403: Algorithms and Data Structures

Lower Bound for Sorting

 \&
The closest pair in 2D

Fall 2016
UAlbany
Computer Science

So far: Sorting

Algorithm Time Space

- Insertion $O\left(\mathrm{n}^{2}\right)$
- Merge
- Heapsort
- Quicksort
in-place
$2^{\text {nd }}$ array to merge in-place
from $O(n \operatorname{logn})$ to $O\left(n^{2}\right)$ in-place

Can we do better than $O(n \operatorname{logn})$?

Spoiler: Not if we do comparisons only

Lower bound on comparison sorts

- Any algorithm performing only comparisons runs in nlogn)
- We will prove this using the concept of decision trees

Closest pair in 2D

- Given n points in 2-dimensions, find two whose mutual distance is smallest.
- Euclidean distance

$$
d(p, q)=\sqrt{\left(x_{p}-x_{q}\right)^{2}+\left(y_{p}-y_{q}\right)^{2}}
$$

Closest pair in 2D

- Brute force?
- Consider all pairs
- Complexity?
$-\mathrm{O}\left(\mathrm{n}^{2}\right)$

Divide-And-Conquer (1D)

median m

- We can simply sort and consider consecutive pairs O(nlogn)
- Does not generlize to 2D

Divide-And-Conquer (1D)

median m

- DIVIDE: split array in two equal parts
- CONQUER: recursively find closest pair in parts
- COMBINE:
- Let d be the smallest separation in S1 and S2
- If dist(p3,q3)<d return dist(p3,q3) else d

Divide-And-Conquer (1D) Pseudo code

Closest-Pair-1D(S)
median m
If $|S|=1$, output $d=$ infinity
If $|S|=2$, output $d=|p 2-p 1|$
Otherwise, do the following steps:

1. Let $m=\operatorname{median}(S)$
2. Divide S into $S 1, S 2$ at m.
3. d1 = Closest-Pair-1D(S1).
4. $\mathrm{d} 2=$ Closest-Pair-1D(S2).
5. d12 is minimum distance across the cut.
6. Return $d=\min (d 1 ; d 2 ; d 12)$

Divide-And-Conquer (1D)

median m

- Key observation: If m is the dividing coordinate, then p3, q3 must be within d of m.
- p3 must be the rightmost point in S 1
- q3 must be the leftmost point in S2
- Hard to generalize to 2D
- How many points of S1 can be in (m-d,m]?

Divide-And-Conquer (2D)

- DIVIDE: split points in two equal parts with line L
- CONQUER: recursively find closest pair in parts ${ }^{\text {d }{ }^{\text {eft }}}$
- COMBINE:
$-d=\min \left(d_{\text {left }}, d_{\text {right }}\right)$
$-d$ is the answer unless L split points that are close

Region near L

- If there is a pair (p, q) within distance d split by L, then both p and q must be within d from L
- Let Sy be an array of points in the region sorted by y coordinate
- size of Sy might be O(|S|)
- Cannot check all pairs

Special structure in Sy

- Let: $S y=p 1, p 2 \ldots p m$, then if dist $\left(p_{i}, p_{j}\right)<d$ then $j-i<=15$
- close-by points are closeby in the array

Proof: close points within 15 positions

Proof: close points within 15 positions

- Suppose 2 points separated by 15 indices
- At least 3 full rows separate them
- Height of 3 rows $>3 d / 2$ $>d$
- Points are farther than d from each other

Divide and Conquer(2D)

ClosestPair(ntsX, ntsY)

1. if (size $(\mathrm{pts} X)<2$) return null

DIVIDE
2. if (size(ptsX)==2) return ptsX
3. $m=m e d i a n$ of x coordinates
4. Prepare subsets to the left of m : ptsX-left, ptsY-left and to the right of m : ptsX-right, ptsY-right // They should be sorted but you should not use sorting (see book chapter)
5. pair-left = ClosestPair(ptsX-left, ptsY-left)
6. pair-right= ClosestPair(ptsX-right, ptsY-right)

CONQUER
7. $d=\min$ of distances between pair-left and pair-right
8. res = pair among pair-left and pair-right of the smaller distance
9. ptsWithinD: an array of points within distance d from m, sorted by y coordinates
10. for $\mathrm{i}=1$...ptsWithinD.length
11. for $\mathrm{j}=\mathrm{i}+1$ 1...min(ptsWithinD.length,i+15)
12. if dist(ptsWithinD[i], ptsWithinD[j])<d
13. res $=(p t s W i t h i n D[i]$, ptsWithinD[j])
14. $\quad b=\operatorname{dist}(p t s W i t h i n D[i]$, ptsWithinD[j])
15. return res

Analysis

- Divide set of points in half each time:
- depth of recursion is $\mathrm{O}(\log \mathrm{n})$
- Merge takes O(n) time.
- Recurrence: $T(n)=2 T(n / 2)+c n$
- Same as MergeSort: O(n log n) time.

