403: Algorithms and Data
Structures

Heapsort and Priority Queues

Fall 2016
UAlbany
Computer Science

Some slides borrowed from David Luebke

Context
 We defined heaps

— "almost” complete binary trees
— A[Parent(i)] = Ali] for all nodesi>1

* Heap operations: Heapify()
— Fix a single violation of the heap property
— “Float” values down the tree

— O(logn), where n is the heap size

* What is the base of the log? 19) @\@
A=1614108793241=?(@/

2

Heap Operations: BuildHeap()

nput: Array
Required: Convert A into a heap

dea: build a heap in a bottom-up manner by

running Heapify () on successive subarrays

Heap Operations: BuildHeap()

* Fact: for array of length n, all elements in range
Al[n/2] + 1 .. n] are leaves (Why?)
— Left(|n/2]+1)=2*(|n/2] + 1) >n
* Another fact: Leaves are (trivially) heaps
* Walk backwards through the array from |n/2] to

1, calling Heapify () on each node.

— Order of processing guarantees that the children of
node i are heaps when i is processed

— Why is this important?

BuildHeap()

// given an unsorted array A, make A a heap
BuildHeap (A)
{
heap size(A) = length(a);
for (i = |length[A]/2]| downto 1)
Heapify (A, 1);

BuildHeap() Example

 Work through example
A={4,1,3,2,16,9, 10, 14, 8, 7}

Crude Analysis of BuildHeap()

Each call to Heapify () takes O(lg n) time
There are O(n) such calls (specifically, [n/2])

Thus the running time is O(n Ig n)
— Is this a correct asymptotic upper bound?
— Is this an asymptotically tight bound?

A tighter bound is O(n)

— How can this be? Is there a flaw in the above
reasoning?

Analyzing BuildHeap(): Tight

* To Heapify () asubtree takes O(h) time where
h is the height of the subtree

— h =0(lg m), m = # nodes in subtree

— Intuition: The height of most subtrees is small , i.e.
O(log n) is too “generous”

* Fact 1: an n-element heap has at most [n/2"*1]
nodes of height h

— Proof?

* Using Fact 1 we can show that BuildHeap ()
takes O(n) time
— Proof?

Heapsort

* Given BuildHeap (), anin-place sorting
algorithm is easily constructed:
— Maximum element is at A[1]

— Discard by swapping with element at A[n]
 Decrement heap_size[A]
* A[n] now contains correct value

— Restore heap property at A[1] by calling
Heapify ()
— Repeat, always swapping A[1] for A[heap_size(A)]

Example

Heapsort

Heapsort (A)
{
BuildHeap (A) ;
for (1 = length(A) downto 2)
{
Swap (A[1], A[i]);
heap size(A) -= 1;
Heapify (A, 1) ;

Analyzing Heapsort

* The call to BuildHeap () takes O(n) time
* Each of the n- 1 callsto Heapify () takes
O(lg n) time
* Thus the total time taken by HeapSort ()
=0(n) +(n-1) O(lg n)
=O(n) + O(n Ig n)
=0(nlgn)

Priority Queues

* Heapsort is a nice algorithm, but in practice
Quicksort (coming up) usually wins

 But the heap data structure is incredibly
useful for implementing priority queues

— A data structure for maintaining a set S of
elements, each with an associated value or key

— Supports the operations Insert (),
Maximum (), and ExtractMax ()

Google marrage counsoling seatto

Googlez AdWovds Ads

mmum Or, Jofeoy Goid, Condidontial,

Marriage Counselor - High impact with lasting results
L owww.aandel oyl v

ROBNG AIIncnyg it fow

Congion Covntainyg - Foos - Indviduals - Chootng & Therapit

Q 2010 € Madinon St, Soattio, WA - +1 2008802424

L0 www seattio-Qay-counseling cony =

Counseling costhng & theeapy Banod vpon Linod axgerencs
Q! Boren Ave., Sulte 1300, Seattie, WA - +1 2062760325

""" ' * 1 .Whou
mmwwm v
GoodTheragy org & e Dost webale 10 fnd a theragist in Seattle, WA Browse profies
Of 100! Doragists o 30000 by 290 00de. FInd phone numbers of send an .

Marriage counselor Seattie, WA - Yelp

WA YOID COMVEOUrCh TINg . marriago s counsolor. Soatthe%2C. . * Yoip -
Roviews o0 Marriage counselor in Seattie, VWA Shert Vornon VA LUHC, The Gomran
Matase, Chvisting Wyido, MA LVHC, Clasty Counsolng Seattle, Convie ...

14

Assassin's prioritized TODO manager
ARYA STARK »

ILYN

/’T

V

& THE TICKLER

& THE HOUND

& SER MERYN |
& KING JOFFREY .'
& QUEEN CERSEI

VALAR MORGHULIS.

Priority Queue Operations

Insert(S, x) inserts the element x into set S

Maximum(S) returns the element of S with
the maximum key

ExtractMax(S) removes and returns the
element of S with the maximum key

How could we implement these operations
using a heap?

16

Priority Queue Operations

* Insert(S, x)
— Increment heap size and add x at the end
— move the new element “upwards” (reverse-heapify)
— O(log n)

 Maximum(S)
— return S[1]
— Time complexity?

e ExtractMax(S) removes and returns the element
of S with the maximum key
— save S[1], place S[heap_size(S)] in S[1]; Heapify(S,1)
— Time?

17

Heap vs All (for Priority queues)

Data
Structure

Insert Extract Max

Pre-
processing

Linked List O(n) 0O(1) O(n) O(n)

Sorted Array O(n logn) O(n) 0O(1) 0O(1)
(shifting)

Heap O(n) O(log n) 0O(1) O(log n)

18

Announcements «(@»)

* Read through Chapter 6
— Next class: Build heap, Heap Sort, Priority Queues

e HW2 due next Wednesday

