
CS660: Mining Massive Datasets

University at Albany—SUNY

April 28, 2016

1 Intro (Ch. 1)

1.1 Bonferoni’s principle examples

“If your method of finding significant items returns significantly more items that you would expect in the actual
population, you can assume most of the items you find with it are bogus.”

“Finding terrorists”:

• 109 people being tracked

• Examine hotel records for 1,000 days

• Each person stays in a hotel 1% of time (1 day out of 100)

• Hotels hold 100 people (so 105 hotels)

Detection: People visiting the same hotel on two different days are terrorists.

What is the probability of an event to occur at random?
P(two people decide to visit a hotel)=10−210−2 = 10−4

P(two people visit the same hotel)=10−5

P(same hotel on one given day)= 10−410−5 = 10−9

P(same hotels on two given days)= 10−18

How many possible events?

(# pairs of people) x (# pairs of days) =
(

109

2

)(
103

2

)
≈ (109)2

2
(103)2

2 =
5× 1017 × 5× 105

Expected number of events at random?
10−18 × 25× 1022 = 250000
If number of actual terrorists is small, say 10s, it will be intractable to check 1/4 million people to find them.

Also privacy?

“People cheating at a company”:
We know that 5% of people at a company cheat on their spouses.
Detection: People who say they go out with colleagues once a weak are cheaters.

Assume that it is a social company and 20% answer the above criterion. At best 1/4 of our suspects are actual
cheaters (True positives). Also it is likely that there will be FN - people who do not answer the criterion but ARE
cheaters.

You will encounter similar challenges in DM often, where beyond an answer you would like to ask: How
significant is this answer? Or alternatively: How likely is it to obtain it at random? A very important decision to
make regarding such analysis is what is a reasonable model for ”at random”.

1

1.2 TF.IDF

The TF.IDF measure is used to weight the importance of individual terms t in a collection of documents D = {di}
to the topic of a specific document. The definition is as follows:

TF (t, d) =
ntd∑
k∈T nkd

,

where ntd is the number of occurrences of term t in document d and T is the set of all terms. Note, that the
normalization may be also by maxk∈T nkd instead of

∑
k∈T nkd.

IDF (t) = log
|D|

|{d|t ∈ d}|
,

where {d|t ∈ d} is the set of documents containing at least one occurrence of t. Informally, high TF.IDF is
associated to terms that are frequent in a document but are not found in many other documents.

2 MapReduce (Ch. 2)

2.1 Matrix Multiplication in MR

We would like to compute: P = M ×N

pik =
∑
j

mijnjk

We assume a sparse representation of M and N and the result P .

MR Task 1:
Map:

In: (i, j,mij ,M), (j, k, njk,M)
Out: (j, (M, i,mij)), (j, (N, k, njk))

Reduce:
For all values for a given j, create pairs such that one comes from M and the other from N
Out: ((i, k), (mij ∗ njk))

MR Task 2:
Map:

In: ((i, k), (mij ∗ njk))
Out: ((i, k), (mij ∗ njk)) [No Change]

Reduce:
Sum values for each (i, k)
Out: (i, k), (

∑
jmij ∗ njk))

Q: How to do it with a single MR task? Idea: mij contributes to many sums: ∀k, same for njk

Single MR Task for Matrix Multiplication:
Map:

In: (i, j,mij ,M), (j, k, njk,M)
Out: ((i, k)(M, j,mij)),∀k = 1..cols(N),
((i, k)(N, j, njk)),∀i = 1..rows(M),

Reduce:
In: (i, k)− > (M, j,mij)....(N, j, njk))). Sort by j, compute products mijnjk. Maintain the sum of all products.
Out: ((i, k), (

∑
jmij ∗ njk))

Q: Problems? Size of the reducer might be too big, need to write/read from disk. and do external sort in the
reducer. Also need to know the dimensions of matrices in advance.

2

2.2 TF.IDF in MapReduce

TF.IDF (t, d) =
ntd∑
k∈T nkd

× log |D|
|{d|t ∈ d}|

Need to compute each of the quantities:
- ntd - frequency of t in d
- nd =

∑
k∈T nkd - sum (or max) of all frequencies in a document d

- nt = |{d|t ∈ d}| - # docs containing t
- |D| - number of documents

Task ntd:
Map:

In: (d, content from d) (could be chunked)
Out: ((d, t), 1) (Combiner?)

Reduce:
Sum counts for key (d, t).
Out: ((d, t), ntd)

Task
∑
k∈T nkd (or max):

Map:
In: ((d, t), ntd)
Out: (d, (t, ntd))

Reduce:
Sum ntd for key d (or max).
Out: ((d, t), (ntd, nd))

Task nt = |{d|t ∈ d}| and output results
Map:

In: ((d, t), (ntd, nd))
Out: t, (d, ntd, nd, 1)

Reduce:
Sum 1s for every t to get nt. In a second iteration over all t, (d, ntd, nd, 1) output the results
Out: ((d, t), (ntd/nd × log(|D|/nt)), assumes |D| is known, or s simple MR to compute it

3 Finding Similar Items (Ch. 3)

3.1 Proof that Jaccard distance is a metric

Jaccard distance is defined as:

JD(A,B) = 1− |A ∩B|
|A ∪B|

It is easy to verify:

• Symmetry: JD(A,B) = JD(B,A)

• Non-negativity: J(A,B) ≥ 0, and

• Identity of indiscernables: J(A,B) = 0 iff A = B

What is not as trivial is to show triangular inequality. Namely,

JD(A,B) ≤ JD(A,C) + JD(C,B)

3

Theorem 1. The triangular inequality holds for the Jaccard distance.

Proof. We consider 3 sets S1, S2, S3 drawn as Venn diagrams in the following figure1 :

T1	
T2	

T1	
T2	

T3	

T3	

V	

S1	

S2	

S3	

Figure 1: Three sets and some intersections.

Let U = S1 ∪ S2 ∪ S3, V = S1 ∩ S2 ∩ S3 and the sets Ti be defined according to the Venn diagram. Based on
the definitions of Ti, it follows that:

|T1|+ |T2|+ |T3|
|U |

= 1− |V |
|U |

(1)

Next, one can show that the Jaccard distance for an arbitrary pair is bounded from above by the quantity in
equation Eq. 1:

1− |V |
|U |
≥ 1− |Si ∩ Sj |

|Si ∪ Sj |
= JD(Si, Sj) (2)

The above inequality follows from (i) |Si ∩ Sj | ≥ |V | and (ii) |Si ∪ Sj | ≤ |U |, hence |V ||U | ≤
|Si∩Sj |
|Si∪Sj | .

The Jaccard distance for an arbitrary pair is bounded from below based on the following:

JD(Si, Sj) =
|Si ∪ Sj | − |Si ∩ Sj |

|Si ∪ Sj |
=
|Ti|+ |Tj |
|Si ∪ Sj |

≥ |Ti|+ |Tj |
|U |

(3)

Applying Eq. 3 for the sum JD(Si, Sj) + JD(Sj , Sk) we get the triangular inequality as follows:

JD(Si, Sj) + JD(Sj , Sk) ≥ |Ti|+ 2|Tj |+ |Tk|
|U |

≥ |Ti|+ |Tj |+ |Tk|
|U |

≥ JD(Si, Sk),

where the last inequality follows from Eqs. 1,2.

3.2 Expected Jaccard Smilarity of random sets

Is a JS = 0.8 high? It depends. We always need to ask what JS do we expect at random.
Assume that we are comparing subsets of size m, where the elements are from a universe U, |U | = n, so

0 ≤ m ≤ n. We would like to know what is E[JS(S, T)] =?

Random Model: Assume that we generate the subsets at random by drawing from U without replacement to
form m-element sets.

1Based on G. Gilbert, “Distance Between Sets” Nature 239, 1972

4

To compute the expectation, we need to consider all possible values of the intersection and the union of the sets
and the probabilities of drawing those.

Assume that the intersection |S ∩ T | = k, then Jk = k/(2m− k). Why?

What is the probability of observing an intersection of size k, P (∩k)?
- Number of ways to choose first set:

(
n
m

)
- Number of possible subsets of size k for the intersection:

(
m
k

)
- Number of possible ways to choose the non-intersection items in the second set:

(
n−m
m−k

)
.

Hence, we get the following:

P (∩k) =

(
n
m

)(
m
k

)(
n−m
m−k

)(
n
m

)(
n
m

) =

(
m
k

)(
n−m
m−k

)(
n
m

)
The expectation, can be computed as follows:

E[JS(S, T)] =
∑

k=0..m

JkP (∩k) =
k

2m− k

(
m
k

)(
n−m
m−k

)(
n
m

) .

Note:
(
n
k

)
= n!

k!(n−k)! is the binomial coefficient.

3.3 Minhashing

Minhashing allows us to represent sets as uniform controlled-size summaries (signatures). Let S be a set of elements
from a universe U, |U | = n and π : {1...n} → {1...n} be a random permutation of the indices of all possible elements.
The minhash value of S is defined as: h(S) = argminSi∈Sπ(i), i.e. i is the index of the first element that is part
of the set S according to the order of indices in π.

Minhashing is similarity-preserving in that if JS(S1, S2) is high, then with high probability h(S1) = h(S2) and
if JS(S1, S2) is low, then with high probability h(S1) 6= h(S2).

Theorem 2. Let h() be a minhash function, then P (h(S1) = h(S2)) = JS(S1, S2).

Proof. Consider the bitmap representation of S1 and S2, where the indices of included elements are set to 1. There
are three types of indices:
X: indices in which both S1 and S2 are both 1
Y : indices in which only one of S1 or S2 is 1
Z: indices in which both S1 and S2 are zero

JS(S1, S2) =
|X|

|X|+ |Y |
Since the indices are permuted randomly each index has an equal chance to be first in the permutation. Since

indices of type Z do not affect the hash value in order to compute P (h(S1) = h(S2)) we need to consider what is the

chance that anX index is firs in the permutation among allX and Y indices. Formally, P (h(S1) = h(S2)) = |X|
|X|+|Y | .

The signature/summary of a set, based on k independent hash functions is the vector [h1(S), ...hk(S)]. If we
define the similarity of two signatures s([h1(S1), ...hk(S1)], [h1(S2), ...hk(S2)]) as the fraction of dimensions in which
the signatures agree, the above theorem gives us the following:

JS(S1, S2) = E[s([h1(S1), ...hk(S1)], [h1(S2), ...hk(S2)])],

i.e. the expected signature similarity equals JS.

5

3.4 Locality sensitive functions

Decision functions that render two items either a candidate (close) pair or not. Often the function is a hashing
function (e.g. minhash) and h(x) = h(y) results in declaring (x, y) a candidate pair.

Desirable properties:

1. More likely to make close pairs candidates.

2. Functions in the family are statistically independent

3. Efficient - fast decision on candidate/non-candidate

4. Combinable- reduce FP and FN when combined, e.g. banding

Definition 1. Let d1 < d2 be two distance values for a distance measure d. A family of functions F is (d1, d2, p1, p2)-
sensitive if ∀f ∈ F :

1. if d(x, y) ≤ d1 then P (f(x) = f(y)) ≥ p1

2. if d(x, y) ≥ d2 then P (f(x) = f(y)) ≤ p2

Let F be a (d1, d2, p1, p2)-sensitive family of functions.

AND-combination: We can combine members by a logical “AND” r times to obtain F rAND. The decision logic
is (x, y) is a candidate if f1(x) = f1(y) ∩ ...fr(x) = fr(y). Then F rAND is (d1, d2, p

r
1, p

r
2)-sensitive (i.e. both p1, p2

decrease)

OR-combination: We can combine members by a logical “AND” b times to obtain F bOR. The decision logic is
(x, y) is a candidate if f1(x) = f1(y) ∪ ...fb(x) = fb(y). Then F bOR is (d1, d2, 1 − (1 − p1)b, 1 − (1 − p2)b)-sensitive
(i.e. both p1, p2 decrease)

Cascading: For example, r times AND combined b times by OR. (F rAND)bOR is (d1, d2, 1− (1−pr1)b, 1− (1−pr2)b)-
sensitive (Does it remind you of something?)

Figure 2: Effect of cascading.

Example: Consider a (0.2, 0.8, 0.8, 0.2)-sensitive family F (MinHash). Construct:

F1 : 4-way AND and then 4-way OR on F to get:
(0.2, 0.8, 1− (1− 0.84)4, 1− (1− 0.24)4) = (0.2, 0.8, 0.88, 0.006)

F2 : 4-way AND and then 4-way OR on F1 to get:
(0.2, 0.8, 1− (0.884)4, 1− (1− 0.0064)4) = (0.2, 0.8, 0.97, 5× 10−9)

Data Distance LS Family Sensitivity

Sets JD(X,Y) = 1− |X∩Y ||X∪Y | = 1− s MinHash (1− s1, 1− s2, s1, s2)

Sets JD(X,Y) = 1− |X∩Y ||X∪Y | = 1− s MinHash+Banding r, b (1− s1, 1− s2, 1− (1− sr1)b, 1− (1− sr2)b)

d-dim. vec. Hamming: |{i|v1(i) 6= v2(i)}| Equal in a random i (d1, d2, 1− d1/d, 1− (1− d2/d)
d-dim. vec. Cosine: 1- cos(θv1,v2

) sign(< v, r >), r-rand. vec. (d1, d2, 1− d1, 1− d2)

6

4 Stream processing Ch. 4

4.1 Cardinality estimation using FM-sketches

FM-sketches are named after the original authors Flajolet and Martin [1]. They are designed for counting distinct
items in stream.

Let S be a multi-set of integers between 0 and N (those could simply be indices of items in a finite universe
that may appear on the stream). We will denote the number of unique items observed as F , this is the number we
would like to find. The assumption is that we do not have O(N) space for a hash table to maintain whether each
of the possible items is observed. Instead, we will be happy with an approximate answer F̃ .

Let w be the minimum number of bits necessary to encode any of the integers in [0, N], i.e. w = logN . Let also
h() be an ideal hash function mapping values in k ∈ S uniformly at random to values between [0, 2w − 1], i.e. bit
strings of length w.

Let zk be the number of trailing zeroes in the hash value h(k) of element k. For, example, for h(k) = 000100,
zk = 2 as there are 2 trailing zeroes. Let

Z = maxk∈Szk,

which can be computed using only a single scan over the whole stream and a memory of O(logN). The estimate
produced by the FM-sketch is

F̃ = 2Z

.
We would like to get a guarantee on the quality of the estimate F̃ w.r.t. the actual F . We will prove that:

Theorem 3. For every integer c > 3, 1
c ≤

F̃
F ≤ c with probability greater than 1− 3/c.

While the probabilistic guarantee might not seem great 1 − 3/c it can be made arbitrarily close to 1 using
multiple independent sketches and taking the median of their estimates. We will first show some intermediate
results that will be later used in the proofs.

Lemma 1. For all integers r ∈ [0, w]

P (zk ≥ r) =
1

2r

.

Proof. zk ≥ r means observing at least r trailing zeroes in h(k). The bit strings that answer this criterion are of
the between:

0...0︸︷︷︸
w−r

0...0︸︷︷︸
r

and
1...1︸︷︷︸
w−r

0...0︸︷︷︸
r

where the prefix can be set to any string and the suffix contains r zeroes. There are 2w−r such strings and a
total of 2w possible unconstrained strings. Since h(k) is a uniformly random function, the probability of k being
hashed to a string with suffix of at least r zeroes is 2w−r/2w = 1/2r.

For a fixed r, let us define an indicator function xk(r) = (zk ≥ r), i.e. xk(r) = 1, when zk ≥ r and 0 otherwise.
Another way to state the lemma above is, ∀k ∈ S P (xk(r) = 1) = 1/2r.

Next, we derive the expectation and variance of the binary random variable xk(r):

E[xk(r)] = 1(
1

2r
) + 0(1− 1

2r
) =

1

2r

var[xk(r)] = E[x2
k(r)]− E2[xk(r)] = 12(

1

2r
) + 02(1− 1

2r
)− (

1

2r
)2 =

1

2r
(1− 1

2r
)

Let X(r) =
∑
k∈S xk(r), i.e. X(r) is 0 if all xk(r) = 0 and it is greater than or equal to 1 if at least one hash

value has a longer trail of leading zeroes.
We will also define two special constants:

7

1. r1 is the smallest r such that 2r > cF

2. r2 is the smallest r such that 2r ≥ F/c

Lemma 2. If X(r1) = 0 AND X(r2) 6= 0, then the algorithm is correct, meaning 1/c ≤ F̃
F ≤ c

Proof. To show this equivalence we will look at each of the assertions:
If X(r1) = 0, then no hash value had more than r1 trailing zeroes, hence ∀kzk < r1, hence Z < r1. Then we

can bound our APX/OPT fraction as follows:

F̃

F
=

2Z

F
=

2r1−1−ε

F
≤ cF/F ,̧

Note that for the inequality we used the fact that Z is an integer and Z < r and since r1 is the smallest r, s.t.
2r ≥ F/c, then for all r smaller the r1, including Z the opposite inequality holds.

If X(r2) 6= 0, then at least one hash value has at least r2 trailing zeroes, hence ∃k, zk ≥ r2, hence Z ≥ r2. Then
we can bound our APX/OPT fraction as follows:

F̃

F
=

2Z

F
=

2r2+ε

F
≥ 2r2+ε

F
≥ F/cF = 1/c,

Again the last inequality is due to the fact that r2 ≥ F/c and Z is at least that. smallest r, s.r. 2r ≥ F/c, then
for all r smaller the r1, including Z.

We will bound the probability of the algorithm not working correctly. i.e.

P [¬(X(r1) = 0 ∨X(r2) 6= 0)] = P [X(r1) 6= 0 ∧X(r2) = 0].

We will show that P (X(r1) 6= 0) < 1/c and that P (X(r2) = 0) < 2/c from which we will get that the algorithm
is correct with probability greater than 1− 3/c.

Lemma 3. P (X(r1) ≥ 1) < 1/c

Proof.

E[X(r1)] =
∑

distinct k∈S

E[xk(r1)] =
∑

distinct k∈S

1

2r1
=

F

2r1
<

1

c
,

The first equality follows from the fact that X() is a sum of of i.r.v. The last inequality is due to the definition of
r1: it is the smallest r s.t. 2r > cF , and hence the inequality in the opposite direction as 2r1 is in the denominator.

Next from Markov inequality we have that:

P (X(r1) ≥ 1) ≤ E[X(r1)]
1 < 1/c

Lemma 4. P (X(r2) = 0) < 2/c

Proof.
E[X(r2)] = F/2r2

, due to the same reasoning as in the previous lemma proof.
X(r2) is the sum of i.r.v., hence its variance is the sum of the individual variances:

var[X(r2)] = F
1

2r2
(1− 1

2r2
) <

F

2r2

P [X(r2) = 0] ≤ P [|X(r2)− E[X(r2)]| ≥ E[X(r2)]]

The above follows from a reasoning about the event in the first probability and how it is a subset of the events
in which the expression in the second probability is satisfied. Hence the second probability is higher.

P [|X(r2)− E[X(r2)]| ≥ E[X(r2)]] ≤ var[X(r2)]

E2[X(r2)]

The above follows from Chebyshev bound. Substituting the inequality and equality we derived earlier respec-
tively for the variance and expectation of X(r2), we obtain.

8

P [X(r2) = 0] ≤ var[X(r2)]

E2[X(r2)]
<

F/2r2

(F/2r2)2
=

2r2

F
< 2/c

To see the last inequality, consider the definiion of r2: it is the smallest r s.t. 2r2 ≥ F/c. This means for r
smaller than r2 the inequality will be reversed and specifically for r2 − 1: 2r2−1 < F/c, and hence 2r2 < 2F/c
leading to the last inequality in the above.

5 Clustering Ch. 7

5.1 The curse of dimensionality

High-dimensional vectors are ubiquitous in data mining. In high dimensions we encounter the so-called curse of
dimensionality which refers to the fact that algorithms are simply harder to design in high dimensions.

Let x ∈ Rn be an n-dimensional vector. Its L2-norm is defined as |x|2 = (
∑
i x

2
i)

1/2 and its L1 norms as
|x|1 =

∑
i |xi|. The Euclidean (L2) distance of two vectors is |x− y|2 and the Manhattan (L1) distance is |x− y|2.

The n-cube in Rn is the set of all points with coordinates between 0 and 1, i.e. {x|0 ≤ xi ≤ 1}. Its volume is 1.
The unit ball in Rn is Bn : {x|

∑
x2
i ≤ 1} the set of vector tips, whose squared L2 norm does not exceed 1. The

volume of this ball is πn/2

(n/2)! (assume n is even), which using Big-Θ notation is 1
nΘ(n) . An intuitive (approximate)

way to reason about choosing a point on the surface of the ball is to choose a random point x, such that xi = {−1, 1}
and normalizing it to get 1√

n
x.

A few facts and their proofs
1. The volume of Bn tends to 0 as the number of dimensions n tend to ∞.

This follows directly from the volume definition πn/2

(n/2)! or 1
nΘ(n) taking n to infinity. The unit cube’s volume

on the contrary goes to infinity with the number of dimensions. So if you imagine a hyper-sphere within a hyper-
cube (even if not unit), as the number of dimensions increases, most points will be outside the sphere close to its
boundary and hence will have similar distance to each other.

2. If you pick two vectors on the surface of Bn independently, then with probability > 1 − 1/n, the cos of the
angle between them is:

|cos(Θx,y)| = O(

√
logn

n
),

In other words the vectors are almost orthogonal.

Lemma 5. Suppose a is a unit vector in Rn, i.e. |a|2 = 1. Let x be chosen from the surface of Bn by choosing each
coordinate from {−1, 1} independently and normalizing by a factor of 1/

√
n. Note, that x is also a unit vector but

from a restricted type. Denote by X the random variable < a, x >=
∑
i aixi =

∑
i aixi√∑

i a
2
i

√∑
i x

2
i

= cos(a, x). Then:

P (|X| > t) < e−nt
2

Proof. Since the −1 and 1 are equally likely in the dimensions of x, E[xi] = 0. We can then show that:

E[X] = E[
∑

aixi] =
∑

aiE[xi] = 0

Similarly considering the fact that E[xi ∗ xj] = 0, i 6= j and E[xi ∗ xi] = 1 we have:

σ2 = var[X] = E[X2]−E[X] = E[(
∑
i aixi)

2] = E[
∑
i,j aiajxixj] =

∑
i,j aiajE[xixj] =

∑
i aiaiE[x2

i] =
a2
i

n = 1
n

Using Chernoff bound, we get:
P (|X| > t) < e−t

2/σ2

= e−t
2/(1/n) = e−nt

2

We fixed a to a unit vector and showed something about the cos(a, x). The ssame will hold for random vector
constructed similar to x as they are a special case of unit vectors. We mentioned that we will approximately
heuristically think about them as truly random vectors on the hyper-sphere.

As a direct corollary from the Lemma, if two vectors x, y are chosen independently:

P (|cos(Θx,y)| >
√
−log(ε)

n
) < e−n

√
−logε
n

2

= elogε = ε

9

In order to get claim 2. we set ε = 1/n.

P
(
|cos(Θx,y)| >

√
logn

n

)
< 1/n,

hence

P
(
|cos(Θx,y)| ≤

√
logn

n

)
≥ 1− 1/n

5.2 Spectral Clustering

Given a dataset of points x1...xn and some notion of similarity sij ≥ 0 the intuitive goal is to group points such
that points within groups have high similarity and points across groups have low similarity.
Notation A natural way to model this situation is via a similarity graph G(V,E,W): every vertex vi represents a
point, two vertices are connected by an edge in E if their similarity is high, and the weight on the edge wij = sij .
G is undirected, i.e. its adjacency matrix is symmetric. There are different ways to set this up:

1. Pick a threshold ε and retain edges if the similarity exceeds the threshold, or alternatively if working with
distances if the distance is smaller than ε. In the latter scenario, one needs to convert a distance to a similarity.

2. Retain the top k most similar neighbors for every vertex. This is referred to as kNN graph.

3. Complete similarity graph - keep all possible edges.

W is the symmetric adjacency matrix of G and its non-zero elements correspond to edges that we have retained.
The degree of a node is the sum of the weights of its adjacent edges:

di =

n∑
j

wij .

The degree matrix D is defined as a diagonal matrix with node degrees on the diagonal dii = di and 0 in all
off-diagonal entries.

The weigh between two sets of nodes A,B ⊂ V is defined as the sum of all weights across:

W (A,B) =
∑

i∈A,j∈B
wij .

Two ways to measure the size of a subset A of nodes:

1. Number of nodes |A|

2. Volume vol(A) =
∑
i∈A di.

The intuitive objective of grouping similar objects, corresponds to a partitioning of the graph {A1...Ak},
where partitions are mutually disjoint Ai ∩Aj = ∅ and cover all nodes

⋃
iAi = V.

Note, that spectral clustering is not necessarily applicable to data in the form of points in Euclidean space, or
objects with a similarity function. One’s objective could be partition a set of users in a social network in which
case W will correspond to the friendship graph.

The weighted adjacency matrix W is symmetric wij = wji and has non-negative entries wij ≥ 0. An eigen
pair of a symmetric square matrix is defined as:

Wv = λv,

where v is called an eigenvector and λ the corresponding eigenvalue. Intuitively, v does not change its direction
when linearly transformed by W . If W is a square matrix of size n, it has n eigenpairs, such that every pair of
eigenvectors are orthogonal. We will arrange the eigenpairs in increasing order of their eigenvalues.
Graph Laplacians The main tools for spectral clustering.

The Combinatorial Laplacian L is defined as L = D −W . It has the following properties:

10

1. It is a quadratic form, i.e. captures square differences of adjacent nodes

f ∈ Rn, f ′Lf =
1

2

n∑
i,j=1

wij(fi − fj)2.

Proof.

f ′Lf = f ′Df − f ′Wf =

n∑
i=1

f2
i di −

n∑
i,j=1

wijfifj =
1

2

(n∑
i=1

f2
i di − 2

n∑
i,j=1

wijfifj +

n∑
j=1

f2
j dj

)
=

1

2

(n∑
i=1

f2
i (

n∑
j

wij)− 2

n∑
i,j=1

wijfifj +

n∑
j=1

f2
j (

n∑
i

wij)
)

=
1

2

(n∑
i,j=1

f2
i wij − 2

n∑
i,j=1

wijfifj +

n∑
i,j=1

f2
j wij

)
=

1

2

n∑
i,j=1

wij(f
2
i − 2fifj + f2

j)

=
1

2

n∑
i,j=1

wij(fi − fj)2

2. L is symmetric and positive-semidefinite, since D and W are symmetric and due to 1. f ′Lf ≥ 0 (definition
of p.s.d.)

3. The first eigenpair λ1 = 0 and v0 = 1 a vector of all ones.

Proof. v′Lv = v′λv = λ (v′v)︸ ︷︷ ︸
≥0

≥ 0, hence λ ≥ 0

L1 = [00...0]′ = 01

4. L has n non-negative real eigenvalues 0 = λ1 ≤ λ2... ≤ λn, which follows from 1., 2. and 3.

5. If the graph G has k connected components {A1, ...Ak} , then the multiplicity of the eigenvalue 0 is k and
the corresponding first eigenvectors are {1A1

, ...1Ak}

Proof. For the case k = 1, i.e. connected graph, if f is an eigenvector with an eigenvalue 0, then

0 = f ′λf = f ′Lf =
1

2

n∑
i,j=1

wij(fi − fj)2,

and in order for this to be satisfied f needs to be a constant fi = fj in the connected component as all
weights wij ≥ 0. Without loss of generality let the vertices be ordered succh that connected components are
contiguous index intervals, then W and as a consequence L will have a block diagonal form:

L =

L1

L2

. . .

Lk

 ,

And each block Li is a proper Laplacian matrix, corresponding to a connected component. Hence each of
those will have exactly one eigenpair with a zero eigenvalue and a corresponding eigenvector 1Ai

11

The Normalized graph Laplacians Lsym and Lrw are defined as follows:

Lsym = D−1/2LD−1/2 = I −D−1/2WD−1/2

Lrw = D−1L = I −D−1W

They have the following properties:

1. f ∈ Rn, f ′Lsymf = 1
2

∑n
i,j=1 wij

(
fi√
di
− fj√

dj

)2

, which can be shown in a similar way to the first property of

L (home assignment for extra credit)

2. (λ, u) is an eigenpair of Lrw iff (λ,D1/2u) is an eigenpair of Lsym

Proof. By multiply the eigenvalue equation of the symmetric Laplacian Lsym(D1/2u) = λ(D1/2u) with D−1/2

from the left we get
D−1/2Lsym(D1/2u) = D−1/2λ(D1/2u)

D−1LD−1/2D1/2u = λD−1/2D1/2u

Lrwu = λu

3. (λ, u) is an eigenpair of Lrw iff (λ, u) solve the generalized eigenvalue problem Lu = λDu. To see this we
simply multiply the eigenvalue equation D−1Lu = λu with D on the left.

4. 0 is an eigenvalue of Lrw with the constant one 1 as eigenvector. 0 is an eigenvalue of Lsym with a constant
eigenvector D1/2. First statement obvious, second follows from 2.

5. Lsym and Lrw are positive semi-definite and have n non-negative real-valued eigenvalues 0 = λ1 ≤ ... ≤ λn.
The statement about Lsym follows from 1. and for Lrw from 2.

6. If the graph G has k connected components {A1, ...Ak} , then the multiplicity of the eigenvalue 0 is k for
both Lsym and Lrw. For Lrw, the corresponding eigenvectors are 1Ai and those for Lsym are D1/2

1Ai .

Proof. Symilar arguments to that for L and using the relations between eigenpairs.

Spectral clustering algorithms

Unnormalized spectral clustering (W,k - number of clusters)

1. Construct L

2. Compute the first k eigenvectors {u1...uk}

3. Construct U which has {u1...uk} as columns, rows represent vertices

4. Cluster rows of U using k-means into clusters C1...Ck

Normalized spectral clustering using Lrw (W,k - number of clusters)

1. Construct L

2. Compute the first k generalized eigenvectors {u1...uk}, where Lu = λDu

3. Construct U which has {u1...uk} as columns, rows represent vertices

4. Cluster rows of U using k-means into clusters C1...Ck

12

We are computing the generalized eigen vectors and we showed that they are the same as the eigenvalues of Lrw.

Normalized spectral clustering using Lsym (W,k - number of clusters)

1. Construct Lsym

2. Compute the first k eigenvectors {u1...uk} of Lsym

3. Construct U which has {u1...uk} as columns, rows represent vertices

4. Construct T from U by normalizing the rows to norm 1, i.e. tij = uij/|ui|2

5. Cluster the rows of T using k-means into clusters C1...Ck

Why does Spectral clustering work?
We want to partition the similarity graph into groups such that edges between group have low weight and

those within groups have a high weight. We will show that spectral clustering is an approximation to such graph
partitioning problems.

The simplest and most natural graph partitioning is to minimize the cut across partition, where the cut is
defined as:

cut(A1...Ak) =
1

2

k∑
i=1

W (Ai, Āi),

The factor 1/2 is so that we do not count the contribution of every edge twice. This formalization is not very
practical as the solution for say k = 2 will simply separate one low-degree vertex from the rest oft he graph. Hence,
we need a way to balance the clusters. Two common ways: Rcut and Ncut.

Rcut(A1...Ak) =
1

2

k∑
i=1

W (Ai, Āi)

|Ai|
=

k∑
i=1

cut(Ai, Āi)

|Ai|

Ncut(A1...Ak) =
1

2

k∑
i=1

W (Ai, Āi)

vol(Ai)
=

k∑
i=1

cut(Ai, Āi)

vol(Ai)

These objectives take small values if the clusters are too small. In particular, to minimize
∑

1/|Ai| we want
|Ai| = |Aj |, and similarly for

∑
1/vol(Ai) we want equality of volumes.

Minimizing Rcut and Ncut is NP-hard and spectral clustering is a way to solve relaxed versions of these
problems. We will show that relaxing Ncut leads to normalized spectral clustering, and Rcut to unnormalized
spectral clustering.

Theorem 4. [Rayleigh-Ritz] Let M be a symmetric matrix, then

λk = minx⊥v1,..,vk−1

x′Mx

x′x
= maxx⊥vk+1,..,vn

x′Mx

x′x

and the extreme value are attained at x = vk. In particular, if x maximizes the Rayleigh quotient

x = argmaxx
x′Mx

x′x
,

where x′x 6= 0, then (x
′Mx
x′x , x) is the “largest” eigenpair.

Proof. We can assume that x is a unit vector w.l.g., because if y = ax, a ∈ R, then y′My
y′y = ax′Max

ax′ax = x′Mx
x′x . So

x′x = 1. Eigenvalues of M are indexed from small to large λ1 ≤ λ2... ≤ λn and the corresponding eigenvectors
are {v1...vn}. From the spectral theorem {vi} forms an orthonormal basis in Rn, so any vector, including x can be
expressed as:

13

x =
∑
i

(v′ix)vi.

[Mini-proof 1:] To see the above we multiply the RHS by another eigenvector v′j from the left to get:

v′j
∑
i

(v′ix)vi =
∑
i

(v′ix)v′jvi︸ ︷︷ ︸
linearity

= (v′jx)v′jvj︸ ︷︷ ︸
i6=j ⇐⇒ v′ivj=0

= v′jx︸︷︷︸
v′jvj=1

Also, due to the above representation of x we can also show the following:

1 = x′x = (
∑
i

(v′ix)vi)
′(
∑
j

(v′jx)vj) =
∑
i,j

(v′ix)(v′jx)v′ivj =
∑
j

(v′jx)2 (4)

x′Mx

x′x
= x′Mx , x′x = 1

= (
∑
i

(v′ix)vi)
′M(

∑
j

(v′jx)vj) , x =
∑
i

(v′ix)vi

= (
∑
i

(v′ix)vi)
′(
∑
j

(v′jx)λjvj) ,Mvj = λjvj

=
∑
i,j

(v′ix)(v′jx)λjv
′
ivj , distr.sum

=
∑
j

(v′jx)2λj , i 6= j ⇐⇒ v′ivj = 0

Using (1) and the derivation above, we get the following extremes for the Rayleigh quotient, showing the extreme
cases k = 1 and k = n:

x′Mx

x′x
=
∑
j

(v′jx)2λj ≥
∑
j

(v′jx)2λ1 = λ1, (5)

and
x′Mx

x′x
=
∑
j

(v′jx)2λj ≤
∑
j

(v′jx)2λn = λn, (6)

Since the eigenvectors are orthogonal, we can get the general case for arbitrary k.

Next we will reason about the relationship between spectral clustering and minimizing Rcut and Ncut.
Approximating Rcut, k = 2

Our goal is to solve the optimization problem:

min
A⊂V

Rcut(A, Ā)

We will show that we can re-write this objective in terms of the graph Laplacian.
Given a set A ⊂ V , define the vector f as:

fi =

{ √
|Ā|/|A| if vi ∈ A

−
√
|A|/|Ā| if vi ∈ Ā

.

Now the Rcut objective can be re-written as:

14

f ′Lf =
1

2

∑
i,j

wij(fi − fj)2 ,Prop 1. for L

=
1

2

∑
i∈A,j∈Ā

wij

(√ |Ā|
|A|

+

√
|A|
|Ā|

)2

+
1

2

∑
i∈Ā,j∈A

wij

(
−

√
|Ā|
|A|
−

√
|A|
|Ā|

)2

,Def. of f

= cut(A, Ā)
(|Ā|
|A|

+
|A|
|Ā|

+ 2
)

= cut(A, Ā)
(|Ā|+ |A|
|A|

+
|Ā|+ |A|
|Ā|

)
= (|A|+ |Ā|)Rcut(A, Ā)

= |V |Rcut(A, Ā)

Additionally, we can show that f is orthogonal to 1:

f ′1 =
∑
i

fi =
∑
i∈A

√
|Ā|
|A|
−
∑
i∈Ā

√
|A|
|Ā|

= |A|

√
|Ā|
|A|
− |Ā|

√
|A|
|Ā|

= 0.

And

f ′f = |f |22 =
∑
i

f2
i = |A| |Ā|

|A|
+ |Ā| |A|

|Ā|
= |A|+ |Ā| = n = |V |

Hence the problem of minimizing Rcut is equivalent to:

Definition 2. [Rcut minimization in terms of L]

min
A⊂V

f ′Lf, s.t. f ⊥ 1, fi defined as above, |f |2 =
√
n

This is discrete optimization problem since values of f can take two distinct values and is still NP-hard. The
simplest relaxation is to discard the discrete condition, i.e. allow f to take arbitrary values obtaining:

Definition 3. [Relaxed Rcut minimization in terms of L]

min
f
f ′Lf, s.t. f ⊥ 1, |f |2 =

√
n ⇐⇒ min

f⊥1

f ′Lf

f ′f

Based on the Relay-Ritz theorem, the solution to the relaxed version is the second “smallest” eigenvector. So
we can approximate a minimizer of Rcut by v2 of L. In order to get a solution for Rcut we need to transform the
obtained f into a two-value indicator for the partitions. Once can use the sign, but more generally once can simply
cluster the values. When using more than one partitions we will cluster the corresponding vectors. This is exactly
the unnormalized Spectral clustering algorithm.
Rcut, k > 2

To show a general k equivalence one follows similar development. Now, we have multiple partitions A1..Ak and
there will be k indicator vectors hj = (h1j ...hnj):

hij =

{
1/
√
|Aj | if vi ∈ Aj

0 if vi ∈ Āj
,

where i = 1..n and j = 1..k. We set up the matrix Hn×k containing the indicator vectors as columns. The
columns are orthonormal, i.e. H ′H = I,and similar to the calculations above we can show that:

h′iLhi = cut(Ai, Āi)/|Ai|

,
and moreover h′iLhi = (H ′LH)ii, and combining those facts:

Rcut(A1...Ak) = Tr(H ′LH),

15

where the Tr is the trace of a matrix. Hence, minimizing Rcut is equivalent to

minHTr(H
′LH), s.t.H ′H = I,H is defined as above

Dropping the discrete values for H results in a relaxation that asks for the first k eigenvectors of L (Note: H
is U in the algorithm.)

5.3 Girvan-Newman BC computation

The GN algorithms is an O(|V ||E|) algorithm to compute the betweeness centrality of every edge. It proceeds as
follows:

1. Input: graph G(V,E)

2. Output: the number of pairs whose SP pass through every edge cx,y,∀(x, y) ∈ E

3. Repeat for every vertex v ∈ V

(a) Compute BFS DAG, disregard edges on the same level

(b) svv = 1

(c) Top-Down: compute #SP from v to every nodes svx =
∑
y∈parents(x) s

v
y (1.a)

(d) Bottom-Up: compute credit for nodes cyx =

{
1 if x is leaf
1 +

∑
z∈children(x) c

y
x→z if vi ∈ Āj and

edges: cyx→z = cyz
syx∑

j∈parents(z) s
y
j

(1.b)

4. cx,y =
∑
v∈V (cvx→y + cvy→x)

a

b c d e

f g h

k

i j

1

1
1

1 1

2
1

2

33

6

(a) Top-Down: Compute SPs sax, ∀x

a

b c d e

f g h

k

i j

1

1
1

1 1

2
1

2

33

6
1

0.5 0.5
1.5

1 0.5 1

2
2 2

1 1 2 1 1

24

2
2

2422

1.5

0.5

(b) Bottom-Up: Compute credit: cax and cax←z

Figure 3: Girvan-Newman’s BC computation.

5.4 Modularity and configuration models

Modularity is another measure of ”goodness” of graph partitioning. It takes into account the expected number of
edges among members in the community in a random realization of the observed network. The main question one
needs to answer is: what is a random realization?
Configuration model

Given an unweighted undirected graph G(V,E), consider all random graphs: G′(V,E′) with the same nodes
and preserved node degrees dv = |N(v)|. To obtain those graphs, one can imagine the following random process:

16

1. cut every edge resulting in 2 “stub” edges adjacent to the corresponding nodes

2. re-connect stubs to form full edges randomly, thus preserving dv

Properties:

1. The expected number of edges between nodes u and v in G′ is E[#Edges(u, v)] = du
dv
2m , normalization is the

total number of stubs

2. The total number of expected edges in G′ is

E[|E′|] =
1

2

∑
i,j∈V

didj
2m

=
1

4m

∑
i

di
∑
j

dj︸ ︷︷ ︸
2m

=
2m2m

4m
= m

Let C be a partitioning of G, then the modiularity is defined as:

Q(C) =
1

2m

∑
c∈C

∑
i,j∈c

(xij −
didj
2m

),

where xij = 1 ⇐⇒ (i, j) ∈ E. Modularity is between [−1, 1]. It is positive when the edges in communities
exceed the expected number of edges.

References

[1] Philippe Flajolet and G Nigel Martin. Probabilistic counting algorithms for data base applications. Journal of
computer and system sciences, 31(2):182–209, 1985.

17

