403: Algorithms and Data
Structures

Lower Bound for Sorting
&

The closest pair in 2D
Fall 2016

UAlbany
Computer Science

So far: Sorting

Algorithm Time Space
* |nsertion O(n?) in-place
 Merge O(n logn) 2"d array to merge
* Heapsort O(n logn) in-place

* Quicksort from O(n logn) to O(n?) in-place

Can we do better than O(n logn) ?

Spoiler: Not if we do comparisons only

Lower bound on comparison sorts

* Any algorithm performing only comparisons
runs in nlogn)

 We will prove this using the concept of
decision trees

Closest pairin 2D

* Given n pointsin
2-dimensions,
find two whose
mutual distance
is smallest.

 Euclidean
distance

d(p.q) = \/(il‘p — 2q)° + (Yp — Yq)*

Closest pairin 2D

e Brute force?

— Consider all pairs
* Complexity?

— 0(n?)

Divide-And-Conquer (1D)

median m
 We can simply sort and consider consecutive
pairs O(nlogn)

— Does not generlize to 2D

Divide-And-Conquer (1D)

median m

* DIVIDE: split array in two equal parts
e CONQUER: recursively find closest pair in parts

* COMBINE:

— Let d be the smallest separation in S1 and S2
— If dist(p3,93)<d return dist(p3,93) else d

Divide-And-Conquer (1D) Pseudo code

- *> *—@ - - @ *—0
pl p2 P31 q3 ql q2
Closest-Pair-lD(S) median m

If |S|=1, output d = infinity
If |S|=2, output d= |p2-p1|
Otherwise, do the following steps:
1. Let m = median(S)
2. Divide S into S1, S2 at m.
3. d1 = Closest-Pair-1D(S1).
4. d2 = Closest-Pair-1D(52).
5. d12 is minimum distance across the cut.
6. Return d = min(d1; d2; d12)

Divide-And-Conquer (1D)

median m

* Key observation: If m is the dividing coordinate,
then p3, g3 must be within d of m.

— p3 must be the rightmost point in S1
— 3 must be the leftmost point in S2
— Hard to generalize to 2D

* How many points of S1 can be in (m-d,m]?

Divide-And-Conquer (2D)

* DIVIDE: split points in
two equal parts with
line L

 CONQUER: recursively
find closest pair in partsdleff o

 COMBINE: O
_ d=rnin(dleft'dright)

— d is the answer unless L o
O

split points that are close ®

Region near L

 |f there is a pair (p,q) within distance d split by
|, then both p and g must be within d from L

* Let Sy be an array of points in the region sorted

oy y coordinate : :
: . @
* size of Sy might be O(|S]) ° é) :
— Cannot check all pairs ° . o !
. @
o : ©
E o
St :

Special structure in Sy

e Let: Sy=pl,p2...pm, then if
dist(p;,p;)<d then j-i<=15

* close-by points are closeby

in the array o
o P
: Q
o :©
id—d——

Proof: close points within 15 positions

fe- d2 -»f

O

* Divide the region in
squares of side d/2

4

7 | * How many points in
each box?

10

11

e At most 1

12

13

14

— Each box in contained
in one half

15

— No 2 points in a half
are closer than d

Proof: close points within 15 positions

fe- d2 -»f

O

4

10

11

12

13

14

15

Suppose 2 points
separated by 15 indices

At least 3 full rows
separate them

Height of 3 rows >3d/2
> d

Points are farther than
d from each other

12.

15.

Divide and Conquer(2D)

if (size(ptsX)<2) return null DIVIDE
if (size(ptsX)==2) return ptsX

m=median of x coordinates

Prepare subsets to the left of m: ptsX-left, ptsY-left and to the right of m: ptsX-right,

ptsX-right, ptsY-righ

d = min of distances between pair-left and pair-right
res = pair among pair-left and pair-right of the smaller distance
ptsWithinD: an array of points within distance d from m, sorted by y coordinates
for i=1...ptsWithinD.length
for j=i+1...min(ptsWithinD.length,i+15)
if dist(ptsWithinD[i], ptsWithinD[j])<d

res = (ptsWithinD[i], ptsWithinD[j])

b= dist(ptsWithinD[i], ptsWithinD[j])
return res

COMBINE: O(n

Analysis

Divide set of points in half each time:
— depth of recursion is O(log n)

Merge takes O(n) time.
Recurrence: T(n) =2T(n/2) + cn

Same as MergeSort: O(n log n) time.

