It is worth noting that this baseline
generates the same clusters as the eTrack algorithm, but with
a non-incremental evolution tracking approach.

Precision and Recall. To measure the quality of event detec-
tion, we use HashtagPeaks, UnigramPeaks and Louvain
as baselines to compare with our algorithm eTrack. It is
worth noting that Baseline 3 is designed for the tracking
of event evolution patterns between moments, so we omit it
here. We compare the precision and recall of top 20 events
generated by baselines and eTrack and show the results in
Table 2(c). Compared with the ground truth, HashtagPeaks
and UnigramPeaks have rather low precision and recall
scores, because of their poor ability in capturing event bursts.
Notice that multiple extracted events may correspond to the
same ground truth event. eTrack outperforms the baselines
in both precision and recall. Since there are many events
discussed in the social media but not very noticeable in news
websites, we also validate the precision of the generated events
using Google Trends. As we can see, HashtagPeaks and
UnigramPeaks perform poorly under Trends validation, since
the words they generate are less informative and not very
event-indicating. eTrack gains a precision of 95% in Google
Trends, where the only failed result is “Samsung galaxy
nexus”, whose volume is steadily high without obvious peaks
in Google Trends. The reason may be that the social stream is
very dynamic. Louvain is worse than eTrack. The results show
eTrack is significantly better than the baselines in quality.

Life Cycle of Cluster Evolution. Our approach is capable of
tracking the whole life cycle of a cluster, from birth to death.
We explain this using the example of “CES 2012”, a major
consumer electronics show held in Las Vegas from January 10
to 13. As early as Jan 6, our approach has already detected
some discussions about CES and generated an event about
CES. On Jan 8, most people talked about “CES prediction”,
and on Jan 9, the highlighted topic was “CES tomorrow” and
some hearsays about “ultrabook” which would be shown in
CES. After the actual event happened on Jan 10, the event grew
distinctly bigger, and lots of products, news and messages are
spreading over the social network, and this situation continues
until Jan 13, which is the last day of CES. Afterwards, the
discussions become weaker and continue until Jan 14, when
“CES” was not the biggest mention on that day but still existed
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Fig. 9. The merging and splitting of “SOPA” and “Apple”. At each moment,
an event is annotated by a word cloud. Baselines 1 and 2 only works for
the detection of new emerging events, and is not applicable for the tracking
of merging and splitting dynamics. The evolution trajectories of eTrack and
Baseline 3 are depicted by solid and hollow arrows respectively.

in some discussions. Compared with our approach, Baselines
1 and 2 can detect the emerging of “CES” with a frequency
count at each moment, but no trajectory is generated. Baseline
3 can track a very coarse trajectory of this event, i.e., from Jan
10 to Jan 12. The reason is, if an event changes rapidly and
many posts at consecutive moments cannot be associated with
each other, Baseline 3 will fail to track the evolution. Since in
social streams the posts usually surge quickly, our approach
is superior to the baselines.

Cluster Merging & Splitting. Figure 9 illustrates an exam-
ple of cluster merging and splitting generated by algorithm
eTrack. eTrack detected the event of SOPA (Stop Online
Piracy Act) and Wikipedia on Jan 16, because on that day
Wikipedia announced the blackout on Wednesday (Jan 18) to
protest SOPA. This event grew distinctly on Jan 17 and Jan 18,
by inducing more people in the social network to discuss about
this topic. At the same time, there was another event detected
on Jan 18, discussing Apple’s products. On Jan 19, actually
the SOPA event and Apple event were merged, because Apple
joined the SOPA protest and lots of Apple products such
as iBooks in education are directly related to SOPA. This
event evolved on Jan 20, by adding more discussions about
iBooks 2. Apple iBooks 2 was actually unveiled in Jan 21,
while this new product gained lots of attention, people who
talked about iBooks did not talk about SOPA anymore. Thus,
on Jan 21, the SOPA-Apple event was split into two events,
which would evolve independently afterwards. Unfortunately,
the above merging and splitting process cannot be tracked by
any of the baselines, which output some independent events.

C. Running Time of Evolution Tracking

Remind that Baseline 1 and 2 are for event identification
in a fixed time window. For evolution tracking, we measure
how the Baseline 3 and eTrack scale w.r.t. both the varying
time window width and the step length. We use both Tech-
Lite and Tech-Full streams, and set the time step interval
∆t = 1 day for Tech-Lite, ∆t = 1 hour for Tech-Full to
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Fig. 10. The running time on two datasets as the adjusting of the time
window length and step length.

track events on different time granularity. The streaming post
rates for Tech-Lite and Tech-Full are 11700/day and 7126/hour
respectively. Figure 10(a) shows the running time of eTrack
when we increase the time window length, and we can see for
a time window of 10∆t hours in Tech-Full, our approach can
finish the post preprocessing, post network construction and
event tracking in just 3 minutes. A key observation is that the
running time of eTrack does not depend on the overall size of
the dataset. Rather, it depends on the streaming speed of posts
in ∆t. Thus, Tech-Lite takes more time than Tech-Full since its
streaming posts in ∆t is higher. Figure 10(b) shows if we fix
the time window length as 10∆t and increase the step length
of the sliding time window, the running time of eTrack grows
nearly linearly. Compared with our incremental computation,
Baseline 3 has to process posts in the whole time window from
scratch at each moment, so the running time will be steadily
high. If the step length is larger than 4∆t in TechFull, eTrack
does not have an advantage in running time compared with
Baseline 3, because a large part of post network is updated at
each moment. However, this extreme case is rare. Since in a
real scenario, the step length is much smaller than the time
window length, our approach shows much better efficiency
than the baseline approach.

VIII. RELATED WORK

Related work mainly falls in one of these categories.

Clustering and Evolving Graphs. In this paper, we sum-
marize an original post network into a skeletal graph based
on density parameters. Compared with partitioning-based ap-
proaches (e.g., K-Means [18]) and hierarchical approaches
(e.g., BIRCH [18]), density-based clustering (e.g., DBSCAN
[18]) is effective in finding arbitrarily-shaped clusters, and
is robust to noise. The main challenge is to apply density-
based clustering on fast evolving post networks. CluStream
[23] is a framework that divides the clustering process into
an online component which periodically generates detailed
summary statistics for nodes and an offline component which
uses only the summary statistics for clustering. However,
CluStream is based on K-Means only. DenStream [9] presents
a new approach for discovering clusters in an evolving data
stream by extending DBSCAN. This work is related to us
in that both employ density based clustering. The differences
between our approach and DenStream were discussed in detail
in the introduction. Subsequently, DStream [19] uses an online
component which maps each input data record into a grid and



an offline component which generates grid clusters based on
the density. Another related work is by Kim et al. [8], which
first clusters individual snapshots into quasi-cliques and then
maps them over time by looking at the density of bipartite
graphs between quasi-cliques in adjacent snapshots. Although
[8] can handle birth/growth/decay/death of clusters, it is not
incremental and the split and merge patterns are not supported.
In contrast, our approach is totally incremental and is able to
track composite behaviors like merging and splitting.

Social Stream Mining. Weng et al. [24] build signals for
individual words and apply wavelet analysis on the frequency
of words to detect events from Twitter. Twitinfo [2] detects
events by keyword peaks and represents an event it discovers
from Twitter by a timeline of related tweets. Recently, Agarwal
et al. [10] discover events that are unraveling in microblog
streams, by modeling events as dense clusters in highly dy-
namic graphs. Angel et al. [11] study the efficient maintenance
of dense subgraphs under streaming edge weight updates. Both
[10] and [11] model the social stream as an evolving entity
graph, but suffer from the drawback that post attributes like
time and author cannot be reflected. Another drawback of [10]
and [11] is that they can only handle edge-by-edge updates,
and cannot handle subgraph-by-subgraph bulk updates, which
are key to efficiency. Both drawbacks are solved in our paper.

Topic/Event/Community detection and tracking. Most pre-
vious works detect events by discovering topic bursts from a
document stream. Their major techniques are either detecting
the frequency peaks of event-indicating phrases over time in
a histogram, or monitoring the formation of a cluster from a
structure perspective. A feature-pivot clustering is proposed
in [5] to detect bursty events from text streams. Sarma et
al. [4] design efficient algorithms to discover events from a
large graph of dynamic relationships. Jin et al. [25] present
Topic Initiator Detection (TID) to automatically find which
web document initiated the topic on the Web. Louvain method
[22], based on modularity optimization, is the state-of-the-
art community detection approach which outperforms others.
However, Louvain method is not robust against massive noise,
such as is present in Twitter streams. None of the above works
address the event evolution tracking problem. There is less
work on evolution tracking. An event-based characterization
of behavioral patterns for communities in temporal interaction
graphs is presented in [7]. A framework for tracking short,
distinctive phrases (called “memes”) that travel relatively
intact through on-line text was developed in [1]. The evolution
of communities in dynamic social networks is tracked in [26].
Unlike them, we focus on the incremental tracking of cluster
evolution in highly dynamic networks.

IX. CONCLUSION

Our main goal in this paper is to track the event evolution
patterns from highly dynamic networks. To that end, we sum-
marize the network by a skeletal graph and monitor the updates
to the post network by means of a sliding time window.
Then, we design a set of primitive operations and express

the cluster evolution patterns using these operations. Unlike
previous approaches, our evolution tracking algorithm eTrack
performs incremental bulk updates in real time. We deploy our
approach on the event evolution tracking task in social streams,
and experimentally demonstrate the performance and quality
on two real data sets crawled from Twitter. Our experiments
show that our approach outperforms the baselines. In the
future, it would be interesting to investigate the evolution of
social emotions on products for business intelligence.
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