403: Algorithms and Data Structures

A Quick Introduction to Graphs and Trees Fall 2016 UAlbany Computer Science

Graphs

- A graph G(V,E) consists of
 - Set of nodes (vertices) V
 - Set of edges E connecting nodes
- Graphs are extremely useful in modeling problems
- Directed graphs represent binary relations in a set (the nodes). Undirected: symmetric binary relation

Undirected graphs (terminology)

- The edge between 1 and 2 is denoted as (1,2)
 - 1 is **<u>adjacent</u>** to 2
 - (1,2) is **incident** to 1 and 2
- **<u>Degree</u>** = # incident edges
 - E.g. degree of 2 is 4
- <u>**Path</u> of length k** from v_0 to v_k </u>
 - Sequence of k+1 nodes <v₀, v₁,...,v_k>, such that every consecutive pair (v_i,v_{i+1}) is an edge in E
 - e.g. <1,2,4,5> is a path of length 3

Undirected graphs (terminology)

- G(V,E) is <u>connected</u> if there is a path between any pair of nodes
- <u>Cycle</u> is a path that begins and ends at the same node

- E.g. <3,2,4,3>

• A graph without cycles is **acyclic**

Directed graphs (terminology)

- Edges are directed, so if (u,v) is an edge it is not necessary that (v,u) is also an edge
- <u>Outdegree</u> = # edges leaving a vertex

- E.g. outdegree of 2 is 3 (Why?)

• <u>Indegree</u> = # edges coming into a vertex

– E.g. indegree of 3 is 0

Directed graphs (terminology)

- <u>Directed path</u> of length k from v₀ to v_k
 - Note that if there is a path from v_0 to v_k this does not imply that there is a path from v_k to v_0
- Directed cycle
- <u>Strongly connected digraph</u>: there us a path between every pair of distinct vertices

Useful properties

• For a undirected graph

$$\sum_{v \in V} \deg(v) = 2 |E|$$

• In a directed graph

$$\sum_{v \in V} in \deg(v) = \sum_{v \in V} out \deg(v) = |E|$$

Special Classes of Graphs

- Complete graph (a.k.a. clique)
 - edges between every pair of nodes
 - If |V|=n, then |E|=n(n-1)/2
 - What is the rate of growth of |E|?
- Trees connected and acyclic
 - Rooted tree (one of the nodes is designated a root)

Rooted trees

- 8 is a <u>descendant</u> of 1
- 3,1 are <u>ancestors</u> of 8

- 2 and all its descendants form a **subtree rooted at 2**
- 4,5,9 are leaves: nodes with no children
- Internal nodes: one or more children (e.g. 3,6)
- Node height: path length to the furthest leaf
- <u>Tree height</u>: height of the root

Facts about trees

- A unique path connects any pair of nodes
- If |V|=n, then |E|=n-1

– What is the rate of growth of |E|?

- Deleting any edge disconnects the tree
- Adding any edge results in a cycle

Binary Tree

- Def: each node has at most 2 children
- Left/Right subtree:
 - rooted in the left/right child
- Complete binary tree (CBT)
 - Each leaf has the same depth
 - Each internal node has two children
- <u># internal nodes</u> in a CBT of height h is 2^h-1
- # leaves in a CBT: 2^h
- Hence height of a CBT with n leaves is log₂n

Generalization to k-ary tree

- Each node has at most k children
- If complete:
 - No. of internal nodes: kⁿ-1/(k-1)
 - No. of leaves: kⁿ
 - If we have n leaves height= $log_k n$

Announcements

- Read through Chapter 3
- HW1 solutions available on BB