
403:	Algorithms	and	Data	
Structures

Prof.	Petko	Bogdanov

Introduction

Fall	2016
UAlbany

Computer	Science



What	is	this	course	about?

• Design	and	analysis	of	algorithms.
• What	is	an	algorithm?
• Algorithm:	a	well-defined	(computational)	
procedure	to	solve	a	problem

Input:
Dirty	
Hands

Output:
Clean
Hands



Before	we	delve	into	algorithms…

• Instructor:	Petko	Bogdanov,
• For	this	week	only:	Prof.	Mariya Zheleva
– mzheleva@albany.edu

• Office	Hours:	Tue,	Thu:	1pm	to	3pm,	or	by	
appointment

• Office:	UAB	416	->	Administrative	building	not	
on	the	podium	(1215	Western	Ave)

• Email:	pbogdanov@albany.edu



UAB



TAs

• Ashish Jadhav
– ajadhav2@albany.edu
– Office	hours:	Tue,Thu 10:30am-11:30am.

• Zumrut Akcam
– zakcam@albany.edu
– Office	hours:	Tue	3-4pm	and	Wed	11am-12pm

• TA	office	hours	rooms	TBD	(look	for	an	
announcement	from	Blackboard)



Prerequisites

• Prerequisites:	
– CSI	210	(Discrete	Structures)	and	
– CSI	213	(Data	Structures)

• Is	there	someone	who	has	not	taken	those	
classes?	
– Do	HW	1	and	…
– If	you	get	more	than	80	points	you	can	stay	in	the	
class

– Else,	please,	take	210	and	213	first



Book
• Required	Text:	
– Thomas	H.	Cormen,	Charles	E.	Leiserson,	Ronald	
L.	Rivest,	Cliord Stein,	“Introduction	to	
Algorithms:	Ed.	3”,	MIT	Press

• We	will	mostly	follow	the	book
• Some	assignment	from	the	book



Grading

Midterm	- 20%

Final	- 30%

Programs	- 20%

Homework	- 30%



Policies:	exams

• Two	exams	– open	book
–Midterm	– in	class	on	10/17/2016
– Final	– early	December	2016	(date	TBD)

• Make-up	exams
– Only	for	major	emergencies	(valid	and	verifiable)
– Contact	the	instructor	as	soon	as	you	know	you	
will	be	missing	an	exam	to	re-schedule



Policies:	programming

• Two	programming	assignments
– Implementation	and	comparison	of	algorithms
– In	Java	on	the	department	Linux	cluster
• Be	sure	to	check	they	compile	on	the	cluster	before	
submitting!	0	points	for	programs	that	don’t	compile.

– Test	input/output	provided
• Will	not	be	the	same	for	grading



Policies:	homework

• Six	homework	assignments
– About	a	week	to	complete	each
– Equally-graded
– Best-5-of-6	policy
• No	make-up	homeworks

• Assignment	submission	through	Blackboard
– Programming	as	a	single	archive	file
– Homework	as	a	scanned	PDF	of	your	solution
• Only	if	you	are	not	able	to	scan	before	class:	you	can	
bring	a	hard	copy



Policies:	cheating

• Cheating	on	exams
– You	will	receive	an	E-grade	and	will	be	reported

• Cheating	on	assignments
– All	assignments	are	to	be	completed	individually
– First	attempt:	all	students	involved	will	get	0	
points	for	the	assignment

– Following	attempts	will	result	in	E-grade;	students	
will	be	reported	for	disciplinary	action



Policies:	I grades	(incomplete)

• Only	given	for	circumstances	beyond	your	
control	IF:
– Your	work	is	in	good	standing	as	of	the	midterm	
point	(10/17/2016)
• Homework	score	>=	50%
• Programming	completed	at	least	at	50%
• Midterm	grade	equivalent	of	C

– You	are	able	to	provide	written	documentation	to	
prove	you	are	unable	to	complete	the	course



Policies:	attendance

• Not	mandatory	but	will	determine	your	class	
performance
– It	is	your	responsibility	to	find	out	the	material	
and	notes	covered	in	classes	you	missed

• This	is	a	hybrid	slide/board	course
– Always	come	prepared	to	take	notes



Reading ahead

• Read	material	ahead	in	the	book
– make	more	out	of	the	lectures
– let	ideas	“sink”	longer
– do	not	worry	if	some	details	unclear

• For	this	week:	Read	Chapters	1	and	2



Homework	1

• Due	09/07/2016	before	class

• 4	problems	to	brush	up	your	Discrete	Math

• Need	to	pass	with	at	least	80%	to	stay	in	class

• Start	early,	so	you	can	consult	with	the	TAs	
and	Prof.	Bogdanov.



Back	to	our	definition

• Algorithm:	a	well	defined	(computational)	
procedure	to	solve	a	problem

• To	specify	the	problem	we	need:	
– Input:	What	is	given?
–Output:	What	is	needed?



Example	problem	specifications

• Finding	the	maximum
– Input: A	sequence	of	numbers	<x1,x2…xn>
– Output: The	largest	number	among	x1,x2…xn

• Sorting	in	non-decreasing	order
– Input: A	sequence	of	numbers	<x1,x2…xn>
– Output: A	permutation	(reordering)	of	<x’1,x’2…x’n>
such	that		x’1≤x’2≤…≤x’n



Instance	and	correctness

• A	sequence	such	as	<-7,4,9,2,17,8>	is	an	
instance of	the	problem	(i.e.	values	for	all	
required	inputs,	satisfying	stated	constraints)

• A	sorting	algorithm	transforms	the	sequence	
<-7,4,9,2,17,8>	into	<-7,2,4,8,9,17>	

• An	algorithm	is	correct if	for	every	instance	it	
halts with	the	correct	output.



What	kind	of	problems	are	
solved	by	algorithms?



The	Internet

• Internet	routing	algorithms
– Decide	how	to	handle	packets	
through	Internet	paths

– You	will	study	Dijkstra’s	algorithm	
for	finding	the	shortest	path

• Internet	applications.	E.g.	
Google	Search	uses	PageRank
– A	rough	estimate	of	page	
importance

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5



Other	examples	include

• Electronic	commerce
– Privacy	of	user	information
– Persistency	across	multiple	server	instances

• Manufacturing/commercial/political	enterprises
– Political	candidates	– how	to	spend	campaign	money	to	
maximize	the	chance	of	winning

– Airline	companies	– assign	crews	to	flights	to	minimize	
expenses

– Internet	service	provider	– where	to	build	infrastructure	
to	minimize	delays	and	maximize	Internet	bandwidth



Two	common	characteristics

• Many	candidate	solutions
– Finding	one	that	is	”the	best”	can	present	quite	a	
challenge

• Practical	applications
– Presents	opportunities	to	narrow	the	scope	à
easier	to	find	“the	best”	solution



More	basics

• Pseudo	code	and	Algorithm	Analysis	by	
example

• Insertion	sort



Example	of	insertion	sort	on	an	
instance

• Which	is	the	algorithm?
• Which	is	the	input?
• Which	is	the	output?
• What	is	the	instance?

The	algorithm

The	input

The	output

<5,2,4,6,1,3>



Insertion	sort	(pseudo	code)

This	step	can	be	
reached	when	i=0	or	
if	A[i]≤key.	In	both	
cases	key	is	placed	
s.t. A[1…i]	is	sorted



What	is	algorithm	analysis?

• Estimating	(predicting)	the	resources	needed	by	
an	algorithm
– Time: how	long	would	it	take
– Memory: how	much	memory	it	would	require	for	the	
used	data	structures

• Our	goal	is	to	find	the	best	algorithm	among	
alternatives	in	terms	of	minimum	resource	
requirements.

• How	to	quantify	important	algorithm	
characteristics	and	omit	tedious	details?



Analysis
• Resources	are	expressed	as	a	function	of	the	size	
of	the	input	

• The	size	of	the	input	depends	on	the	problem:
– Sorting: number	of	elements	being	sorted	n
– Integer	multiplication:	size	of	the	integers	(i.e.	number	
of	bits	to	be	multiplied)

• Execution	(running)	time	of	an	algorithm:	the	
number	of	primitive	operations	executed
– e.g.	assignment,	comparisons,	arithmetic	ops.	…
– typically	assumed	that	operations	take	const	time
– allows	machine	independence	for	the	analysis



Worst	case

• When	using	running	time	we	will	mean	worst-
case	time	– the	largest	running	time	for	any	
input	of	a	fixed	size n
– Note	it	is	also	possible	to	define	average	(or	
expected)	time	assuming	we	have	picked	an	
instance	at	random	from	all	possible	instances,	
but	we	will	most	likely	not	discuss	this	here

• In	a	sense	we	will	be	pessimists	about	our	
algorithms,	always	expecting	the	worst	
possible	input.



Advantages	of	being	pessimist

• Worst-case	time	analysis	
– Provides	an	upper	bound	on	any	input,	i.e.	the	
algorithm	will	never	take	more	than	this.

– For	some	algorithms,	worst-case	occurs	often
– Helps	us	provision	with	redundancy	(often	a	good	
idea	in	building	software	systems)



Sanity	check

• Suppose	computers	were	infinitely-fast	and	
computer	memory	was	free.	
– Would	you	have	any	reason	to	study	algorithms?
– Yes!	You	still	need	to	demonstrate	that	your	solution	
terminates	(halts) and	gains	the	correct answer.

• But...	memory	is	not	free	and	CPUs	take	time	to	
complete	a	primitive	operation.
– Efficient use	of	resources	to	gain	correct	answers.



Announcements

• Next	time:	Insertion	Sort
– Read	through	Chapters	1	and	2	from	the	book

• Homework	1	posted,	Due	on	Sep.	7
• Go	over	the	syllabus	on	your	own	and	ask	
questions	as	necessary


