
403:	Algorithms	and	Data	
Structures

Heaps
Fall	2016
UAlbany

Computer	Science
Some	slides	borrowed	by	David	Luebke

Birdseye	view	plan
• For	the	next	several	lectures	we	will	be	
looking	at	sorting	and	related	problems

• Assume:	
– Input	is	a	sequence	of	n	numbers
– Note:	practical	cases	of	other	data	than	numbers	
can	also	be	handled

Sorting	Revisited

• So	far	we’ve	talked	about	two	algorithms	to	
sort	an	array	of	numbers
–What	is	the	advantage	of	merge	sort?
–What	is	the	advantage	of	insertion	sort?

• Next	on	the	agenda:	Heapsort
– Combines	advantages	of	both	previous	algorithms
• In-place
• O(n	logn)

– Uses	a	new	data	structure:	Binary	Heap

• A	(binary)	heap can	be	seen	as	a	complete	binary	
tree:

– What	makes	a	binary	tree	complete?		
– Is	the	example	above	complete?

Heaps

16

14 10

8 7 9 3

2 4 1

• A	heap can	be	seen	as	a	complete	binary	tree:

– The	book	calls	them	“nearly	complete”	binary	
trees;	can	think	of	unfilled	slots	as	null	pointers

Heaps

16

14 10

8 7 9 3

2 4 1 1 1 111

• The	lowest	level	is	filled	left	to	right

Heaps

16

14 10

8 7 9 3

2 4 1 1 1 111

Heaps

• In	practice,	heaps	are	usually	implemented	as	
arrays:

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A	= =

Heaps

• To	represent	a	complete	binary	tree	as	an	
array:	
– The	root	node	is	A[1]
– Node	i is	A[i]
– The	parent	of	node	i is	A[ëi/2û]		
– The	left	child	of	node	i is	A[2i]
– The	right	child	of	node	i is	A[2i +	1] 16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A	= =

Referencing	Heap	Elements

• So…
parent(i) { return ëi/2û; }
left(i) { return 2*i; }
right(i) { return 2*i + 1; }

• We	will	also	assume	we	have	a	function	
heap_size(A)	that	returns	the	size	of	the	heap

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A	= =

parent(3)?				->	ë3/2û = 1

left(3)?				->	3*2 = 6

The	Heap	Property

• Heaps	also	satisfy	the	heap	property:
A[Parent(i)]	³ A[i] for	all	nodes	i >	1
– In	other	words,	the	value	of	a	node	is	at	most	the	
value	of	its	parent

–Where	is	the	largest	element	in	a	heap	stored?
• [Refresh]	of	tree	Definitions:
– The	height of	a	node	in	the	tree	=	the	number	of	
edges	on	the	longest	downward	path	to	a	leaf	

– The	height	of	a	tree	=	the	height	of	its	root

Heap	Height

• What	is	the	height	of	an	n-element	heap?	
Why?

• Basic	heap	operations	take	at	most	time	
proportional	to	the	height	of	the	heap

• THIS	IS	NICE!

Heap	Operations:	Heapify()

• Heapify():	maintain	the	heap	property
– Given:	a	node	i in	the	heap	with	children	l and	r
– Given:	two	subtrees	rooted	at	l and	r,	assumed	to	
be	heaps

– Problem:	The	subtree	rooted	at	imay	violate	the	
heap	property	(How?)

– Action:	let	the	value	of	the	parent	node	“float	
down”	so	subtree	at	i satisfies	the	heap	property	
• What	do	you	suppose	will	be	the	
basic	operation	between	
i,	l,	and	r?

16

4 10

14 7 9 3

2 8 1

Heap	Operations:	Heapify()
Heapify(A, i)
{

l = Left(i); r = Right(i);
if (l <= heap_size(A) && A[l] > A[i])
largest = l;

else
largest = i;

if (r <= heap_size(A) && A[r] > A[largest])
largest = r;

if (largest != i)
Swap(A, i, largest);
Heapify(A, largest);

}

Finds	the	index	of
max(A[i],	A[l],A[r])

Carefully	check	
boundary	conditions

Heapify()	Example

16

4 10

14 7 9 3

2 8 1

16 4 10 14 7 9 3 2 8 1A	=

Heapify()	Example

16

4 10

14 7 9 3

2 8 1

16 10 14 7 9 3 2 8 1A	= 4

Heapify()	Example

16

4 10

14 7 9 3

2 8 1

16 10 7 9 3 2 8 1A	= 4 14

Heapify()	Example

16

14 10

4 7 9 3

2 8 1

16 14 10 4 7 9 3 2 8 1A	=

Heapify()	Example

16

14 10

4 7 9 3

2 8 1

16 14 10 7 9 3 2 8 1A	= 4

Heapify()	Example

16

14 10

4 7 9 3

2 8 1

16 14 10 7 9 3 2 1A	= 4 8

Heapify()	Example

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A	=

Heapify()	Example

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 1A	= 4

Heapify()	Example

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A	=

Analyzing	Heapify():	Informal

• Aside	from	the	recursive	call,	what	is	the	
running	time	of	Heapify()?
– Spends	O(1)	time	at	any	node	i.	Why?

• How	many	times	can	Heapify() recursively	
call	itself?
– Height	=	O(log	n)

• What	is	the	worst-case	running	time	of	
Heapify() on	a	heap	of	size	n?
– O(log	n)

Analyzing	Heapify():	Formal

• Recursive	algorithm	->	need	to	derive	the	
recurrence

• Easy	part:	Fixing	up	relationships	between	i,	l,	
and	r takes	O(1)	time

• If	the	heap	at	i has	n	elements,	how	many	
elements	can	the	subtrees	at	l	or	r	have?	

…	but	before	this

• What	is	this	a	recipe	for?
– O(#	Emmy	awards)	=	O(#	Major	dead	characters)

Bound	the	largest	of	two	subtrees	in	
terms	of	total	nodes	n

• TL and	TR	are	“full”	in	all	levels	
except	for	last

• Last	level	– left	to	right
• Largest	possible	 fraction	of	
nodes	TL?
– All	lowest	level	in	TL

• |TL|=2h-1 -1	+	2h-1= 2h -1
• |TR|=2h-1 -1
• So	n	=	|TL|+	|TR|+1	=	

=	3*2h-1 -1
– 2/3	n	=	2h -1	as	big	as	TL	can	get

TL TR

Analyzing	Heapify():	Formal
• Recursive	algorithm	->	need	to	derive	the	
recurrence

• Easy	part:	Fixing	up	relationships	between	i,	l,	and	
r takes	O(1)	time

• If	the	heap	at	i has	n	elements,	how	many	
elements	can	the	subtrees	at	l	or	r	have?	

• 2n/3	(worst	case:	bottom	row	1/2	full)
• So	time	taken	by	Heapify() is	given	by	the	
recurrence:
T(n) £ T(2n/3)	+	O(1)	

Analyzing	Heapify():	Formal
• So	we	have	

T(n) £ T((2/3)*n)	+	O(1)
£ T((2/3)*(2/3)*n)	+	O(1)	+	O(1)
=	T((2/3)2n)	+	2O(1)
…
£ T((2/3)rn)	+	rO(1)

• The	recursion	ends	when	(2/3)rn =	1
– Or	r	=	log2/3	1/n	=	log3/2n	=	log2(3/2)	log2n.	
– Side	note:	base	of	log	does	not	matter	for	growth	rate	as	
long	as	it	is	O(1)

• Thus,	Heapify() takes	logarithmic	time:
– T(n)	£ T(1)	+	c1log2(3/2)	log2n	=	c2	+	c1’log2n	=	O(log n)

Announcements

• Read	through	Chapter	6
– Next	class:	Build	heap,	Heap	Sort,	Priority	Queues

• HW2	available	on	BB	after	class

