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Context
 We defined heaps

— "almost” complete binary trees
— A[Parent(i)] = Ali] for all nodesi>1

* Heap operations: Heapify()
— Fix a single violation of the heap property
— “Float” values down the tree

— O(logn), where n is the heap size

* What is the base of the log? 19) @\@
A=1614108793241=?(@/
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Heap Operations: BuildHeap()

nput: Array
Required: Convert A into a heap

dea: build a heap in a bottom-up manner by

running Heapify () on successive subarrays



Heap Operations: BuildHeap()

* Fact: for array of length n, all elements in range
Al[n/2] + 1 .. n] are leaves (Why?)
— Left(|n/2]+1)=2*(|n/2] + 1) >n
* Another fact: Leaves are (trivially) heaps
* Walk backwards through the array from |n/2] to

1, calling Heapify () on each node.

— Order of processing guarantees that the children of
node i are heaps when i is processed

— Why is this important?



BuildHeap()

// given an unsorted array A, make A a heap
BuildHeap (A)
{
heap size(A) = length(a);
for (i = |length[A]/2]| downto 1)
Heapify (A, 1);



BuildHeap() Example

 Work through example
A={4,1,3,2,16,9, 10, 14, 8, 7}




Crude Analysis of BuildHeap()

Each call to Heapify () takes O(lg n) time
There are O(n) such calls (specifically, [n/2])

Thus the running time is O(n Ig n)
— Is this a correct asymptotic upper bound?
— Is this an asymptotically tight bound?

A tighter bound is O(n)

— How can this be? Is there a flaw in the above
reasoning?



Analyzing BuildHeap(): Tight

* To Heapify () asubtree takes O(h) time where
h is the height of the subtree

— h =0(lg m), m = # nodes in subtree

— Intuition: The height of most subtrees is small , i.e.
O(log n) is too “generous”

* Fact 1: an n-element heap has at most [n/2"*1]
nodes of height h

— Proof?

* Using Fact 1 we can show that BuildHeap ()
takes O(n) time
— Proof?



Heapsort

* Given BuildHeap (), anin-place sorting
algorithm is easily constructed:
— Maximum element is at A[1]

— Discard by swapping with element at A[n]
 Decrement heap_size[A]
* A[n] now contains correct value

— Restore heap property at A[1] by calling
Heapify ()
— Repeat, always swapping A[1] for A[heap_size(A)]



Example




Heapsort

Heapsort (A)
{
BuildHeap (A) ;
for (1 = length(A) downto 2)
{
Swap (A[1], A[i]);
heap size(A) -= 1;
Heapify (A, 1) ;



Analyzing Heapsort

* The call to BuildHeap () takes O(n) time
* Each of the n- 1 callsto Heapify () takes
O(lg n) time
* Thus the total time taken by HeapSort ()
=0(n) +(n-1) O(lg n)
=O(n) + O(n Ig n)
=0(nlgn)



Priority Queues

* Heapsort is a nice algorithm, but in practice
Quicksort (coming up) usually wins

 But the heap data structure is incredibly
useful for implementing priority queues

— A data structure for maintaining a set S of
elements, each with an associated value or key

— Supports the operations Insert (),
Maximum (), and ExtractMax ()
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Priority Queue Operations

Insert(S, x) inserts the element x into set S

Maximum(S) returns the element of S with
the maximum key

ExtractMax(S) removes and returns the
element of S with the maximum key

How could we implement these operations
using a heap?
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Priority Queue Operations

* Insert(S, x)
— Increment heap size and add x at the end
— move the new element “upwards” (reverse-heapify)
— O(log n)

 Maximum(S)
— return S[1]
— Time complexity?

e ExtractMax(S) removes and returns the element
of S with the maximum key
— save S[1], place S[heap_size(S)] in S[1]; Heapify(S,1)
— Time?
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Heap vs All (for Priority queues)

Data
Structure

Insert Extract Max

Pre-
processing

Linked List O(n) 0O(1) O(n) O(n)

Sorted Array O(n logn) O(n) 0O(1) 0O(1)
(shifting)

Heap O(n) O(log n) 0O(1) O(log n)
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Announcements «(@»)

* Read through Chapter 6
— Next class: Build heap, Heap Sort, Priority Queues

e HW2 due next Wednesday



