
403:	Algorithms	and	Data	
Structures	

	
Lower	Bound	for	Sor<ng	

&		
The	closest	pair	in	2D		

Fall	2016	
UAlbany	

Computer	Science	

So	far:	Sor<ng	

•  Inser&on 	 	O(n2) 	 	 	 	 	 	in-place	
•  Merge 	 	 	O(n	logn)		 	 	 	 	2nd	array	to	merge 		
•  Heapsort	 	 	O(n	logn) 	 	 	 		 	in-place	
•  Quicksort 	 	from	O(n	logn)	to	O(n2)	in-place	

		Algorithm 	 	Time 	 	 	 	 	 	Space	 		

Can	we	do	beLer	than	O(n	logn)	?	

Spoiler:	Not	if	we	do	comparisons	only	

Lower	bound	on	comparison	sorts	

•  Any	algorithm	performing	only	comparisons	
runs	in	nlogn)	

•  We	will	prove	this	using	the	concept	of	
decision	trees	

Closest	pair	in	2D	

•  Given	n	points	in	
2-dimensions,	
find	two	whose	
mutual	distance	
is	smallest.	

•  Euclidean	
distance	

Closest	pair	in	2D	

•  Brute	force?	
– Consider	all	pairs	

•  Complexity?	
– O(n2)	

Divide-And-Conquer	(1D)	

•  We	can	simply	sort	and	consider	consecu<ve	
pairs	O(nlogn)		
– Does	not	generlize	to	2D	

Divide-And-Conquer	(1D)	

•  DIVIDE:	split	array	in	two	equal	parts	
•  CONQUER:	recursively	find	closest	pair	in	parts	
•  COMBINE:		
–  Let	d	be	the	smallest	separa<on	in	S1	and	S2	
–  If	dist(p3,q3)<d	return	dist(p3,q3)	else	d		

Divide-And-Conquer	(1D)	Pseudo	code	

Closest-Pair-1D(S)	
						If	|S|=	1,	output	d	=	infinity	
						If	|S|=	2,	output	d=	|p2-p1|	
						Otherwise,	do	the	following	steps:	

	 	1.	Let	m	=	median(S)	
	 	2.	Divide	S	into	S1,	S2	at	m.	
	 	3.	d1	=	Closest-Pair-1D(S1).	
	 	4.	d2	=	Closest-Pair-1D(S2).	
	 	5.	d12	is	minimum	distance	across	the	cut.	
	 	6.	Return	d	=	min(d1;	d2;	d12)	

Divide-And-Conquer	(1D)	

•  Key	observa<on:	If	m	is	the	dividing	coordinate,	
then	p3,	q3	must	be	within	d	of	m.	
–  p3	must	be	the	rightmost	point	in	S1	
–  q3	must	be	the	ledmost	point	in	S2	
– Hard	to	generalize	to	2D	

•  How	many	points	of	S1	can	be	in	(m-d,m]?	

Divide-And-Conquer	(2D)	

•  DIVIDE:	split	points	in	
two	equal	parts	with	
line	L	

•  CONQUER:	recursively	
find	closest	pair	in	parts	

•  COMBINE:	
– d=min(dled,dright)	
– d	is	the	answer	unless	L	
split	points	that	are	close	

Region	near	L	

•  If	there	is	a	pair	(p,q)	within	distance	d	split	by	
L,	then	both	p	and	q	must	be	within	d	from	L	

•  Let	Sy	be	an	array	of	points	in	the	region	sorted	
by	y	coordinate	

•  size	of	Sy	might	be	O(|S|)	
– Cannot	check	all	pairs	

Special	structure	in	Sy	
•  Let:	Sy=p1,p2…pm,	then	if	
dist(pi,pj)<d	then	j-i<=15	

•  close-by	points	are	closeby	
in	the	array	

Proof:	close	points	within	15	posi<ons	

•  Divide	the	region	in	
squares	of	side	d/2	

•  How	many	points	in	
each	box?	

•  At	most	1	
– Each	box	in	contained	
in	one	half		

– No	2	points	in	a	half	
are	closer	than	d	

Proof:	close	points	within	15	posi<ons	

•  Suppose	2	points	
separated	by	15	indices	

•  At	least	3	full	rows	
separate	them	

•  Height	of	3	rows	>3d/2	
>	d	

•  Points	are	farther	than	
d	from	each	other	

Divide	and	Conquer(2D)	

COMBINE:	O(n)	

ClosestPair(ptsX,	ptsY)	
1.  	if	(size(ptsX)<2)	return	null	
2.  	if	(size(ptsX)==2)	return	ptsX	
3.  	m=median	of	x	coordinates	
4.  	Prepare	subsets	to	the	led	of	m:	ptsX-leT,	ptsY-leT	and	to	the	right	of	m:	ptsX-right,	

ptsY-right		//	They	should	be	sorted	but	you	should	not	use	sor<ng	(see	book	chapter)		
5.  	pair-leT	=	ClosestPair(ptsX-led,	ptsY-led)	
6.  	pair-right=	ClosestPair(ptsX-right,	ptsY-right)	
7.  	d	=	min	of	distances	between	pair-leT	and	pair-right	
8.  	res	=	pair	among	pair-leT	and	pair-right	of	the	smaller	distance	
9.   ptsWithinD:	an	array	of	points	within	distance	d	from	m,	sorted	by	y	coordinates	
10.  for	i=1…ptsWithinD.length	
11.  						for	j=i+1…min(ptsWithinD.length,i+15)	
12.  												if	dist(ptsWithinD[i],	ptsWithinD[j])<d	
13.  																		res	=	(ptsWithinD[i],	ptsWithinD[j])	
14.  																		b=	dist(ptsWithinD[i],	ptsWithinD[j])		
15.  return	res	

CONQUER		

DIVIDE		

Analysis	

•  Divide	set	of	points	in	half	each	<me:		
– depth	of	recursion	is	O(log	n)		

•  Merge	takes	O(n)	<me.	
•  Recurrence:	T(n)		=	2T(n/2)	+	cn	
•  Same	as	MergeSort:	O(n	log	n)	<me.	

