403: Algorithms and Data Structures

Quicksort

Fall 2016
UAlbany
Computer Science
Some slides borrowed from David Luebke

So far: Sorting

Algorithm Time Space

- Insertion $O\left(\mathrm{n}^{2}\right)$
- Merge $O(n$ logn)
- Heapsort O(n logn)
in-place
$2^{\text {nd }}$ array to merge in-place
- Quicksort from O(n logn) to O(n²) in-place
- very good in practice (small constants)
- Quadratic time is rare

Quicksort

- Another divide-and-conquer algorithm
- DIVIDE: The array A[p..r] is partitioned into two non-empty subarrays $A[p . . q]$ and $A[q+1 . . r]$
- Invariant: All elements in A[p..q] are less than all elements in $A[q+1 . . r]$
- CONQUER: The subarrays are recursively sorted by calls to quicksort
- COMBINE: Unlike merge sort, no combining step: two subarrays form an already-sorted array

Quicksort Code

Quicksort(A, p, r)
\{

$$
\begin{aligned}
& \text { if }(p<r) \\
& \{
\end{aligned}
$$

$\mathrm{q}=$ Partition(A, $\mathrm{p}, \mathrm{r})$;
Quicksort(A, p, q);
Quicksort(A, $q+1, r)$;
\}
\}

Partition

- Clearly, all the action takes place in the partition() function
- Rearranges the subarray in place
- End result:
- Two subarrays
- All values in first subarray \leq all values in second
- Returns the index of the "pivot" element separating the two subarrays
- How do you suppose we implement this?

Partition In Words

- Partition(A, p, r):
- Select an element to act as the "pivot" (which?)
- Grow two regions, A[p..i] and A[j..r]
- All elements in $\mathrm{A}[\mathrm{p} . \mathrm{i}]$ <= pivot
- All elements in $\mathrm{A}[\mathrm{j} . \mathrm{r}]>=$ pivot
- Increment i until A[i] >= pivot
- Decrement j until A[j] <= pivot
- Swap A[i] and A[j]
- Repeat until $\mathrm{i}>=\mathrm{j}$
- Return j

Partition Code

Choose pivot x

```
Partition(A, p, r)
    x = A[p];
    i = p - 1;
    j = r + 1;
    while (TRUE)
        repeat
        j--;
        until A[j] <= x;
        repeat
            i++;
            until A[i] >= x;
            if (i < j)
            Swap(A, i, j);
        else
            return j;
```

 element exceeding x

Scan looking for element at most
x

When we find such elements,
Exchange them

Illustrate on
$A=\{4,5,9,7,2,13,6,3\}$;

Example

Goal:

3	2	9	7	5	13	6	4
$j=2 \quad i=3$							

i>j: DONE

Partition Code

```
Partition(A, P, r)
    x = A[p];
    i = p - 1;
    j = r + 1;
    while (TRUE)
        repeat
            j--;
        until A[j] <= x;
        repeat
            i++;
            until A[i] >= x;
            if (i < j)
            Swap(A, i, j);
        else
            return j;
```

What is the running time of partition()?
partition () runs in $\mathrm{O}(\mathrm{n})$ time

- O(1) at each element: skip or swap
- Linear in the size of the array

Back to Quicksort

Analyzing Quicksort

- What will be a bad case for the algorithm?
- Partition is always unbalanced
- What will be the best case for the algorithm?
- Partition is perfectly balanced
- Which is more likely?
- The latter, by far, except...
- Will any particular input elicit the worst case?
- Yes: Already-sorted input

Analyzing Quicksort: Balanced splits

- In the balanced split case:

$$
T(n)=2 T(n / 2)+\Theta(n)
$$

- What does this work out to?
$T(n)=\Theta(n \lg n)$
Take home: A good balance is important

> THAT:S WHATID(D)
> I DRINK ANDD I KNDW THINGS.

Analyzing Quicksort: Sorted case

- Sorted case:

$$
\begin{aligned}
& T(1)=\Theta(1) \\
& T(n)=T(n-1)+\Theta(n)
\end{aligned}
$$

by substitution...

$$
T(n)=T(1)+n \Theta(n)
$$

2	3	6	7	10	13	14	16

First call: j will decrease to 1 (n steps) Second: j decrease to 2 ($\mathrm{n}-1$ steps)
$n+n-1+n-2+\ldots=\Theta\left(n^{2}\right)$

- Works out to
$T(n)=\Theta\left(n^{2}\right)$

Is sorted really the worst case?

- Argue formally that things cannot get worse
- A formal argument with gen
- Assume that every split resu
- Size q
- Size n-q
- $T(n)=\max _{1<=q<=n-1}[T(q)+T(n-1$
- where $T(1)=O(1)$
- Show that $T(n)=O\left(n^{2}\right)$

Average behavior: Intuition

- Worst case: assumes 1:n-1 split
- rare in practice
- The O(nlogn) behavior occurs even if the split is say $10 \%: 90 \%$
- If all splits are equally likely
- 1:n-1, 2:n-2 ... n-1:1
- then on average, we will not get a very tall tree
- details in extra slide at the end (not required)

Avoiding the $\mathrm{O}\left(\mathrm{n}^{2}\right)$ case

- The real liability of quicksort is that it runs in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ on already-sorted input
- Solutions
- Randomize the input array
- Pick a random pivot element
- choose 3 elements and take median for pivot
- How will these solve the problem?
- By ensuring that no particular input can be chosen to make quicksort run in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time

Other Improvements (lower constants)

- When a subarray is small (say smaller than 5) switch to a simple sorting procedure say insertion sort instead of Quicksort
- why does this help?
- Pick more than one pivot
- Partitions the array in more than 2 parts
- Smaller number of comparisons (1.9nlogn vs 2 nlogn) and overall better performance in practice
- Details: Kushagra et al. "Multi-Pivot Quicksort: Theory and Experiments", SIAM, 2013

Announcements

- Read through Chapter 7
- HW2 due on Wednesday

Extra slides*

- Average case rigorous analysis follows
- This is advanced material (will not appear in HWs and exam)

Analyzing Quicksort: Average Case

- Assuming random input, average-case running time is much closer to $O(n \lg n)$ than $O\left(n^{2}\right)$
- First, a more intuitive explanation/example:
- Suppose that partition() always produces a 9-to-1 split. This looks quite unbalanced!
- The recurrence is thus:
$T(n)=T(9 n / 10)+T(n / 10)+n$
- How deep will the recursion go?

Analyzing Quicksort: Average Case

- Intuitively, a real-life run of quicksort will produce a mix of "bad" and "good" splits
- Randomly distributed among the recursion tree
- Pretend for intuition that they alternate between best-case (n/2:n/2) and worst-case (n-1 : 1)
- What happens if we bad-split root node, then good-split the resulting size (n-1) node?

Analyzing Quicksort: Average Case

- Intuitively, a real-life run of quicksort will produce a mix of "bad" and "good" splits
- Randomly distributed among the recursion tree
- Pretend for intuition that they alternate between best-case (n/2:n/2) and worst-case (n-1 : 1)
- What happens if we bad-split root node, then good-split the resulting size (n-1) node?
- We fail English

Analyzing Quicksort: Average Case

- Intuitively, a real-life run of quicksort will produce a mix of "bad" and "good" splits
- Randomly distributed among the recursion tree
- Pretend for intuition that they alternate between best-case ($\mathrm{n} / 2: \mathrm{n} / 2$) and worst-case ($\mathrm{n}-1: 1$)
- What happens if we bad-split root node, then goodsplit the resulting size (n-1) node?
- We end up with three subarrays, size $1,(n-1) / 2,(n-1) / 2$
- Combined cost of splits $=n+n-1=2 n-1=O(n)$
- No worse than if we had good-split the root node!

Analyzing Quicksort: Average Case

- Intuitively, the $\mathrm{O}(\mathrm{n})$ cost of a bad split (or 2 or 3 bad splits) can be absorbed into the $O(n)$ cost of each good split
- Thus running time of alternating bad and good splits is still $O(n \lg n)$, with slightly higher constants
- How can we be more rigorous?

Analyzing Quicksort: Average Case

- For simplicity, assume:
- All inputs distinct (no repeats)
- Slightly different partition() procedure
- partition around a random element, which is not included in subarrays
- all splits (0:n-1, 1:n-2, 2:n-3, ... , n-1:0) equally likely
- What is the probability of a particular split
happening?
- Answer: 1/n

Analyzing Quicksort: Average Case

- So partition generates splits (0:n-1, 1:n-2, 2:n-3, ... , n-2:1, n-1:0) each with probability $1 / n$
- If $T(n)$ is the expected running time,

$$
T(n)=\frac{1}{n} \sum_{k=0}^{n-1}[T(k)+T(n-1-k)]+\Theta(n)
$$

- What is each term under the summation for?
- What is the $\Theta(n)$ term for?

Analyzing Quicksort: Average Case

- So...

$$
\begin{aligned}
& T(n)=\frac{1}{n} \sum_{k=0}^{n-1}[T(k)+T(n-1-k)]+\Theta(n) \\
&=\frac{2}{n} \sum_{k=0}^{n-1} T(k)+\Theta(n) \longleftarrow \text { Write it on } \\
& \text { the board }
\end{aligned}
$$

- Note: this is just like the book's recurrence
(p166), except that the summation starts with $\mathrm{k}=0$
- We' Il take care of that in a second

Analyzing Quicksort: Average Case

- We can solve this recurrence using the dreaded substitution method
- Guess the answer
- Assume that the inductive hypothesis holds
- Substitute it in for some value < n
- Prove that it follows for n

Analyzing Quicksort: Average Case

- We can solve this recurrence using the dreaded substitution method
- Guess the answer
- What's the answer?
- Assume that the inductive hypothesis holds
- Substitute it in for some value < n
- Prove that it follows for n

Analyzing Quicksort: Average Case

- We can solve this recurrence using the dreaded substitution method
- Guess the answer
- $T(n)=O(n \lg n)$
- Assume that the inductive hypothesis holds
- Substitute it in for some value < n
- Prove that it follows for n

Analyzing Quicksort: Average Case

- We can solve this recurrence using the dreaded substitution method
- Guess the answer
- $T(n)=O(n \lg n)$
- Assume that the inductive hypothesis holds
- What's the inductive hypothesis?
- Substitute it in for some value < n
- Prove that it follows for n

Analyzing Quicksort: Average Case

- We can solve this recurrence using the dreaded substitution method
- Guess the answer
- $\mathrm{T}(n)=\mathrm{O}(n \lg n)$
- Assume that the inductive hypothesis holds
- $\mathrm{T}(n) \leq a n \lg n+b$ for some constants a and b
- Substitute it in for some value < n
- Prove that it follows for n

Analyzing Quicksort: Average Case

- We can solve this recurrence using the dreaded substitution method
- Guess the answer
- $\mathrm{T}(n)=\mathrm{O}(n \lg n)$
- Assume that the inductive hypothesis holds
- $\mathrm{T}(n) \leq a n \lg n+b$ for some constants a and b
- Substitute it in for some value $<\mathrm{n}$
- What value?
- Prove that it follows for n

Analyzing Quicksort: Average Case

- We can solve this recurrence using the dreaded substitution method
- Guess the answer
- $\mathrm{T}(n)=\mathrm{O}(n \lg n)$
- Assume that the inductive hypothesis holds
- $\mathrm{T}(n) \leq a n \lg n+b$ for some constants a and b
- Substitute it in for some value < n
- The value k in the recurrence
- Prove that it follows for n

Analyzing Quicksort: Average Case

- We can solve this recurrence using the dreaded substitution method
- Guess the answer
- $\mathrm{T}(n)=\mathrm{O}(n \lg n)$
- Assume that the inductive hypothesis holds
- $\mathrm{T}(n) \leq a n \lg n+b$ for some constants a and b
- Substitute it in for some value < n
- The value k in the recurrence
- Prove that it follows for n
- Grind through it...

$$
\begin{aligned}
& \text { Analvzing Quicksort: Average Case } \\
& \begin{aligned}
T(n) & =\frac{2}{n} \sum_{k=0}^{n-1} T(k)+\Theta(n) \quad \text { The recurrence to be solved } \\
& \leq \frac{2}{n} \sum_{k=0}^{n-1}(a k \lg k+b)+\Theta(n) \quad \text { Plug in inductive hypothesis } \\
& \leq \frac{2}{n}\left[b+\sum_{k=1}^{n-1}(a k \lg k+b)\right]+\Theta(n) \text { Expand out the k=0 case } \\
& =\frac{2}{n} \sum_{k=1}^{n-1}(a k \lg k+b)+\frac{2 b}{n}+\Theta(n) \begin{array}{l}
\text { 2b/n is just a constant, } \\
\text { so fold it into } \Theta(\mathrm{n})
\end{array} \\
& =\frac{2}{n} \sum_{k=1}^{n-1}(a k \lg k+b)+\Theta(n) \quad \begin{array}{l}
\text { Note: leaving the same } \\
\text { recurrence as the book }
\end{array}
\end{aligned}
\end{aligned}
$$

Analyzing Quicksort: Average Case

$$
\begin{array}{rlr}
T(n) & =\frac{2}{n} \sum_{k=1}^{n-1}(a k \lg k+b)+\Theta(n) & \text { The recurrence to be solved } \\
& =\frac{2}{n} \sum_{k=1}^{n-1} a k \lg k+\frac{2}{n} \sum_{k=1}^{n-1} b+\Theta(n) & \text { Distribute the summation } \\
& =\frac{2 a}{n} \sum_{k=1}^{n-1} k \lg k+\frac{2 b}{n}(n-1)+\Theta(n) \begin{array}{l}
\text { Evaluat the summation: } \\
b+b+\ldots+b-b=b(n-1)
\end{array} \\
& \leq \frac{2 a}{n} \sum_{k=1}^{n-1} k \lg k+2 b+\Theta(n) & \text { Since } n-1<n, 2 b(n-1) / n<2 b
\end{array}
$$

Analyzing Quicksort: Average Case

$$
\begin{array}{rlrl}
T(n) & \leq \frac{2 a}{n} \sum_{k=1}^{n-1} k \lg k+2 b+\Theta(n) & & \text { The recurrence to be solved } \\
& \left.\leq \frac{2 a}{n}\left(\frac{1}{2} n^{2} \lg n-\frac{1}{8} n^{2}\right)+2 b+\Theta(n) \text { We' ll prove this later }^{4}\right) \\
& =a n \lg n-\frac{a}{4} n+2 b+\Theta(n) & & \text { Distribute the (2a/n) term } \\
& =a n \lg n+b+\left(\Theta(n)+b-\frac{a}{4} n\right) \begin{array}{l}
\text { Remember, our goal is to get } \\
\text { T(n) } \leq \operatorname{an} \lg n+b
\end{array} \\
& \leq a n \lg n+b & \begin{array}{l}
\text { Pick a large enough that } \\
\text { an/4 dominates } \Theta(\mathbf{n})+\mathbf{b}
\end{array}
\end{array}
$$

Analyzing Quicksort: Average Case

- So $\mathrm{T}(n) \leq a n \lg n+b$ for certain a and b
- Thus the induction holds
- Thus $T(n)=O(n \lg n)$
- Thus quicksort runs in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ time on average (phew!)
- Oh yeah, the summation...

Tightly Bounding The Key Summation

$$
\sum_{k=1}^{n-1} k \lg k=\sum_{k=1}^{[n / 2 /-1} k \lg k+\sum_{k=n-m / 2]}^{n-1} k \lg k
$$

$$
\leq \sum_{k=1}^{\lceil n / 2\rceil-1} k \lg k+\sum_{k=\lceil n / 2\rceil}^{n-1} k \lg n
$$

$$
=\sum_{k=1}^{\lceil n / 2\rceil-1} k \lg k+\lg n \sum_{k=\lceil n / 2\rceil}^{n-1} k
$$

Split the summation for a tighter bound

The $\lg \mathrm{k}$ in the second term is bounded by $\lg \mathrm{n}$

Move the $\lg \mathrm{n}$ outside the summation

Tightly Bounding The Key Summation

$$
\begin{aligned}
\sum_{k=1}^{n-1} k \lg k & \leq \sum_{k=1}^{\lceil n / 2\rceil-1} k \lg k+\lg n \sum_{k=\lceil n / 2\rceil}^{n-1} k \quad \text { The summation bound so far } \\
& \leq \sum_{k=1}^{\lceil n / 2\rceil-1} k \lg (n / 2)+\lg n \sum_{k=\lceil n / 2\rceil}^{n-1} k \quad \begin{array}{l}
\text { The lg } \mathrm{k} \text { in the first term is } \\
\text { bounded by } \lg \mathrm{n} / 2
\end{array} \\
& =\sum_{k=1}^{\lceil n / 2\rceil-1} k(\lg n-1)+\lg n \sum_{k=\lceil n / 2\rceil}^{n-1} k \quad \lg \mathrm{n} / 2=\lg \mathrm{n}-1 \\
& =(\lg n-1) \sum_{k=1}^{\lceil n / 2\rceil-1} k+\lg n \sum_{k=\lceil n / 2\rceil}^{n-1} k \begin{array}{l}
\text { Move (lg } \mathrm{n}-1) \text { outside the } \\
\text { summation }
\end{array}
\end{aligned}
$$

Tightly Bounding The Key Summation

$$
\begin{aligned}
\sum_{k=1}^{n-1} k \lg k & \leq(\lg n-1) \sum_{k=1}^{[n / 2]-1} k+\lg n \sum_{k=\lceil n / 2\rceil}^{n-1} k \text { The summation bound so far } \\
& =\lg n \sum_{k=1}^{[n / 2]^{-1}} k-\sum_{k=1}^{[n / 2]-1} k+\lg n \sum_{k=\lceil n / 2\rceil}^{n-1} k \text { Distribute the }(\lg n-1) \\
& =\lg n \sum_{k=1}^{n-1} k-\sum_{k=1}^{[n / 2]^{-1}} k \quad \begin{array}{l}
\text { range summations overlap in } \\
\text { rambine them }
\end{array} \\
& =\lg n\left(\frac{(n-1)(n)}{2}\right)-\sum_{k=1}^{[n / 2]-1} k \quad \text { The Guassian series }
\end{aligned}
$$

Tightly Bounding The Key Summation

$\sum_{k=1}^{n-1} k \lg k \leq\left(\frac{(n-1)(n)}{2}\right) \lg n-\sum_{k=1}^{[n / 2-1} k$
$\leq \frac{1}{2}[n(n-1)] \lg n-\sum_{k=1}^{n / 2-1} k$
$\leq \frac{1}{2}[n(n-1)] \lg n-\frac{1}{2}\left(\frac{n}{2}\right)\left(\frac{n}{2}-1\right) \mathrm{x}$ Guassian series
$\leq \frac{1}{2}\left(n^{2} \lg n-n \lg n\right)-\frac{1}{8} n^{2}+\frac{n}{4} \quad \underset{\substack{\text { Multiply it } \\ \text { all out }}}{\text {. }}$

Tightly Bounding The Key Summation

$$
\begin{aligned}
\sum_{k=1}^{n-1} k \lg k & \leq \frac{1}{2}\left(n^{2} \lg n-n \lg n\right)-\frac{1}{8} n^{2}+\frac{n}{4} \\
& \leq \frac{1}{2} n^{2} \lg n-\frac{1}{8} n^{2} \text { when } n \geq 2
\end{aligned}
$$

Done!!!

