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So	far:	SorDng	

•  Inser6on 	 	O(n2) 	 	 	 	 	 	in-place	
•  Merge 	 	 	O(n	logn)		 	 	 	 	2nd	array	to	merge 		
•  Heapsort	 	 	O(n	logn) 	 	 	 		 	in-place	
•  Quicksort 	 	from	O(n	logn)	to	O(n2)	in-place	
–  very	good	in	pracDce	(small	constants)	
– QuadraDc	Dme	is	rare	

Next	

		Algorithm 	 	Time 	 	 	 	 	 	Space	 		



Quicksort	

•  Another	divide-and-conquer	algorithm	
– DIVIDE:	The	array	A[p..r]	is	par11oned	into	two	
non-empty	subarrays	A[p..q]	and	A[q+1..r]		
•  Invariant:	All	elements	in	A[p..q]	are	less	than	all	
elements	in	A[q+1..r]	

– CONQUER:	The	subarrays	are	recursively	sorted	
by	calls	to	quicksort	

– COMBINE:	Unlike	merge	sort,	no	combining	step:	
two	subarrays	form	an	already-sorted	array	



Quicksort	Code	

Quicksort(A, p, r) 
{ 
    if (p < r) 
    { 
        q = Partition(A, p, r); 
        Quicksort(A, p, q); 
        Quicksort(A, q+1, r); 
    } 
} 



ParDDon	

•  Clearly,	all	the	acDon	takes	place	in	the	
partition()	funcDon	
– Rearranges	the	subarray	in	place	
– End	result:		

•  Two	subarrays	
•  All	values	in	first	subarray	≤	all	values	in	second	

– Returns	the	index	of	the	“pivot”	element	
separaDng	the	two	subarrays	

•  How	do	you	suppose	we	implement	this?	



ParDDon	In	Words	

•  ParDDon(A,	p,	r):	
–  Select	an	element	to	act	as	the	“pivot”	(which?)	
– Grow	two	regions,	A[p..i]	and	A[j..r]	

•  All	elements	in	A[p..i]	<=	pivot	
•  All	elements	in	A[j..r]	>=	pivot	

–  Increment	i	unDl	A[i]	>=	pivot		
– Decrement	j	unDl	A[j]	<=	pivot	
–  Swap	A[i]	and	A[j]	
–  Repeat	unDl	i	>=	j		
–  Return	j	 Note: slightly different from 

book’s partition() 



ParDDon	Code	
Partition(A, p, r) 
    x = A[p]; 
    i = p - 1; 
    j = r + 1; 
    while (TRUE) 
        repeat  
            j--; 
        until A[j] <= x; 
        repeat  
            i++; 
        until A[i] >= x; 
        if (i < j) 
            Swap(A, i, j); 
        else 
            return j; 

Illustrate on  
A = {4,5,9,7,2,13,6,3}; 

i	 j	

Choose	pivot	x	

Scan	looking	for		
element	exceeding	

x		

Scan	looking	for		
element	at	most	

x		

When	we	find	such	elements,	
Exchange	them	



Pivot=4	
Goal:	

4	 5	 9	 7	 2	 13	 6	 3	

i=0	 j=9	

3	 5	 9	 7	 2	 13	 6	 4	

i=0	 j=9	i=2	 j=5	

3	 2	 9	 7	 5	 13	 6	 4	

i=3	 j=5	i=2	j=2	

i>j:	DONE	

								<=x																			>=x	

Example	

Assume	all	elements	are	disDnct	



ParDDon	Code	
Partition(A, p, r) 
    x = A[p]; 
    i = p - 1; 
    j = r + 1; 
    while (TRUE) 
        repeat  
            j--; 
        until A[j] <= x; 
        repeat  
            i++; 
        until A[i] >= x; 
        if (i < j) 
            Swap(A, i, j); 
        else 
            return j; 

partition() runs in O(n) time 
•  O(1) at each element: skip or 

swap 
•  Linear in the size of the array 

What is the running time of 
partition()? 



Back	to	Quicksort	
Quicksort(A, p, r) 
    if (p < r) 
        q = Partition(A, p, r); 

        Quicksort(A, p, q); 
        Quicksort(A, q+1, r); 

3	 9	 5	 7	

Qsort(A,1,4)	

A	

Part(A,1,4)	
Returns:	1	

	3 9 5 7

Qsort(A,1,1)	 Qsort(A,2,4)	

Part(A,2,4)	
Returns:	3	

	3 7 5 9

Qsort(A,2,3)	

Part(A,2,4)	
Returns:	2	

	3 5 7 9

Qsort(A,2,2)	 Qsort(A,3,3)	

Qsort(A,4,4)	



Analyzing	Quicksort	

•  What	will	be	a	bad	case	for	the	algorithm?	
– ParDDon	is	always	unbalanced	

•  What	will	be	the	best	case	for	the	algorithm?	
– ParDDon	is	perfectly	balanced	

•  Which	is	more	likely?	
– The	lader,	by	far,	except...	

•  Will	any	par1cular	input	elicit	the	worst	case?	
– Yes:	Already-sorted	input	



	Analyzing	Quicksort:	Balanced	splits	

•  In	the	balanced	split	case:	
T(n)	=	2T(n/2)	+	Θ(n)	

•  What	does	this	work	out	to?	
T(n)	=	Θ(n	lg	n)		

Take	home:			A	good	balance	is	important	



Analyzing	Quicksort:	Sorted	case	

•  Sorted	case:	
T(1)	=	Θ(1)	
T(n)	=	T(n	-	1)	+	Θ(n)	
	by	subsDtuDon…	

T(n)	=	T(1)	+	nΘ(n)	

•  Works	out	to	
	T(n)	=	Θ(n2)	
	

2	 3	 6	 7	 10	 13	 14	 16	

First	call:	j	will	decrease	to	1	(n	steps)	
Second:	j	decrease	to	2	(n-1	steps)	
…	
n+	n-1	+	n-2	+	…	=	Θ(n2)	



Is	sorted	really	the	worst	case?	

•  Argue	formally	that	things	cannot	get	worse	
•  A	formal	argument	with	general	split	
•  Assume	that	every	split	results	in	two	arrays		
–  Size	q	
–  Size	n-q	

•  T(n)	=	max	1<=q<=n-1[T(q)+T(n-q)]	+	O(n)	
– where	T(1)	=	O(1)	

•  Show	that	T(n)	=	O(n2)	
IT	CANNOT	GET	

WORSE	



Average	behavior:	IntuiDon	

•  Worst	case:	assumes	1:n-1	split	
–  rare	in	pracDce	

•  The	O(nlogn)	behavior	occurs	even	if	the	split	
is	say	10%:90%		

•  If	all	splits	are	equally	likely	
– 1:n-1,	2:n-2	…	n-1:1	
–  then	on	average,	we	will	not	get	a	very	tall	tree	
– details	in	extra	slide	at	the	end	(not	required)	



Avoiding	the	O(n2)	case		

•  The	real	liability	of	quicksort	is	that	it	runs	in	
O(n2)	on	already-sorted	input	

•  SoluDons	
– Randomize	the	input	array	
– Pick	a	random	pivot	element	
– choose	3	elements	and	take	median	for	pivot	

•  How	will	these	solve	the	problem?	
– By	ensuring	that	no	parDcular	input	can	be	chosen	
to	make	quicksort	run	in	O(n2)	Dme	



Other	Improvements		
(lower	constants)	

•  When	a	subarray	is	small	(say	smaller	than	5)	
switch	to	a	simple	sorDng	procedure	say	inserDon	
sort	instead	of	Quicksort		
– why	does	this	help?	

•  Pick	more	than	one	pivot	
–  ParDDons	the	array	in	more	than	2	parts	
–  Smaller	number	of	comparisons	(1.9nlogn	vs	2nlogn	)	
and	overall	beder	performance	in	pracDce	

– Details:	Kushagra	et	al.	“MulD-Pivot	Quicksort:	Theory	
and	Experiments”,	SIAM,	2013	



Announcements	

•  Read	through	Chapter	7	
•  HW2	due	on	Wednesday	



Extra	slides*	

•  Average	case	rigorous	analysis	follows	
•  This	is	advanced	material	(will	not	appear	in	
HWs	and	exam)	



Analyzing	Quicksort:	Average	Case	

•  Assuming	random	input,	average-case	running	
Dme	is	much	closer	to	O(n	lg	n)	than	O(n2)	

•  First,	a	more	intuiDve	explanaDon/example:	
– Suppose	that	parDDon()	always	produces	a	9-to-1	
split.		This	looks	quite	unbalanced!	

– The	recurrence	is	thus:	
	T(n)	=	T(9n/10)	+	T(n/10)	+	n			
–  	How	deep	will	the	recursion	go?		

Use n instead of O(n)  
for convenience (how?) 



Analyzing	Quicksort:	Average	Case	

•  IntuiDvely,	a	real-life	run	of	quicksort	will	
produce	a	mix	of	“bad”	and	“good”	splits	
– Randomly	distributed	among	the	recursion	tree	
– Pretend	for	intuiDon	that	they	alternate	between	
best-case	(n/2	:	n/2)	and	worst-case	(n-1	:	1)	

– What	happens	if	we	bad-split	root	node,	then	
good-split	the	resul1ng	size	(n-1)	node?	



Analyzing	Quicksort:	Average	Case	

•  IntuiDvely,	a	real-life	run	of	quicksort	will	
produce	a	mix	of	“bad”	and	“good”	splits	
– Randomly	distributed	among	the	recursion	tree	
– Pretend	for	intuiDon	that	they	alternate	between	
best-case	(n/2	:	n/2)	and	worst-case	(n-1	:	1)	

– What	happens	if	we	bad-split	root	node,	then	
good-split	the	resul1ng	size	(n-1)	node?	
• We	fail	English	



Analyzing	Quicksort:	Average	Case	
•  IntuiDvely,	a	real-life	run	of	quicksort	will	
produce	a	mix	of	“bad”	and	“good”	splits	
–  Randomly	distributed	among	the	recursion	tree	
–  Pretend	for	intuiDon	that	they	alternate	between	
best-case	(n/2	:	n/2)	and	worst-case	(n-1	:	1)	

– What	happens	if	we	bad-split	root	node,	then	good-
split	the	resul1ng	size	(n-1)	node?	
•  We	end	up	with	three	subarrays,	size	1,	(n-1)/2,	(n-1)/2	
•  Combined	cost	of	splits	=	n	+	n	-1	=	2n	-1	=	O(n)	
•  No	worse	than	if	we	had	good-split	the	root	node!	



Analyzing	Quicksort:	Average	Case	

•  IntuiDvely,	the	O(n)	cost	of	a	bad	split		
(or	2	or	3	bad	splits)	can	be	absorbed		
into	the	O(n)	cost	of	each	good	split	

•  Thus	running	Dme	of	alternaDng	bad	and	good	
splits	is	sDll	O(n	lg	n),	with	slightly	higher	
constants	

•  How	can	we	be	more	rigorous?	



Analyzing	Quicksort:	Average	Case	

•  For	simplicity,	assume:	
– All	inputs	disDnct	(no	repeats)	
– Slightly	different	partition() procedure	

•  parDDon	around	a	random	element,	which	is	not	
included	in	subarrays	
•  all	splits	(0:n-1,	1:n-2,	2:n-3,	…	,	n-1:0)	equally	likely	

•  What	is	the	probability	of	a	par1cular	split	
happening?	

•  Answer:	1/n	



Analyzing	Quicksort:	Average	Case	
•  So	parDDon	generates	splits		
	(0:n-1,		1:n-2,		2:n-3,	…	,		n-2:1,		n-1:0)		
each	with	probability	1/n	

•  If	T(n)	is	the	expected	running	Dme,	

•  What	is	each	term	under	the	summa1on	for?	
•  What	is	the	Θ(n)	term	for?		

( ) ( ) ( )[ ] ( )∑
−

=

Θ+−−+=
1

0

11 n

k
nknTkT

n
nT



Analyzing	Quicksort:	Average	Case	

•  So…	

– Note:	this	is	just	like	the	book’s	recurrence	
(p166),	except	that	the	summaDon	starts	with	k=0	

– We’ll	take	care	of	that	in	a	second		

( ) ( ) ( )[ ] ( )
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n
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Write it on  
the board 



Analyzing	Quicksort:	Average	Case	

•  We	can	solve	this	recurrence	using	the	
dreaded	subsDtuDon	method	
– Guess	the	answer	
– Assume	that	the	inducDve	hypothesis	holds	
– SubsDtute	it	in	for	some	value	<	n	
– Prove	that	it	follows	for	n	



Analyzing	Quicksort:	Average	Case	

•  We	can	solve	this	recurrence	using	the	
dreaded	subsDtuDon	method	
– Guess	the	answer	

• What’s	the	answer?	

– Assume	that	the	inducDve	hypothesis	holds	
– SubsDtute	it	in	for	some	value	<	n	
– Prove	that	it	follows	for	n	



Analyzing	Quicksort:	Average	Case	

•  We	can	solve	this	recurrence	using	the	
dreaded	subsDtuDon	method	
– Guess	the	answer	

•  T(n)	=	O(n	lg	n)	
– Assume	that	the	inducDve	hypothesis	holds	
– SubsDtute	it	in	for	some	value	<	n	
– Prove	that	it	follows	for	n	



Analyzing	Quicksort:	Average	Case	

•  We	can	solve	this	recurrence	using	the	
dreaded	subsDtuDon	method	
– Guess	the	answer	

•  T(n)	=	O(n	lg	n)	
– Assume	that	the	inducDve	hypothesis	holds	

• What’s	the	induc1ve	hypothesis?	

– SubsDtute	it	in	for	some	value	<	n	
– Prove	that	it	follows	for	n	



Analyzing	Quicksort:	Average	Case	

•  We	can	solve	this	recurrence	using	the	
dreaded	subsDtuDon	method	
– Guess	the	answer	

•  T(n)	=	O(n	lg	n)	
– Assume	that	the	inducDve	hypothesis	holds	

•  T(n)	≤	an	lg	n	+	b			for	some	constants	a	and	b	

– SubsDtute	it	in	for	some	value	<	n	
– Prove	that	it	follows	for	n	



Analyzing	Quicksort:	Average	Case	

•  We	can	solve	this	recurrence	using	the	
dreaded	subsDtuDon	method	
– Guess	the	answer	

•  T(n)	=	O(n	lg	n)	
– Assume	that	the	inducDve	hypothesis	holds	

•  T(n)	≤	an	lg	n	+	b			for	some	constants	a	and	b	

– SubsDtute	it	in	for	some	value	<	n	
• What	value?	

– Prove	that	it	follows	for	n	



Analyzing	Quicksort:	Average	Case	

•  We	can	solve	this	recurrence	using	the	
dreaded	subsDtuDon	method	
– Guess	the	answer	

•  T(n)	=	O(n	lg	n)	
– Assume	that	the	inducDve	hypothesis	holds	

•  T(n)	≤	an	lg	n	+	b			for	some	constants	a	and	b	

– SubsDtute	it	in	for	some	value	<	n	
•  The	value	k	in	the	recurrence	

– Prove	that	it	follows	for	n	



Analyzing	Quicksort:	Average	Case	

•  We	can	solve	this	recurrence	using	the	
dreaded	subsDtuDon	method	
– Guess	the	answer	

•  T(n)	=	O(n	lg	n)	
– Assume	that	the	inducDve	hypothesis	holds	

•  T(n)	≤	an	lg	n	+	b			for	some	constants	a	and	b	
– SubsDtute	it	in	for	some	value	<	n	

•  The	value	k	in	the	recurrence	
– Prove	that	it	follows	for	n	

•  Grind	through	it…		



Note: leaving the same 
recurrence as the book 

What are we doing here? 

Analyzing	Quicksort:	Average	Case	
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nT The recurrence to be solved 

What are we doing here? 

What are we doing here? 

Plug in inductive hypothesis 

Expand out the k=0 case 

2b/n is just a constant,  
so fold it into Θ(n) 



What are we doing here? 

What are we doing here? 

Evaluate the summation:  
b+b+…+b = b (n-1) 

The recurrence to be solved 

Since n-1<n, 2b(n-1)/n < 2b 

Analyzing	Quicksort:	Average	Case	
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What are we doing here? Distribute the summation 

This summation gets its own set of slides later 



How did we do this? 
Pick a large enough that 
an/4 dominates Θ(n)+b  

What are we doing here? 
Remember, our goal is to get 
T(n) ≤ an lg n + b 

What the hell? We’ll prove this later 

What are we doing here? Distribute the (2a/n) term 

The recurrence to be solved 

Analyzing	Quicksort:	Average	Case	
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Analyzing	Quicksort:	Average	Case	

•  So	T(n)	≤	an	lg	n	+	b		for	certain	a	and	b	
– Thus	the	inducDon	holds	
– Thus	T(n)	=	O(n	lg	n)	
– Thus	quicksort	runs	in	O(n	lg	n)	Dme	on	average	
(phew!)	

•  Oh	yeah,	the	summaDon…		



What are we doing here? The lg k in the second term is 
bounded by lg n 

Tightly	Bounding		
The	Key	SummaDon	
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What are we doing here? Move the lg n outside the 
summation 

What are we doing here? Split the summation for a 
tighter bound 



The summation bound so far 

Tightly	Bounding	
The	Key	SummaDon	
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What are we doing here? The lg k in the first term is 
bounded by lg n/2 

What are we doing here? lg n/2 = lg n - 1 

What are we doing here? Move (lg n - 1) outside the 
summation 



The summation bound so far 

Tightly	Bounding	
The	Key	SummaDon	
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What are we doing here? Distribute the (lg n - 1) 

What are we doing here? The summations overlap in  
range; combine them 

What are we doing here? The Guassian series 



The summation bound so far 
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What are we doing here? Rearrange first term, place 
upper bound on second 

What are we doing? X Guassian series 

What are we doing? Multiply it  
all out 
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