403: Algorithms and Data
Structures

Fall 2016
UAlbany
Computer Science

Some slides borrowed from David Luebke

So far: Sorting

Algorithm Time Space
* |nsertion O(n?) in-place
* Merge O(n logn) 2"d array to merge
* Heapsort O(n logn) in-place

* Quicksort from O(n logn) to O(n?) in-place
— very good in practice (small constants)

— Quadratic time is rare
Next

Quicksort

* Another divide-and-conquer algorithm

— DIVIDE: The array A[p..r] is partitioned into two
non-empty subarrays A[p..q] and A[g+1..r]

* |nvariant: All elements in A[p..q] are less than all
elements in A[g+1..r]

— CONQUER: The subarrays are recursively sorted
by calls to quicksort

— COMBINE: Unlike merge sort, no combining step:
two subarrays form an already-sorted array

Quicksort Code

Quicksort (A, p, r)
{
if (p < r)
{
q = Partition(A, p, r);
Quicksort (A, p, q);
Quicksort (A, g+l1l, r);

Partition

* Clearly, all the action takes place in the
partition () function

— Rearranges the subarray in place

— End result:
* Two subarrays
* All values in first subarray =< all values in second

— Returns the index of the “pivot” element
separating the two subarrays

 How do you suppose we implement this?

Partition In Words

e Partition(A, p, r):
— Select an element to act as the “pivot~ (which?)

— Grow two regions, A[p..i] and A[j..r]
* All elementsin A[p..i] <= pivot
* All elements in Alj..r] >= pivot

— Increment i until A[i] >= pivot
— Decrement j until A[j] <= pivot
— Swap A[i] and A[j]
— Repeat until i >=j

. Note: slightly different from
— Return j _—

book’ s partition ()

Partition Code

Partition(A, p, r)
x = Alpl;
i=p-1;
j=r + 1;
while (TRUE)

repeat

Jj-—-;

until A[j] <= x;

repeat
i++;

until A[i] >= x;

if (i < 9)

Swap (A, i, j);

else
return j;

Choose pivot x

Scan looking for Scan looking for
element exceeding element at most
X X
When we find such elements,
Exchange them

Illustrate on
A= {4,5,9,7,2,13,6,3};

Example

Pivot=4
]
4 | 5 9 2 |13 3
=9
3 5 9 2 |13 4
i=2 j=5 =9
3 2 9 5113 4
j=2 i=3 j=5
i>j: DONE

Goal:

<=X >=X

Assume all elements are distinct

Partition Code

Partition(A, p, r)

x = Alp];
i=p-1;
j=r + 1;
while (TRUE)
repeat
J--7 What is the running time of
until A[]j] <= x; partition()?
repe?t partition () runs in O(n) time
Lrrs e O(l) at each element: skip or
until A[i] >= x; swap
if (1< 73) * Linear in the size of the array
Swap(A, 1, j);
else

return j;

Back to Quicksort

3

9

5

g T =
Qsort(A,1,4)

Part(A,1,4)

Returns: 1

EE

5

7

e, .
Qsort(A,1,1)

o e

Quicksort (A, p, r)
if (p < r)
q = Partition(A, p, r);
Quicksort (A, p, q):;
Quicksort (A, g+l, r);

Qsort(A,2,4)

Part(A,2,4)
Returns: 3

3

7

L

e
Qsort(A,2,3)

e
Qsort(A,4,4)

Part(A,2,4)
Returns: 2

e
Qsort(A,3,3)

g T =
Qsort(A,2,2)

3

5|'7 9

Analyzing Quicksort

What will be a bad case for the algorithm?
— Partition is always unbalanced

What will be the best case for the algorithm?
— Partition is perfectly balanced

Which is more likely?

— The latter, by far, except...

Will any particular input elicit the worst case?
— Yes: Already-sorted input

Analyzing Quicksort: Balanced splits

* In the balanced split case:
T(n) = 2T(n/2) + ©(n)

 What does this work out to?
T(n) = O(n Ig n)

Take home: A good balance is important

THAT'S WHATII'RDM®:

| DRINK A NB»
[KNOW THINGS.

Analyzing Quicksort: Sorted case

e Sorted case:

T(1) =6 First call: j will decrease to 1 (n steps)
T(n) =T(n-1) + ©(n) Second: j decrease to 2 (n-1 steps)

by substitution...
T(n) =T(1) + nBG(n)
* Works out to
T(n) = ©(n?)

21 3|6]|7 (1013|1416

n+n-1+n-2+...= O(n?)

|s sorted really the worst case?

Argue formally that things cannot get worse
A formal argument with gen

Assume that every split resu
— Size g

— Size n-q
T(n) = MaX ;ccqeen[T(A)+T(N-C
— where T(l) = 0(1) e 5
Show that T(n) = O(n?)

Average behavior: Intuition

* Worst case: assumes 1:n-1 split

— rare in practice

 The O(nlogn) behavior occurs even if the split
Is say 10%:90%

 |f all splits are equally likely
— 1:n-1, 2:n-2 ... n-1:1
— then on average, we will not get a very tall tree
— details in extra slide at the end (not required)

Avoiding the O(n?) case

* The real liability of quicksort is that it runs in
O(n?) on already-sorted input
e Solutions
— Randomize the input array
— Pick a random pivot element
— choose 3 elements and take median for pivot

* How will these solve the problem?

— By ensuring that no particular input can be chosen
to make quicksort run in O(n?) time

Other Improvements
(lower constants)

 When a subarray is small (say smaller than 5)
switch to a simple sorting procedure say insertion
sort instead of Quicksort

— why does this help?

* Pick more than one pivot
— Partitions the array in more than 2 parts

— Smaller number of comparisons (1.9nlogn vs 2nlogn)
and overall better performance in practice

— Details: Kushagra et al. “Multi-Pivot Quicksort: Theory
and Experiments”, SIAM, 2013

Announcements «(@»)

* Read through Chapter 7
* HW2 due on Wednesday

Extra slides™

* Average case rigorous analysis follows

* This is advanced material (will not appear in
HWs and exam)

Analyzing Quicksort: Average Case

* Assuming random input, average-case running
time is much closer to O(n Ig n) than O(n?)

* First, a more intuitive explanation/example:

— Suppose that partition() always produces a 9-to-1
split. This looks quite unbalanced!

— The recurrence is thus: Use n instead of O(n)
for convenience (how?)
T(n) = T(9n/10) + T(n/10) + n
— How deep will the recursion go?

Analyzing Quicksort: Average Case

* |ntuitively, a real-life run of quicksort will
produce a mix of “bad” and “good” splits

— Randomly distributed among the recursion tree

— Pretend for intuition that they alternate between
best-case (n/2 : n/2) and worst-case (n-1: 1)

— What happens if we bad-split root node, then
good-split the resulting size (n-1) node?

Analyzing Quicksort: Average Case

* |ntuitively, a real-life run of quicksort will
produce a mix of “bad” and “good” splits

— Randomly distributed among the recursion tree

— Pretend for intuition that they alternate between
best-case (n/2 : n/2) and worst-case (n-1: 1)
— What happens if we bad-split root node, then
good-split the resulting size (n-1) node?
* We fail English

Analyzing Quicksort: Average Case

* Intuitively, a real-life run of quicksort will
produce a mix of “bad” and “good” splits

— Randomly distributed among the recursion tree

— Pretend for intuition that they alternate between
best-case (n/2 : n/2) and worst-case (n-1: 1)
— What happens if we bad-split root node, then good-
split the resulting size (n-1) node?
* We end up with three subarrays, size 1, (n-1)/2, (n-1)/2
 Combined cost of splits=n+n-1=2n-1=0(n)
* No worse than if we had good-split the root node!

Analyzing Quicksort: Average Case

* |ntuitively, the O(n) cost of a bad split
(or 2 or 3 bad splits) can be absorbed
into the O(n) cost of each good split

* Thus running time of alternating bad and good
splits is still O(n Ig n), with slightly higher
constants

* How can we be more rigorous?

Analyzing Quicksort: Average Case

* For simplicity, assume:
— All inputs distinct (no repeats)
— Slightly different partition () procedure

e partition around a random element, which is not
included in subarrays

 all splits (0:n-1, 1:n-2, 2:n-3, ..., n-1:0) equally likely
* What is the probability of a particular split
happening?
 Answer: 1/n

Analyzing Quicksort: Average Case

So partition generates splits

(0:n-1, 1:n-2, 2:n-3, ..., n-2:1, n-1:0)
each with probability 1/n

If T(n) is the expected running time,

T(n)=lz[T(k)+T(n—l—k)]+@)(n)

n £
What is each term under the summation for?

What is the ®(n) term for?

Analyzing Quicksort: Average Case

¢ SO 1 n—1

T(n)=— Z()[T(k)+ T(n-1-k)|+6(n)

n =

2 S Write it on
= ;ZT(k)'I' @(ﬂ) “— the board
=0
— Note: this is just like the book’ s recurrence
(p166), except that the summation starts with k=0

— We' Il take care of that in a second

Analyzing Quicksort: Average Case

* We can solve this recurrence using the
dreaded substitution method

— Guess the answer

— Assume that the inductive hypothesis holds
— Substitute it in for some value < n

— Prove that it follows for n

Analyzing Quicksort: Average Case

* We can solve this recurrence using the
dreaded substitution method

— Guess the answer

* What s the answer?
— Assume that the inductive hypothesis holds
— Substitute it in for some value < n
— Prove that it follows for n

Analyzing Quicksort: Average Case

* We can solve this recurrence using the
dreaded substitution method

— Guess the answer
* T(n) =0(nlg n)
— Assume that the inductive hypothesis holds
— Substitute it in for some value < n
— Prove that it follows for n

Analyzing Quicksort: Average Case

* We can solve this recurrence using the
dreaded substitution method

— Guess the answer
* T(n) =0O(nlgn)

— Assume that the inductive hypothesis holds
 What s the inductive hypothesis?

— Substitute it in for some value < n

— Prove that it follows for n

Analyzing Quicksort: Average Case

* We can solve this recurrence using the
dreaded substitution method

— Guess the answer
* T(n) =0O(nlgn)

— Assume that the inductive hypothesis holds
e T(n)=anlgn+b forsome constantsaand b

— Substitute it in for some value < n
— Prove that it follows for n

Analyzing Quicksort: Average Case

* We can solve this recurrence using the
dreaded substitution method
— Guess the answer
* T(n) =0O(nlgn)
— Assume that the inductive hypothesis holds
e T(n)=anlgn+b forsome constantsaand b

— Substitute it in for some value < n
e What value?

— Prove that it follows for n

Analyzing Quicksort: Average Case

* We can solve this recurrence using the
dreaded substitution method
— Guess the answer
* T(n) =0O(nlgn)
— Assume that the inductive hypothesis holds
e T(n)=anlgn+b forsome constantsaand b
— Substitute it in for some value < n

* The value kin the recurrence

— Prove that it follows for n

Analyzing Quicksort: Average Case

* We can solve this recurrence using the
dreaded substitution method
— Guess the answer
* T(n) =0(nlgn)
— Assume that the inductive hypothesis holds
e T(n)=anlgn+b forsome constantsaand b

— Substitute it in for some value < n
e The value k in the recurrence

— Prove that it follows for n
e Grind through it...

Analvzme chksort Average Case
Z T _|_ @ The recurrence to be solved

< — 2 ak 1 g k + b) + @() Plug in inductive hypothesis

n—1
< 2 b + Z (Clk lgk + b) + @(n) Expand out the k=0 case
n =1

2b/n is just a constant,
Z ak 1gk + b "‘ — + @() so fold it into ©(n)

recurrence as the book

_ _Z ak lgk +b)+ @(ﬂ) Note: leaving the same
n=

Analyzing Quicksort: Average Case

n-1

T(I/l) = % Z (ak lg k + b) + @(n) The recurrence to be solved
n =
n—1 n—1
= % Z ak lg k + % Z b + @(n) Distribute the summation
=]

Z k lgk + — (n — 1) + @(n)Evaluate the summation:

b+b+...+b =b (n-1)

2 k lgk +2b + @() Since n-1<n, 2b(n-1)/n < 2b

This summation gets its own set of slides later

Analyzing Quicksort: Average Case

n-1
T(n) < 2_61 Z k lgk +2b + @(n) The recurrence to be solved
n =
< 261 1 n2 lgn — l}/12 + 2b + @(n) We' 1l prove this later
n\2 3
= an lg n-— % n+2b+ @(I/Z) Distribute the (2a/n) term

4 T(n)<anlgn+b

Pick a large enough that
<<
= an lg n+b an/4 dominates ®(n)+b

a
= Aan lgn + b + (@(n)+ b o n) Remember, our goal is to get

Analyzing Quicksort: Average Case

e SoT(n)=<anlgn+ b forcertainaandb
— Thus the induction holds
— Thus T(n) = O(n Ig n)

— Thus quicksort runs in O(n Ig n) time on average
(phew!)

* Ohyeah, the summation...

Tightly Bounding
The Key Summation

Uil [n 2]t e Split the summation for a
Zklgk = VYklgk+ Yklgk tighter bound
=1 =]

k=|n/2]
[n2]-] U The Ig k in the second term is
< k lg k + k lg n bounded by Ig n
=1 k=n/2]

[n/2]-1 n-l Move the Ig n outside the
k1 g k + lg n k summation
=]

k=|n/2]

Tightly Bounding
The Key Summation

n-1 [n/2]-1 -1
Z k lg k < 2 k lg k + lg n k The summation bound so far
=] =1

k=n/2]

[n/2]-1 n-l The Ig k in the first term is
< klg(n/2)+ lgn Zk bounded by Ig n/2
=1

k=n/2]
[”/2 -1 n—1
- 2k(1gn-1)+1gn ko lem2=ign-d
=1 k=|n/2]

|'n/2 -1 U Move (1 1) outside the
ove (Ig n - utsl
= (lgn—l) 2k+1gn k summation
=]

k=[n/2]

Tightly Bounding
The Key Summation

n-1 |'n/ 21]-1 n-1
Z k lg k < (lg 71— 1) k + lg 7 Jc The summation bound so far
=1 k=|n/2]
[n/2]-1 [n/
lg 7 2 2 k + lg n k Distribute the (Ign - 1)
k=|n/2]
n/ 2 1 The summations overlap in
=] gn 2 k — range; combine them

2

[n/2]-1
lg I/l(n- 1)(71)) 2 k The Guassian series
=]

Tightly Bounding
The Key Summation

n-1 _ [n/2 -1
Z k lg k < ((n 1)(”)) lg n — 2 k The summation bound so far
=1 =1

2
| "] Rearrange first term, place
< [n(n-1)|1gn - 1 k upper bound on second
< l[n(n — 1)]lgn — l (E)(ﬁ — 1) X Guassian series
2 2{2)\ 2
l(n lgn — nlgn)—ln +ﬁ Multiply it
P o 4 all out

3k

Tightly Bounding
The Key Summation

1 1 n
—nlnnln——n+—
on-ntgn)-Lo o

l\.)

ln lgn—ln whenn =2

2 3

Done!!!

