
403:	Algorithms	and	Data	
Structures	

	
Quicksort	
Fall	2016	
UAlbany	

Computer	Science	
Some	slides	borrowed	from	David	Luebke	

So	far:	SorDng	

•  Inser6on 	 	O(n2) 	 	 	 	 	 	in-place	
•  Merge 	 	 	O(n	logn)		 	 	 	 	2nd	array	to	merge 		
•  Heapsort	 	 	O(n	logn) 	 	 	 		 	in-place	
•  Quicksort 	 	from	O(n	logn)	to	O(n2)	in-place	
–  very	good	in	pracDce	(small	constants)	
– QuadraDc	Dme	is	rare	

Next	

		Algorithm 	 	Time 	 	 	 	 	 	Space	 		

Quicksort	

•  Another	divide-and-conquer	algorithm	
– DIVIDE:	The	array	A[p..r]	is	par11oned	into	two	
non-empty	subarrays	A[p..q]	and	A[q+1..r]		
•  Invariant:	All	elements	in	A[p..q]	are	less	than	all	
elements	in	A[q+1..r]	

– CONQUER:	The	subarrays	are	recursively	sorted	
by	calls	to	quicksort	

– COMBINE:	Unlike	merge	sort,	no	combining	step:	
two	subarrays	form	an	already-sorted	array	

Quicksort	Code	

Quicksort(A, p, r)
{
 if (p < r)
 {
 q = Partition(A, p, r);
 Quicksort(A, p, q);
 Quicksort(A, q+1, r);
 }
}

ParDDon	

•  Clearly,	all	the	acDon	takes	place	in	the	
partition()	funcDon	
– Rearranges	the	subarray	in	place	
– End	result:		

•  Two	subarrays	
•  All	values	in	first	subarray	≤	all	values	in	second	

– Returns	the	index	of	the	“pivot”	element	
separaDng	the	two	subarrays	

•  How	do	you	suppose	we	implement	this?	

ParDDon	In	Words	

•  ParDDon(A,	p,	r):	
–  Select	an	element	to	act	as	the	“pivot”	(which?)	
– Grow	two	regions,	A[p..i]	and	A[j..r]	

•  All	elements	in	A[p..i]	<=	pivot	
•  All	elements	in	A[j..r]	>=	pivot	

–  Increment	i	unDl	A[i]	>=	pivot		
– Decrement	j	unDl	A[j]	<=	pivot	
–  Swap	A[i]	and	A[j]	
–  Repeat	unDl	i	>=	j		
–  Return	j	 Note: slightly different from

book’s partition()

ParDDon	Code	
Partition(A, p, r)
 x = A[p];
 i = p - 1;
 j = r + 1;
 while (TRUE)
 repeat
 j--;
 until A[j] <= x;
 repeat
 i++;
 until A[i] >= x;
 if (i < j)
 Swap(A, i, j);
 else
 return j;

Illustrate on
A = {4,5,9,7,2,13,6,3};

i	 j	

Choose	pivot	x	

Scan	looking	for		
element	exceeding	

x		

Scan	looking	for		
element	at	most	

x		

When	we	find	such	elements,	
Exchange	them	

Pivot=4	
Goal:	

4	 5	 9	 7	 2	 13	 6	 3	

i=0	 j=9	

3	 5	 9	 7	 2	 13	 6	 4	

i=0	 j=9	i=2	 j=5	

3	 2	 9	 7	 5	 13	 6	 4	

i=3	 j=5	i=2	j=2	

i>j:	DONE	

								<=x																			>=x	

Example	

Assume	all	elements	are	disDnct	

ParDDon	Code	
Partition(A, p, r)
 x = A[p];
 i = p - 1;
 j = r + 1;
 while (TRUE)
 repeat
 j--;
 until A[j] <= x;
 repeat
 i++;
 until A[i] >= x;
 if (i < j)
 Swap(A, i, j);
 else
 return j;

partition() runs in O(n) time
•  O(1) at each element: skip or

swap
•  Linear in the size of the array

What is the running time of
partition()?

Back	to	Quicksort	
Quicksort(A, p, r)
 if (p < r)
 q = Partition(A, p, r);

 Quicksort(A, p, q);
 Quicksort(A, q+1, r);

3	 9	 5	 7	

Qsort(A,1,4)	

A	

Part(A,1,4)	
Returns:	1	

	3 9 5 7

Qsort(A,1,1)	 Qsort(A,2,4)	

Part(A,2,4)	
Returns:	3	

	3 7 5 9

Qsort(A,2,3)	

Part(A,2,4)	
Returns:	2	

	3 5 7 9

Qsort(A,2,2)	 Qsort(A,3,3)	

Qsort(A,4,4)	

Analyzing	Quicksort	

•  What	will	be	a	bad	case	for	the	algorithm?	
– ParDDon	is	always	unbalanced	

•  What	will	be	the	best	case	for	the	algorithm?	
– ParDDon	is	perfectly	balanced	

•  Which	is	more	likely?	
– The	lader,	by	far,	except...	

•  Will	any	par1cular	input	elicit	the	worst	case?	
– Yes:	Already-sorted	input	

	Analyzing	Quicksort:	Balanced	splits	

•  In	the	balanced	split	case:	
T(n)	=	2T(n/2)	+	Θ(n)	

•  What	does	this	work	out	to?	
T(n)	=	Θ(n	lg	n)		

Take	home:			A	good	balance	is	important	

Analyzing	Quicksort:	Sorted	case	

•  Sorted	case:	
T(1)	=	Θ(1)	
T(n)	=	T(n	-	1)	+	Θ(n)	
	by	subsDtuDon…	

T(n)	=	T(1)	+	nΘ(n)	

•  Works	out	to	
	T(n)	=	Θ(n2)	
	

2	 3	 6	 7	 10	 13	 14	 16	

First	call:	j	will	decrease	to	1	(n	steps)	
Second:	j	decrease	to	2	(n-1	steps)	
…	
n+	n-1	+	n-2	+	…	=	Θ(n2)	

Is	sorted	really	the	worst	case?	

•  Argue	formally	that	things	cannot	get	worse	
•  A	formal	argument	with	general	split	
•  Assume	that	every	split	results	in	two	arrays		
–  Size	q	
–  Size	n-q	

•  T(n)	=	max	1<=q<=n-1[T(q)+T(n-q)]	+	O(n)	
– where	T(1)	=	O(1)	

•  Show	that	T(n)	=	O(n2)	
IT	CANNOT	GET	

WORSE	

Average	behavior:	IntuiDon	

•  Worst	case:	assumes	1:n-1	split	
–  rare	in	pracDce	

•  The	O(nlogn)	behavior	occurs	even	if	the	split	
is	say	10%:90%		

•  If	all	splits	are	equally	likely	
– 1:n-1,	2:n-2	…	n-1:1	
–  then	on	average,	we	will	not	get	a	very	tall	tree	
– details	in	extra	slide	at	the	end	(not	required)	

Avoiding	the	O(n2)	case		

•  The	real	liability	of	quicksort	is	that	it	runs	in	
O(n2)	on	already-sorted	input	

•  SoluDons	
– Randomize	the	input	array	
– Pick	a	random	pivot	element	
– choose	3	elements	and	take	median	for	pivot	

•  How	will	these	solve	the	problem?	
– By	ensuring	that	no	parDcular	input	can	be	chosen	
to	make	quicksort	run	in	O(n2)	Dme	

Other	Improvements		
(lower	constants)	

•  When	a	subarray	is	small	(say	smaller	than	5)	
switch	to	a	simple	sorDng	procedure	say	inserDon	
sort	instead	of	Quicksort		
– why	does	this	help?	

•  Pick	more	than	one	pivot	
–  ParDDons	the	array	in	more	than	2	parts	
–  Smaller	number	of	comparisons	(1.9nlogn	vs	2nlogn)	
and	overall	beder	performance	in	pracDce	

– Details:	Kushagra	et	al.	“MulD-Pivot	Quicksort:	Theory	
and	Experiments”,	SIAM,	2013	

Announcements	

•  Read	through	Chapter	7	
•  HW2	due	on	Wednesday	

Extra	slides*	

•  Average	case	rigorous	analysis	follows	
•  This	is	advanced	material	(will	not	appear	in	
HWs	and	exam)	

Analyzing	Quicksort:	Average	Case	

•  Assuming	random	input,	average-case	running	
Dme	is	much	closer	to	O(n	lg	n)	than	O(n2)	

•  First,	a	more	intuiDve	explanaDon/example:	
– Suppose	that	parDDon()	always	produces	a	9-to-1	
split.		This	looks	quite	unbalanced!	

– The	recurrence	is	thus:	
	T(n)	=	T(9n/10)	+	T(n/10)	+	n			
–  	How	deep	will	the	recursion	go?		

Use n instead of O(n)
for convenience (how?)

Analyzing	Quicksort:	Average	Case	

•  IntuiDvely,	a	real-life	run	of	quicksort	will	
produce	a	mix	of	“bad”	and	“good”	splits	
– Randomly	distributed	among	the	recursion	tree	
– Pretend	for	intuiDon	that	they	alternate	between	
best-case	(n/2	:	n/2)	and	worst-case	(n-1	:	1)	

– What	happens	if	we	bad-split	root	node,	then	
good-split	the	resul1ng	size	(n-1)	node?	

Analyzing	Quicksort:	Average	Case	

•  IntuiDvely,	a	real-life	run	of	quicksort	will	
produce	a	mix	of	“bad”	and	“good”	splits	
– Randomly	distributed	among	the	recursion	tree	
– Pretend	for	intuiDon	that	they	alternate	between	
best-case	(n/2	:	n/2)	and	worst-case	(n-1	:	1)	

– What	happens	if	we	bad-split	root	node,	then	
good-split	the	resul1ng	size	(n-1)	node?	
• We	fail	English	

Analyzing	Quicksort:	Average	Case	
•  IntuiDvely,	a	real-life	run	of	quicksort	will	
produce	a	mix	of	“bad”	and	“good”	splits	
–  Randomly	distributed	among	the	recursion	tree	
–  Pretend	for	intuiDon	that	they	alternate	between	
best-case	(n/2	:	n/2)	and	worst-case	(n-1	:	1)	

– What	happens	if	we	bad-split	root	node,	then	good-
split	the	resul1ng	size	(n-1)	node?	
•  We	end	up	with	three	subarrays,	size	1,	(n-1)/2,	(n-1)/2	
•  Combined	cost	of	splits	=	n	+	n	-1	=	2n	-1	=	O(n)	
•  No	worse	than	if	we	had	good-split	the	root	node!	

Analyzing	Quicksort:	Average	Case	

•  IntuiDvely,	the	O(n)	cost	of	a	bad	split		
(or	2	or	3	bad	splits)	can	be	absorbed		
into	the	O(n)	cost	of	each	good	split	

•  Thus	running	Dme	of	alternaDng	bad	and	good	
splits	is	sDll	O(n	lg	n),	with	slightly	higher	
constants	

•  How	can	we	be	more	rigorous?	

Analyzing	Quicksort:	Average	Case	

•  For	simplicity,	assume:	
– All	inputs	disDnct	(no	repeats)	
– Slightly	different	partition() procedure	

•  parDDon	around	a	random	element,	which	is	not	
included	in	subarrays	
•  all	splits	(0:n-1,	1:n-2,	2:n-3,	…	,	n-1:0)	equally	likely	

•  What	is	the	probability	of	a	par1cular	split	
happening?	

•  Answer:	1/n	

Analyzing	Quicksort:	Average	Case	
•  So	parDDon	generates	splits		
	(0:n-1,		1:n-2,		2:n-3,	…	,		n-2:1,		n-1:0)		
each	with	probability	1/n	

•  If	T(n)	is	the	expected	running	Dme,	

•  What	is	each	term	under	the	summa1on	for?	
•  What	is	the	Θ(n)	term	for?		

() () ()[] ()∑
−

=

Θ+−−+=
1

0

11 n

k
nknTkT

n
nT

Analyzing	Quicksort:	Average	Case	

•  So…	

– Note:	this	is	just	like	the	book’s	recurrence	
(p166),	except	that	the	summaDon	starts	with	k=0	

– We’ll	take	care	of	that	in	a	second		

() () ()[] ()

() ()∑

∑

−

=

−

=

Θ+=

Θ+−−+=

1

0

1

0

2

11

n

k

n

k

nkT
n

nknTkT
n

nT

Write it on
the board

Analyzing	Quicksort:	Average	Case	

•  We	can	solve	this	recurrence	using	the	
dreaded	subsDtuDon	method	
– Guess	the	answer	
– Assume	that	the	inducDve	hypothesis	holds	
– SubsDtute	it	in	for	some	value	<	n	
– Prove	that	it	follows	for	n	

Analyzing	Quicksort:	Average	Case	

•  We	can	solve	this	recurrence	using	the	
dreaded	subsDtuDon	method	
– Guess	the	answer	

• What’s	the	answer?	

– Assume	that	the	inducDve	hypothesis	holds	
– SubsDtute	it	in	for	some	value	<	n	
– Prove	that	it	follows	for	n	

Analyzing	Quicksort:	Average	Case	

•  We	can	solve	this	recurrence	using	the	
dreaded	subsDtuDon	method	
– Guess	the	answer	

•  T(n)	=	O(n	lg	n)	
– Assume	that	the	inducDve	hypothesis	holds	
– SubsDtute	it	in	for	some	value	<	n	
– Prove	that	it	follows	for	n	

Analyzing	Quicksort:	Average	Case	

•  We	can	solve	this	recurrence	using	the	
dreaded	subsDtuDon	method	
– Guess	the	answer	

•  T(n)	=	O(n	lg	n)	
– Assume	that	the	inducDve	hypothesis	holds	

• What’s	the	induc1ve	hypothesis?	

– SubsDtute	it	in	for	some	value	<	n	
– Prove	that	it	follows	for	n	

Analyzing	Quicksort:	Average	Case	

•  We	can	solve	this	recurrence	using	the	
dreaded	subsDtuDon	method	
– Guess	the	answer	

•  T(n)	=	O(n	lg	n)	
– Assume	that	the	inducDve	hypothesis	holds	

•  T(n)	≤	an	lg	n	+	b			for	some	constants	a	and	b	

– SubsDtute	it	in	for	some	value	<	n	
– Prove	that	it	follows	for	n	

Analyzing	Quicksort:	Average	Case	

•  We	can	solve	this	recurrence	using	the	
dreaded	subsDtuDon	method	
– Guess	the	answer	

•  T(n)	=	O(n	lg	n)	
– Assume	that	the	inducDve	hypothesis	holds	

•  T(n)	≤	an	lg	n	+	b			for	some	constants	a	and	b	

– SubsDtute	it	in	for	some	value	<	n	
• What	value?	

– Prove	that	it	follows	for	n	

Analyzing	Quicksort:	Average	Case	

•  We	can	solve	this	recurrence	using	the	
dreaded	subsDtuDon	method	
– Guess	the	answer	

•  T(n)	=	O(n	lg	n)	
– Assume	that	the	inducDve	hypothesis	holds	

•  T(n)	≤	an	lg	n	+	b			for	some	constants	a	and	b	

– SubsDtute	it	in	for	some	value	<	n	
•  The	value	k	in	the	recurrence	

– Prove	that	it	follows	for	n	

Analyzing	Quicksort:	Average	Case	

•  We	can	solve	this	recurrence	using	the	
dreaded	subsDtuDon	method	
– Guess	the	answer	

•  T(n)	=	O(n	lg	n)	
– Assume	that	the	inducDve	hypothesis	holds	

•  T(n)	≤	an	lg	n	+	b			for	some	constants	a	and	b	
– SubsDtute	it	in	for	some	value	<	n	

•  The	value	k	in	the	recurrence	
– Prove	that	it	follows	for	n	

•  Grind	through	it…		

Note: leaving the same
recurrence as the book

What are we doing here?

Analyzing	Quicksort:	Average	Case	
() () ()

() ()

() ()

() ()

() ()∑

∑

∑

∑

∑

−

=

−

=

−

=

−

=

−

=

Θ++=

Θ+++=

Θ+⎥
⎦

⎤
⎢
⎣

⎡
++≤

Θ++≤

Θ+=

1

1

1

1

1

1

1

0

1

0

lg2

2lg2

lg2

lg2

2

n

k

n

k

n

k

n

k

n

k

nbkak
n

n
n
bbkak

n

nbkakb
n

nbkak
n

nkT
n

nT The recurrence to be solved

What are we doing here?

What are we doing here?

Plug in inductive hypothesis

Expand out the k=0 case

2b/n is just a constant,
so fold it into Θ(n)

What are we doing here?

What are we doing here?

Evaluate the summation:
b+b+…+b = b (n-1)

The recurrence to be solved

Since n-1<n, 2b(n-1)/n < 2b

Analyzing	Quicksort:	Average	Case	

() () ()

()

()

()nbkk
n
a

nn
n
bkk

n
a

nb
n

kak
n

nbkak
n

nT

n

k

n

k

n

k

n

k

n

k

Θ++≤

Θ+−+=

Θ++=

Θ++=

∑

∑

∑∑

∑

−

=

−

=

−

=

−

=

−

=

2lg2

)1(2lg2

2lg2

lg2

1

1

1

1

1

1

1

1

1

1

What are we doing here? Distribute the summation

This summation gets its own set of slides later

How did we do this?
Pick a large enough that
an/4 dominates Θ(n)+b

What are we doing here?
Remember, our goal is to get
T(n) ≤ an lg n + b

What the hell? We’ll prove this later

What are we doing here? Distribute the (2a/n) term

The recurrence to be solved

Analyzing	Quicksort:	Average	Case	

() ()

()

()

()

bnan

nabnbnan

nbnanan

nbnnn
n
a

nbkk
n
anT
n

k

+≤

⎟
⎠

⎞
⎜
⎝

⎛ −+Θ++=

Θ++−=

Θ++⎟
⎠

⎞
⎜
⎝

⎛ −≤

Θ++≤ ∑
−

=

lg
4

lg

2
4

lg

2
8
1lg

2
12

2lg2

22

1

1

Analyzing	Quicksort:	Average	Case	

•  So	T(n)	≤	an	lg	n	+	b		for	certain	a	and	b	
– Thus	the	inducDon	holds	
– Thus	T(n)	=	O(n	lg	n)	
– Thus	quicksort	runs	in	O(n	lg	n)	Dme	on	average	
(phew!)	

•  Oh	yeah,	the	summaDon…		

What are we doing here? The lg k in the second term is
bounded by lg n

Tightly	Bounding		
The	Key	SummaDon	

⎡ ⎤

⎡ ⎤

⎡ ⎤

⎡ ⎤

⎡ ⎤

⎡ ⎤
∑∑

∑∑

∑∑∑

−

=

−

=

−

=

−

=

−

=

−

=

−

=

+=

+≤

+=

1

2

12

1

1

2

12

1

1

2

12

1

1

1

lglg

lglg

lglglg

n

nk

n

k

n

nk

n

k

n

nk

n

k

n

k

knkk

nkkk

kkkkkk

What are we doing here? Move the lg n outside the
summation

What are we doing here? Split the summation for a
tighter bound

The summation bound so far

Tightly	Bounding	
The	Key	SummaDon	

⎡ ⎤

⎡ ⎤

()
⎡ ⎤

⎡ ⎤

()
⎡ ⎤

⎡ ⎤

()
⎡ ⎤

⎡ ⎤
∑∑

∑∑

∑∑

∑∑∑

−

=

−

=

−

=

−

=

−

=

−

=

−

=

−

=

−

=

+−=

+−=

+≤

+≤

1

2

12

1

1

2

12

1

1

2

12

1

1

2

12

1

1

1

lg1lg

lg1lg

lg2lg

lglglg

n

nk

n

k

n

nk

n

k

n

nk

n

k

n

nk

n

k

n

k

knkn

knnk

knnk

knkkkk

What are we doing here? The lg k in the first term is
bounded by lg n/2

What are we doing here? lg n/2 = lg n - 1

What are we doing here? Move (lg n - 1) outside the
summation

The summation bound so far

Tightly	Bounding	
The	Key	SummaDon	

()
⎡ ⎤

⎡ ⎤

⎡ ⎤ ⎡ ⎤

⎡ ⎤

⎡ ⎤

() ⎡ ⎤

∑

∑∑

∑∑∑

∑∑∑

−

=

−

=

−

=

−

=

−

=

−

=

−

=

−

=

−

=

−⎟
⎠

⎞
⎜
⎝

⎛ −
=

−=

+−=

+−≤

12

1

12

1

1

1

1

2

12

1

12

1

1

2

12

1

1

1

2
)(1lg

lg

lglg

lg1lglg

n

k

n

k

n

k

n

nk

n

k

n

k

n

nk

n

k

n

k

knnn

kkn

knkkn

knknkk

What are we doing here? Distribute the (lg n - 1)

What are we doing here? The summations overlap in
range; combine them

What are we doing here? The Guassian series

The summation bound so far

Tightly	Bounding		
The	Key	SummaDon	

() ⎡ ⎤

()[]

()[]

()
48

1lglg
2
1

1
222

1lg1
2
1

lg1
2
1

lg
2

)(1lg

22

12

1

12

1

1

1

nnnnnn

nnnnn

knnn

knnnkk

n

k

n

k

n

k

+−−≤

⎟
⎠

⎞
⎜
⎝

⎛ −⎟
⎠

⎞
⎜
⎝

⎛−−≤

−−≤

−⎟
⎠

⎞
⎜
⎝

⎛ −
≤

∑

∑∑
−

=

−

=

−

=

What are we doing here? Rearrange first term, place
upper bound on second

What are we doing? X Guassian series

What are we doing? Multiply it
all out

Tightly	Bounding		
The	Key	SummaDon	

()

!!Done!

2when
8
1lg

2
1

48
1lglg

2
1lg

22

22
1

1

≥−≤

+−−≤∑
−

=

nnnn

nnnnnnkk
n

k

