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Context	
•  We	defined	heaps	
– ”almost”	complete	binary	trees	
– A[Parent(i)]	≥	A[i] 	 	for	all	nodes	i	>	1	

•  Heap	operaIons:	Heapify()	
– Fix	a	single	violaIon	of	the	heap	property	
– “Float”	values	down	the	tree	
– O(logn),	where	n	is	the	heap	size	

• What	is	the	base	of	the	log?		
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Heap	OperaIons:	BuildHeap()	

•  Input:	Array	A[1…n]	
•  Required:	Convert	A	into	a	heap	
•  Idea:	build	a	heap	in	a	bo[om-up	manner	by	
running	Heapify()	on	successive	subarrays	
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Heap	OperaIons:	BuildHeap()	

•  Fact:	for	array	of	length	n,	all	elements	in	range		
A[⎣n/2⎦	+	1	..	n]	are	leaves	(Why?)	
–  Lec(⎣n/2⎦	+	1	)	=	2*	(⎣n/2⎦	+	1)	>	n		

•  Another	fact:	Leaves	are	(trivially)	heaps	
•  Walk	backwards	through	the	array	from	⎣n/2⎦	to	
1,	calling	Heapify()	on	each	node.	
– Order	of	processing	guarantees	that	the	children	of	
node	i	are	heaps	when	i	is	processed	

– Why	is	this	important?	
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BuildHeap()	
// given an unsorted array A, make A a heap 
BuildHeap(A) 
{ 
 heap_size(A) = length(A); 
 for (i = ⎣length[A]/2⎦		downto 1) 
   Heapify(A, i); 
}	
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BuildHeap()	Example	

•  Work	through	example	
A	=	{4,	1,	3,	2,	16,	9,	10,	14,	8,	7}	
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Crude	Analysis	of	BuildHeap()	

•  Each	call	to	Heapify()	takes	O(lg	n)	Ime	
•  There	are	O(n)	such	calls	(specifically,	⎣n/2⎦)	
•  Thus	the	running	Ime	is	O(n	lg	n)	
–  Is	this	a	correct	asympto2c	upper	bound?	
–  Is	this	an	asympto2cally	2ght	bound?	

•  A	Ighter	bound	is	O(n)		
– How	can	this	be?		Is	there	a	flaw	in	the	above	
reasoning?	
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Analyzing	BuildHeap():	Tight	
•  To	Heapify()	a	subtree	takes	O(h)	Ime	where	
h	is	the	height	of	the	subtree	
–  h	=	O(lg	m),	m	=	#	nodes	in	subtree	
–  IntuiIon:	The	height	of	most	subtrees	is	small	,	i.e.	
O(log	n)	is	too	“generous”	

•  Fact	1:	an	n-element	heap	has	at	most	⎡n/2h+1⎤	
nodes	of	height	h	
–  Proof?	

•  Using	Fact	1	we	can	show	that	BuildHeap()	
takes	O(n)	Ime		
–  Proof?	
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Heapsort	
•  Given	BuildHeap(),		an	in-place	sorIng	
algorithm	is	easily	constructed:	
– Maximum	element	is	at	A[1]	
– Discard	by	swapping	with	element	at	A[n]	

•  Decrement	heap_size[A]	
•  A[n]	now	contains	correct	value	

– Restore	heap	property	at	A[1]	by	calling	
Heapify()	

– Repeat,	always	swapping	A[1]	for	A[heap_size(A)]	
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Example	
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Heapsort	
Heapsort(A) 
{ 
  BuildHeap(A); 
  for (i = length(A) downto 2) 
  { 
   Swap(A[1], A[i]); 
   heap_size(A) -= 1; 
   Heapify(A, 1); 
  } 
} 
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Analyzing	Heapsort	

•  The	call	to	BuildHeap()	takes	O(n)	Ime		
•  Each	of	the	n	-	1	calls	to	Heapify()	takes	
O(lg	n)	Ime	

•  Thus	the	total	Ime	taken	by	HeapSort()		
=	O(n)	+	(n	-	1)	O(lg	n)	
=	O(n)	+	O(n	lg	n)	
=	O(n	lg	n)	
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Priority	Queues	

•  Heapsort	is	a	nice	algorithm,	but	in	pracIce	
Quicksort	(coming	up)	usually	wins	

•  But	the	heap	data	structure	is	incredibly	
useful	for	implemenIng	priority	queues	
– A	data	structure	for	maintaining	a	set	S	of	
elements,	each	with	an	associated	value	or	key	

– Supports	the	operaIons	Insert(),	
Maximum(),	and	ExtractMax() 

– What	might	a	priority	queue	be	useful	for?	
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Assassin's	prioriIzed	TODO	manager	
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Priority	Queue	OperaIons	

•  Insert(S,	x)	inserts	the	element	x	into	set	S	
•  Maximum(S)	returns	the	element	of	S	with	
the	maximum	key	

•  ExtractMax(S)	removes	and	returns	the	
element	of	S	with	the	maximum	key	

•  How	could	we	implement	these	opera2ons	
using	a	heap?	
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Priority	Queue	OperaIons	
•  Insert(S,	x)		
–  Increment	heap	size	and	add	x	at	the	end	
– move	the	new	element	“upwards”	(reverse-heapify)		
– O(log	n)	

•  Maximum(S)		
–  return	S[1]	
–  Time	complexity?	

•  ExtractMax(S)	removes	and	returns	the	element	
of	S	with	the	maximum	key	
–  save	S[1],	place	S[heap_size(S)]	in	S[1];	Heapify(S,1)	
–  Time?	
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Heap	vs	All	(for	Priority	queues)	
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Data	
Structure	

Pre-
processing	

Insert	 Max	 Extract	Max	

Linked	List	 O(n)	 O(1)	 O(n)	 O(n)	

Sorted	Array	 O(n	logn)	 O(n)	
(shicing)	

O(1)	 O(1)	

Heap	 O(n)	 O(log	n)	 O(1)	 O(log	n)	



Announcements	

•  Read	through	Chapter	6	
– Next	class:	Build	heap,	Heap	Sort,	Priority	Queues	

•  HW2	due	next	Wednesday	
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