403: Algorithms and Data Structures

Quicksort

Fall 2016
UAlbany
Computer Science

Some slides borrowed from David Luebke
So far: Sorting

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion</td>
<td>$O(n^2)$</td>
<td>in-place</td>
</tr>
<tr>
<td>Merge</td>
<td>$O(n \log n)$</td>
<td>2nd array to merge</td>
</tr>
<tr>
<td>Heapsort</td>
<td>$O(n \log n)$</td>
<td>in-place</td>
</tr>
<tr>
<td>Quicksort</td>
<td>from $O(n \log n)$ to $O(n^2)$</td>
<td>in-place</td>
</tr>
</tbody>
</table>

- very good in practice (small constants)
- Quadratic time is rare
Quicksort

• Another divide-and-conquer algorithm
 – **DIVIDE:** The array $A[p..r]$ is *partitioned* into two non-empty subarrays $A[p..q]$ and $A[q+1..r]$
 • Invariant: All elements in $A[p..q]$ are less than all elements in $A[q+1..r]$
 – **CONQUER:** The subarrays are recursively sorted by calls to quicksort
 – **COMBINE:** Unlike merge sort, no combining step: two subarrays form an already-sorted array
Quicksort Code

Quicksort(A, p, r)
{
 if (p < r)
 {
 q = Partition(A, p, r);
 Quicksort(A, p, q);
 Quicksort(A, q+1, r);
 }
}
Partition

• Clearly, all the action takes place in the `partition()` function
 – Rearranges the subarray in place
 – End result:
 • Two subarrays
 • All values in first subarray ≤ all values in second
 – Returns the index of the “pivot” element separating the two subarrays

• *How do you suppose we implement this?*
Partition In Words

- \text{Partition}(A, p, r):
 - Select an element to act as the “pivot” \textit{which?}
 - Grow two regions, \(A[p..i]\) and \(A[j..r]\)
 - All elements in \(A[p..i]\) \(\leq\) pivot
 - All elements in \(A[j..r]\) \(\geq\) pivot
 - Increment \(i\) until \(A[i] \geq\) pivot
 - Decrement \(j\) until \(A[j] \leq\) pivot
 - Swap \(A[i]\) and \(A[j]\)
 - Repeat until \(i \geq j\)
 - Return \(j\)

Note: slightly different from book’s \texttt{partition()}
Partition Code

Choose pivot x

$$\text{Partition}(A, p, r)$$

- $x = A[p]$;
- $i = p - 1$;
- $j = r + 1$;

while (TRUE)

- repeat
 - $j --$;
 - until $A[j] \leq x$;
- repeat
 - $i ++$;
 - until $A[i] \geq x$;

if ($i < j$)
- Swap(A, i, j);
else
- return j;

Illustrate on $A = \{4,5,9,7,2,13,6,3\}$;
Example

Assume all elements are distinct.
Partition Code

Partition(A, p, r)
 x = A[p];
 i = p - 1;
 j = r + 1;
 while (TRUE)
 repeat
 j--;
 until A[j] <= x;
 repeat
 i++;
 until A[i] >= x;
 if (i < j)
 Swap(A, i, j);
 else
 return j;

What is the running time of partition()?

partition() runs in O(n) time
• O(1) at each element: skip or swap
• Linear in the size of the array
Back to Quicksort

Quicksort(A, p, r)
if (p < r)
 q = Partition(A, p, r);
 Quicksort(A, p, q);
 Quicksort(A, q+1, r);

A 3 9 5 7

Qsort(A,1,4)
Qsort(A,1,1)
Qsort(A,2,4)
Qsort(A,2,3)
Qsort(A,2,2)
Qsort(A,3,3)
Qsort(A,4,4)

Part(A,1,4) Returns: 1
3 9 5 7

Part(A,2,4) Returns: 3
3 7 5 9

Part(A,2,4) Returns: 2
3 5 7 9
Analyzing Quicksort

• *What will be a bad case for the algorithm?*
 – Partition is always unbalanced

• *What will be the best case for the algorithm?*
 – Partition is perfectly balanced

• *Which is more likely?*
 – The latter, by far, except...

• *Will any particular input elicit the worst case?*
 – Yes: Already-sorted input
Analyzing Quicksort: Balanced splits

• In the balanced split case:
 \[T(n) = 2T(n/2) + \Theta(n) \]

• What does this work out to?
 \[T(n) = \Theta(n \log n) \]

Take home: A good balance is important
Analyzing Quicksort: Sorted case

• Sorted case:
 \[T(1) = \Theta(1) \]
 \[T(n) = T(n - 1) + \Theta(n) \]
 by substitution...
 \[T(n) = T(1) + n\Theta(n) \]

• Works out to
 \[T(n) = \Theta(n^2) \]

First call: j will decrease to 1 (n steps)
Second: j decrease to 2 (n-1 steps)
...
\[n + n-1 + n-2 + \ldots = \Theta(n^2) \]
Is sorted really the worst case?

• Argue formally that things cannot get worse
• A formal argument with general split
• Assume that every split results in two arrays
 – Size q
 – Size $n-q$
• $T(n) = \max_{1 \leq q \leq n-1} [T(q) + T(n-q)]$
 – where $T(1) = O(1)$
• Show that $T(n) = O(n^2)$
Average behavior: Intuition

• Worst case: assumes 1:n-1 split
 – rare in practice
• The $O(n\log n)$ behavior occurs even if the split is say 10%:90%
• If all splits are equally likely
 – 1:n-1, 2:n-2 ... n-1:1
 – then on average, we will not get a very tall tree
 – details in extra slide at the end (not required)
Avoiding the $O(n^2)$ case

• The real liability of quicksort is that it runs in $O(n^2)$ on already-sorted input

• Solutions
 – Randomize the input array
 – *Pick a random pivot element*
 – choose 3 elements and take median for pivot

• *How will these solve the problem?*
 – By ensuring that no particular input can be chosen to make quicksort run in $O(n^2)$ time
Other Improvements
(lower constants)

• When a subarray is small (say smaller than 5) switch to a simple sorting procedure say insertion sort instead of Quicksort
 – why does this help?

• Pick more than one pivot
 – Partitions the array in more than 2 parts
 – Smaller number of comparisons (1.9nlogn vs 2nlogn) and overall better performance in practice
Announcements

- Read through Chapter 7
- HW2 due on Wednesday
Extra slides*

• Average case rigorous analysis follows
• This is advanced material (will not appear in HWs and exam)
Analyzing Quicksort: Average Case

• Assuming random input, average-case running time is much closer to $O(n \lg n)$ than $O(n^2)$

• First, a more intuitive explanation/example:
 – Suppose that partition() always produces a 9-to-1 split. This looks quite unbalanced!
 – The recurrence is thus:
 $$T(n) = T(9n/10) + T(n/10) + n$$
 – *How deep will the recursion go?*
Analyzing Quicksort: Average Case

• Intuitively, a real-life run of quicksort will produce a mix of “bad” and “good” splits
 – Randomly distributed among the recursion tree
 – Pretend for intuition that they alternate between best-case \((n/2 : n/2)\) and worst-case \((n-1 : 1)\)
 – \textit{What happens if we bad-split root node, then good-split the resulting size \((n-1)\) node?}
Analyzing Quicksort: Average Case

• Intuitively, a real-life run of quicksort will produce a mix of “bad” and “good” splits
 – Randomly distributed among the recursion tree
 – Pretend for intuition that they alternate between best-case (n/2 : n/2) and worst-case (n-1 : 1)
 – What happens if we bad-split root node, then good-split the resulting size (n-1) node?

• We fail English
Analyzing Quicksort: Average Case

• Intuitively, a real-life run of quicksort will produce a mix of “bad” and “good” splits
 – Randomly distributed among the recursion tree
 – Pretend for intuition that they alternate between best-case (n/2 : n/2) and worst-case (n-1 : 1)
 – *What happens if we bad-split root node, then good-split the resulting size (n-1) node?*
 • We end up with three subarrays, size 1, (n-1)/2, (n-1)/2
 • Combined cost of splits = n + n -1 = 2n -1 = O(n)
 • No worse than if we had good-split the root node!
Analyzing Quicksort: Average Case

• Intuitively, the $O(n)$ cost of a bad split (or 2 or 3 bad splits) can be absorbed into the $O(n)$ cost of each good split
• Thus running time of alternating bad and good splits is still $O(n \log n)$, with slightly higher constants
• How can we be more rigorous?
Analyzing Quicksort: Average Case

• For simplicity, assume:
 – All inputs distinct (no repeats)
 – Slightly different `partition()` procedure
 • partition around a random element, which is not included in subarrays
 • all splits (0:n-1, 1:n-2, 2:n-3, ... , n-1:0) equally likely

• **What is the probability of a particular split happening?**

• Answer: 1/n
Analyzing Quicksort: Average Case

• So partition generates splits
 (0:n-1, 1:n-2, 2:n-3, ..., n-2:1, n-1:0)
each with probability 1/n
• If T(n) is the expected running time,

\[T(n) = \frac{1}{n} \sum_{k=0}^{n-1} \left[T(k) + T(n - 1 - k) \right] + \Theta(n) \]

• What is each term under the summation for?
• What is the \(\Theta(n) \) term for?
Analyzing Quicksort: Average Case

• So...

\[T(n) = \frac{1}{n} \sum_{k=0}^{n-1} [T(k) + T(n-1-k)] + \Theta(n) \]

\[= \frac{2}{n} \sum_{k=0}^{n-1} T(k) + \Theta(n) \]

– Note: this is just like the book’s recurrence (p166), except that the summation starts with k=0

– We’ll take care of that in a second
Analyzing Quicksort: Average Case

• We can solve this recurrence using the dreaded substitution method
 – Guess the answer
 – Assume that the inductive hypothesis holds
 – Substitute it in for some value < n
 – Prove that it follows for n
Analyzing Quicksort: Average Case

• We can solve this recurrence using the dreaded substitution method
 – Guess the answer
 • What’s the answer?
 – Assume that the inductive hypothesis holds
 – Substitute it in for some value < n
 – Prove that it follows for n
Analyzing Quicksort: Average Case

- We can solve this recurrence using the dreaded substitution method
 - Guess the answer
 - $T(n) = O(n \lg n)$
 - Assume that the inductive hypothesis holds
 - Substitute it in for some value $< n$
 - Prove that it follows for n
Analyzing Quicksort: Average Case

• We can solve this recurrence using the dreaded substitution method
 – Guess the answer
 • \(T(n) = O(n \lg n) \)
 – Assume that the inductive hypothesis holds
 • What’s the inductive hypothesis?
 – Substitute it in for some value < \(n \)
 – Prove that it follows for \(n \)
Analyzing Quicksort: Average Case

• We can solve this recurrence using the dreaded substitution method
 – Guess the answer
 • $T(n) = O(n \lg n)$
 – Assume that the inductive hypothesis holds
 • $T(n) \leq an \lg n + b$ for some constants a and b
 – Substitute it in for some value $< n$
 – Prove that it follows for n
Analyzing Quicksort: Average Case

• We can solve this recurrence using the dreaded substitution method
 – Guess the answer
 • \(T(n) = O(n \lg n) \)
 – Assume that the inductive hypothesis holds
 • \(T(n) \leq an \lg n + b \) for some constants \(a \) and \(b \)
 – Substitute it in for some value < \(n \)
 • What value?
 – Prove that it follows for \(n \)
Analyzing Quicksort: Average Case

• We can solve this recurrence using the dreaded substitution method
 – Guess the answer
 • $T(n) = O(n \lg n)$
 – Assume that the inductive hypothesis holds
 • $T(n) \leq an \lg n + b$ for some constants a and b
 – Substitute it in for some value $< n$
 • The value k in the recurrence
 – Prove that it follows for n
Analyzing Quicksort: Average Case

• We can solve this recurrence using the dreaded substitution method
 – Guess the answer
 • $T(n) = O(n \lg n)$
 – Assume that the inductive hypothesis holds
 • $T(n) \leq an \lg n + b$ for some constants a and b
 – Substitute it in for some value $< n$
 • The value k in the recurrence
 – Prove that it follows for n
 • Grind through it…
Analyzing Quicksort: Average Case

\[T(n) = \frac{2}{n} \sum_{k=0}^{n-1} T(k) + \Theta(n) \]

The recurrence to be solved

\[\leq \frac{2}{n} \sum_{k=0}^{n-1} (ak \log k + b) + \Theta(n) \]

Plug in inductive hypothesis

\[\leq \frac{2}{n} \left[b + \sum_{k=1}^{n-1} (ak \log k + b) \right] + \Theta(n) \]

Expand out the k=0 case

\[= \frac{2}{n} \sum_{k=1}^{n-1} (ak \log k + b) + \frac{2b}{n} + \Theta(n) \]

2b/n is just a constant, so fold it into \(\Theta(n) \)

\[= \frac{2}{n} \sum_{k=1}^{n-1} (ak \log k + b) + \Theta(n) \]

Note: leaving the same recurrence as the book
Analyzing Quicksort: Average Case

\[T(n) = \frac{2}{n} \sum_{k=1}^{n-1} (ak \log k + b) + \Theta(n) \]

The recurrence to be solved

\[= \frac{2}{n} \sum_{k=1}^{n-1} ak \log k + \frac{2}{n} \sum_{k=1}^{n-1} b + \Theta(n) \]

Distribute the summation

\[= \frac{2a}{n} \sum_{k=1}^{n-1} k \log k + \frac{2b}{n} (n-1) + \Theta(n) \]

Evaluate the summation: \(b + b + \ldots + b = b \) \((n-1) \)

\[\leq \frac{2a}{n} \sum_{k=1}^{n-1} k \log k + 2b + \Theta(n) \]

Since \(n-1 < n \), \(2b(n-1)/n < 2b \)

This summation gets its own set of slides later
Analyzing Quicksort: Average Case

\[T(n) \leq \frac{2a}{n} \sum_{k=1}^{n-1} k \lg k + 2b + \Theta(n) \]

The recurrence to be solved

\[\leq \frac{2a}{n} \left(\frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \right) + 2b + \Theta(n) \]

We’ll prove this later

\[= an \lg n - \frac{a}{4} n + 2b + \Theta(n) \]

Distribute the \((2a/n)\) term

\[= an \lg n + b + \left(\Theta(n) + b - \frac{a}{4} n \right) \]

Remember, our goal is to get
\[T(n) \leq an \lg n + b \]

Pick a large enough that \(an/4\) dominates \(\Theta(n)+b\)
Analyzing Quicksort: Average Case

• So $T(n) \leq an \log n + b$ for certain a and b
 – Thus the induction holds
 – Thus $T(n) = O(n \log n)$
 – Thus quicksort runs in $O(n \log n)$ time on average
 (phew!)
• Oh yeah, the summation...
Tightly Bounding
The Key Summation

\[
\sum_{k=1}^{n-1} k \lg k = \sum_{k=1}^{\lfloor n/2 \rfloor-1} k \lg k + \sum_{k=\lfloor n/2 \rfloor}^{n-1} k \lg k
\]

\[
\leq \sum_{k=1}^{\lfloor n/2 \rfloor-1} k \lg k + \sum_{k=\lfloor n/2 \rfloor}^{n-1} k \lg n
\]

\[
= \sum_{k=1}^{\lfloor n/2 \rfloor-1} k \lg k + \lg n \sum_{k=\lfloor n/2 \rfloor}^{n-1} k
\]

Split the summation for a tighter bound

The \(\lg k \) in the second term is bounded by \(\lg n \)

Move the \(\lg n \) outside the summation
Tightly Bounding
The Key Summation

$$\sum_{k=1}^{n-1} k \, \lg k \leq \sum_{k=1}^{\lfloor n/2 \rfloor - 1} k \, \lg k + \lg n \sum_{k=\lfloor n/2 \rfloor}^{n-1} k$$

The summation bound so far

$$\leq \sum_{k=1}^{\lfloor n/2 \rfloor - 1} k \, \lg(n/2) + \lg n \sum_{k=\lfloor n/2 \rfloor}^{n-1} k$$

The $\lg k$ in the first term is bounded by $\lg n/2$

$$= \sum_{k=1}^{\lfloor n/2 \rfloor - 1} k(\lg n - 1) + \lg n \sum_{k=\lfloor n/2 \rfloor}^{n-1} k$$

$\lg n/2 = \lg n - 1$

Move $(\lg n - 1)$ outside the summation

$$= (\lg n - 1) \sum_{k=1}^{\lfloor n/2 \rfloor - 1} k + \lg n \sum_{k=\lfloor n/2 \rfloor}^{n-1} k$$
Tightly Bounding
The Key Summation

$$\sum_{k=1}^{n-1} k \lg k \leq (\lg n - 1) \sum_{k=1}^{[n/2]-1} k + \lg n \sum_{k=[n/2]}^{n-1} k$$

The summation bound so far

$$= \lg n \sum_{k=1}^{[n/2]-1} k - \sum_{k=1}^{[n/2]-1} k + \lg n \sum_{k=[n/2]}^{n-1} k$$

Distribute the (lg n - 1)

$$= \lg n \sum_{k=1}^{n-1} k - \sum_{k=1}^{n-1} k$$

The summations overlap in range; combine them

$$= \lg n \left(\frac{(n-1)(n)}{2} \right) - \sum_{k=1}^{[n/2]-1} k$$

The Guassian series
Tightly Bounding The Key Summation

\[
\sum_{k=1}^{n-1} k \lg k \leq \left(\frac{(n - 1)(n)}{2} \right) \lg n - \sum_{k=1}^{\lfloor n/2 \rfloor - 1} k
\]

The summation bound so far

\[
\leq \frac{1}{2} [n(n - 1)] \lg n - \sum_{k=1}^{\lfloor n/2 \rfloor - 1} k
\]

Rearrange first term, place upper bound on second

\[
= \frac{1}{2} [n(n - 1)] \lg n - \frac{1}{2} \left(\frac{n}{2} \right) \left(\frac{n}{2} - 1 \right)
\]

X Guassian series

\[
= \frac{1}{2} \left(n^2 \lg n - n \lg n \right) - \frac{1}{8} n^2 + \frac{n}{4}
\]

Multiply it all out
Tightly Bounding
The Key Summation

\[
\sum_{k=1}^{n-1} k \lg k \leq \frac{1}{2} \left(n^2 \lg n - n \lg n \right) - \frac{1}{8} n^2 + \frac{n}{4}
\]
\[
\leq \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \quad \text{when } n \geq 2
\]

Done!!!