403: Algorithms and Data Structures

A Quick Introduction to Graphs and Trees
 Fall 2016
 UAlbany

Computer Science

Graphs

- A graph G(V,E) consists of
- Set of nodes (vertices) V
- Set of edges E connecting nodes
- Graphs are extremely useful in modeling problems
- Directed graphs represent binary relations in a set (the nodes). Undirected: symmetric binary relation

(Undirected) graph
Directed graph (Digraph)

Undirected graphs (terminology)

- The edge between 1 and 2 is denoted as $(1,2)$
- 1 is adjacent to 2
- $(1,2)$ is incident to 1 and 2
- Degree = \# incident edges
- E.g. degree of 2 is 4
- Path of length \mathbf{k} from $\mathbf{v}_{\mathbf{0}}$ to $\mathbf{v}_{\mathbf{k}}$
- Sequence of $\mathrm{k}+1$ nodes $\left\langle\mathbf{v}_{\mathbf{0}}, \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\rangle$, such that every consecutive pair $\left(\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{i}+1}\right)$ is an edge in E
- e.g. $<1,2,4,5>$ is a path of length 3

Undirected graphs (terminology)

- $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is connected if there is a path between any pair of nodes
- Cycle is a path that begins and ends at the same node
- E.g. <3,2,4,3>
- A graph without cycles is acyclic

Directed graphs (terminology)

- Edges are directed, so if (u, v) is an edge it is not necessary that (v, u) is also an edge
- Outdegree = \# edges leaving a vertex
- E.g. outdegree of 2 is 3 (Why?)
- Indegree = \# edges coming into a vertex
- E.g. indegree of 3 is 0

Directed graphs (terminology)

- Directed path of length \mathbf{k} from $\mathbf{v}_{\mathbf{0}}$ to $\mathbf{v}_{\mathbf{k}}$
- Note that if there is a path from $\mathbf{v}_{\mathbf{0}}$ to $\mathbf{v}_{\mathbf{k}}$ this does not imply that there is a path from $\mathbf{v}_{\mathbf{k}}$ to $\mathbf{v}_{\mathbf{0}}$
- Directed cycle
- Strongly connected digraph: there us a path between every pair of distinct vertices

Useful properties

- For a undirected graph

$$
\sum_{v \in V} \operatorname{deg}(v)=2|E|
$$

- In a directed graph

$$
\sum_{v \in V} \text { in } \operatorname{deg}(v)=\sum_{v \in V} \text { out } \operatorname{deg}(v)=|\boldsymbol{E}|
$$

Special Classes of Graphs

- Complete graph (a.k.a. clique)
- edges between every pair of nodes
- If $|V|=n$, then $|E|=n(n-1) / 2$
- What is the rate of growth of |E|?
- Trees - connected and acyclic
- Rooted tree (one of the nodes is designated a root)

Rooted trees

- 2 and all its descendants form a subtree rooted at 2
- 4,5,9 are leaves: nodes with no children
- Internal nodes: one or more children (e.g. 3,6)
- Node height: path length to the furthest leaf
- Tree height: height of the root

Facts about trees

- A unique path connects any pair of nodes
- If $|V|=n$, then $|E|=n-1$
- What is the rate of growth of $|E|$?
- Deleting any edge disconnects the tree
- Adding any edge results in a cycle

Binary Tree

- Def: each node has at most 2 children
- Left/Right subtree:
- rooted in the left/right child

- Complete binary tree (CBT)
- Each leaf has the same depth
- Each internal node has two children
- \# internal nodes in a CBT of height h is $2^{h}-1$
- \# leaves in a CBT: 2^{h}
- Hence height of a CBT with n leaves is $\log _{2} n$

Generalization to k-ary tree

- Each node has at most k children
- If complete:
- No. of internal nodes: $k^{n}-1 /(k-1)$
- No. of leaves: ${ }^{n}$
- If we have n leaves height $=\log _{\mathrm{k}} \mathrm{n}$

Announcements

- Read through Chapter 3
- HW1 solutions available on BB

