
Temporal Graph Signal Decomposition
Maxwell McNeil∗
mmcneil2@albany.edu

University at Albany—SUNY, USA

Lin Zhang
lzhang22@albany.edu

University at Albany—SUNY, USA

Petko Bogdanov
pbogdanov@albany.edu

University at Albany—SUNY, USA

ABSTRACT
Temporal graph signals are multivariate time series with individual
components associated with nodes of a fixed graph structure. Data
of this kind arises in many domains including activity of social
network users, sensor network readings over time, and time course
gene expression within the interaction network of a model organ-
ism. Traditional matrix decomposition methods applied to such
data fall short of exploiting structural regularities encoded in the
underlying graph and also in the temporal patterns of the signal.
How can we take into account such structure to obtain a succinct
and interpretable representation of temporal graph signals?

We propose a general, dictionary-based framework for temporal
graph signal decomposition (TGSD). The key idea is to learn a
low-rank, joint encoding of the data via a combination of graph
and time dictionaries. We propose a highly scalable decomposition
algorithm for both complete and incomplete data, and demonstrate
its advantage for matrix decomposition, imputation of missing
values, temporal interpolation, clustering, period estimation, and
rank estimation in synthetic and real-world data ranging from
traffic patterns to social media activity. Our framework achieves 28%
reduction in RMSE compared to baselines for temporal interpolation
when as many as 75% of the observations are missing. It scales best
among baselines taking under 20 seconds on 3.5 million data points
and produces the most parsimonious models. To the best of our
knowledge, TGSD is the first framework to jointly model graph
signals by temporal and graph dictionaries.

CCS CONCEPTS
• Information systems→ Data mining.

KEYWORDS
graph mining, signal processing, time series, dictionary coding,
sparse decomposition, interpolation, periodicity detection

ACM Reference Format:
Maxwell McNeil, Lin Zhang, and Petko Bogdanov. 2021. Temporal Graph
Signal Decomposition. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD ’21), August 14–18, 2021,
Virtual Event, Singapore. ACM, New York, NY, USA, 11 pages. https://doi.
org/10.1145/3447548.3467379

∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467379

X

~
Graph

Dictionary

𝚿

W
Y

Learn

Time
Dictionary

𝚽

TGSD

100 101 102

Running Time (sec)

0.014

0.02

0.028

R
ec

on
st

ru
ct

io
n

Er
ro

r

Gems-HD
NPM

GFT MC

Our
methodsTGSD W+R

TGSD G+R
TGSD G+D

TGSD W+D

Time

Figure 1: (Left panel:) TGSD decomposes a temporal graph signal as a prod-
uct of two fixed dictionaries and two corresponding sparse encodingmatrices.
(Right panel:) Variants of TGSD (lower left corner) are both more accurate in
missing value reconstruction and faster than most baselines from the litera-
ture. Details of competing techniques are available in Sec. 6.

1 INTRODUCTION
Multivariate time series often feature temporal and “spatial” struc-
ture inherent to the domain in which they are collected. Incorporat-
ing this structure when mining such data is essential to obtaining
parsimonious, robust, and interpretable models. In this paper we
focus specifically on temporal data associated with the nodes of a
fixed graph and refer to such data as temporal graph signals (TGS).
Example settings abound: traffic over time in transportation net-
works [22], temporal readings in sensor networks [48], gene expres-
sion time series overlaid on protein interactions networks [4], and
user opinion dynamics in social networks [3]. Beyond structural
coupling on the graph, temporal graph signals may exhibit tempo-
ral structures such as periodicity, smoothness, trends, and others.
Our goal in this work is to obtain a low-dimensional embedding of
a TGS which jointly exploits such graph and temporal properties. It
is important to note that the TGS setting is fundamentally different
from dynamic graph mining where the structure (sets of nodes and
edges) evolves as opposed to signals over the nodes [6]. The benefit
of employing knowledge of the underlying graph structure has been
demonstrated in graph signal processing [13, 37, 41], where node
values are treated as a signal over the graph and the spectrum of the
graph Laplacian is employed as basis for reconstructing the signal.
Temporal extensions have also been recently proposed [50]. Graph
structure modeling has found valuable applications in compres-
sion/summarization of node attributes [42], in-network regression
and optimization [18], missing value imputation [19], community
detection [17] and anomaly detection [2].

Similarly, temporal structures such as periodicity [45], trends
[53] and smoothness [10] have a long history in research on time
series. Most existing methodology focuses on modeling either the
graph structure [2, 18, 19, 42] or the structure of the temporal sig-
nal [45, 53]. The interplay between temporal and structural graph
properties gives rise to important behaviors, however, no frame-
works currently exist to facilitate a joint representation. For exam-
ple, traffic levels in a transportation network are shaped by both
network locality and the time of the day [12].

Missing values [9] and irregular sampling in the time and/or
the graph domain [31] also pose important challenges in TGS data
analysis. Missing values may arise due to sensor malfunction or

https://doi.org/10.1145/3447548.3467379
https://doi.org/10.1145/3447548.3467379
https://doi.org/10.1145/3447548.3467379

other kinds of data corruption; sub-sampling in the graph domain
may arise in social media data due to privacy constraints, while
temporal sub-sampling may arise due to limitations of how fast
time snapshots can be collected. A joint structural modeling of the
graph and temporal patterns can be especially advantageous in such
settings of missing or incomplete data. Hence, the key question we
seek to address in this paper is: How to efficiently learn a succinct,
robust and interpretable representation for temporal graph signals,
which can (i) jointly exploit temporal and graph structural regularities
and (ii) handle missing values?

We propose a general framework for temporal graph signal de-
composition (TGSD) based on joint dictionary encoding in the graph
and time domain. TGSD decomposes the signal as a product of
four matrices: two fixed dictionaries and two corresponding sparse
encoding coefficient matrices (Fig. 1, left pane). Our framework
flexibly incorporates widely adopted temporal and graph dictio-
naries from the literature and can also be employed for data with
missing values. We develop a general and efficient solver for TGSD
and demonstrate its utility in datasets from different domains. The
framework achieves significant performance gains over baselines
for matrix decomposition, missing value reconstruction, tempo-
ral interpolation, node clustering, and periodicity detection, while
scaling significantly better than most of them (Fig. 1, right pane).

Our contributions in this paper are as follows:
•Generality and novelty:We propose a general dictionary-based
decomposition framework for temporal graph signals. To the best
of our knowledge TGSD is the first method to unify graph signal
processing and time series analysis by incorporating existing as
well as custom dictionaries from both domains.
• Scalability and parsimony: TGSD scales to large instances on
par or better than high-accuracy baselines. It produces low com-
plexity and interpretable representations of the input data.
•Applicability and accuracy:We demonstrate TGSD’s utility for
data decomposition, missing value imputation, interpolation, clus-
tering, period detection, and rank estimation. Its quality dominates
that of baselines across applications.

2 RELATEDWORK
Sparse dictionary coding aims to represent data via a sparse
combination of dictionary basis. It is widely used in signal process-
ing [55], image analysis [15], and computer vision [47]. Dictionaries
are designed to capture the underlying structure in the data, e.g.
DFT [40] and DWT [50]. Some methods learn the dictionary from
data [56]. Our work focuses specifically on signals over graphs and
can accommodate arbitrary time and graph dictionaries designed
to match expected structures in the data, making the literature on
dictionary encoding complementary to our approach.
Graph signal processing (GSP) specifically models signals over
graph nodes and is a popular emerging research area in signal
processing [41]. A central premise is that a graph signal can be
represented as a linear combination of graph dictionary basis. The
eigenvectors of the graph Laplacian are often adopted as basis in
this domain [13]. Proposals to learn the basis from data also exist in
the literature [43]. Beyond a univariate signal over nodes, a recent
approach considers also multivariate graph signals [50]. Our work
focuses on evolving graph signals, and thus, can be viewed as a
generalization of static GSP methods.

A recent clustering approach, called CCTN, focuses on tempo-
ral evolution of signals over graphs to clusters nodes [30]. CCTN
computes a sparse data representation and employs the network
structure as a regularizer. Different from CCTN, our work employs
the graph structure for dictionary encoding and can be applied to
many downstream tasks in addition to clustering. We also outper-
form CCTN for clustering both in terms of scalability and accuracy.
Mining and optimization for network samples is another rel-
evant area which differs from classical machine learning in that
features are associated with network nodes [39, 54]. Common to
this setting is that network samples share a common structure but
are modeled as independent, while in our setting they are ordered in
time and this temporal order is crucial. An optimization framework
for graph node values was recently proposed with a key premise
of local smoothness [18]. This work, however, does not consider
temporal evolution of the node values and uses the graph structure
for regularization rather than encoding.
Matrix completion techniques estimate missing values in incom-
plete matrices [36]. Some employ nuclear norm minimization [20]
and others low-rank semi-definite programming [33]. These meth-
ods are developed for general matrices and are agnostic to exist-
ing column/row side information (e.g., time and graph structures)
which we consider in TGSD. Some recent methods incorporate
side information as regularizers to improve the completion qual-
ity [23, 38] or employ known temporal patterns such as periodic-
ity [44]. Different from the above, we perform joint row and column
structured encoding, which, as we demonstrate experimentally, out-
performs general matrix completion methods.
Dynamic graph mining methods seek to discover patterns from
the evolving graph structure as opposed to node signals that evolve
over a fixed structure [6, 29]. Classic problems in this domain area
include link prediction and recommendation [25] community detec-
tion [29] and frequent pattern mining [6]. All these methods focus
on structural dynamics, while our work focuses on node signal
evolution within a fixed structure.
Graph neural networks are popular deep architectures shown
to achieve state-of-the-art performance in text classification [51],
recommender systems [34] and other tasks [24]. GNNs employ
an input graph structure to learn representations of node values
based on their network context. Some methods in this domain also
consider time, but are primarily designed for forecasting [52], action
recognition [49], or dynamic graph structure [32], as opposed to
evolving signals over a graph. In addition, this group of methods
are often designed for specific tasks (e.g. recommendation and node
classification), while our framework is general as it can be employed
for an array of tasks and can incorporate various dictionaries.
3 PROBLEM FORMULATION
A graph G = (M,H) is a set of nodesM, |M| = n, and a weighted
adjacency matrix H whose non-zero entries encode the strength of
the edges among corresponding nodes. The combinatorial Laplacian
matrix L associated with a graph G is defined as L = F − H , where
F is is a diagonal matrix of weighted node degrees Fii =

∑
q Hi j .

A temporal graph signal (TGS) is a matrix X ∈ Rn×t with t time
snapshots. Our goal is to succinctly encode the signal via graph
and time dictionaries, resulting in a decomposition of the form:

X ≈ ΨYWΦ, (1)

where Ψ ∈ Rn×m is a fixed graph dictionary, Φ ∈ Rs×t is a fixed
temporal dictionary and Y ∈ Rm×k andW ∈ Rk×s are the corre-
sponding encoding coefficient matrices we have to estimate. We
choose to use two encoding matrices Y andW , similar to many
sparse coding and non-negative matrix factorization methods, in
order to learn effectively both the graph and temporal structures
and maintain separable interpretable embeddings for nodes and
time snapshots. The internal dimension of the encoding matrices
k is a parameter which controls the rank of the encoding, akin to
the number of components in dimensionality reduction techniques.
The internal sizes of the dictionaries m, t depend on the type of
dictionaries selected discussed in the following section.

If unconstrained, the encoding matrices Y andW from Eq. 1
will overfit noise in the input. This may be especially exacerbated
when the adopted dictionaries Ψ and Φ are large and exhaustive.
To alleviate this limitation, we impose sparsity on the encoding
matrices akin to sparse coding techniques. In addition, the basic
encoding from from Eq. 1 cannot handle missing values in the input
signalX or irregular temporal sub-sampling. To this end, we include
a mask matrix Ω ensuring a fit to observed values.
Definition 3.1. Sparse temporal graph signal decomposition
with missing values: Given a temporal graph signal X with miss-
ing values, a binary mask Ω of the same size, graph Ψ and time Φ
dictionary matrices and rank k , find the encoding matrices Y andW
which minimize the following objective:

argmin
Y ,W

∥Ω ⊙ (X − ΨYWΦ)∥2F + λ1 ∥Y ∥1 + λ2 ∥W ∥1 ,

where ⊙ denotes the element-wise product and λ1 and λ2 are sparsity
regularization parameters.

In the absence of missing values, we can omit the mask matrix
Ω in the fit term, however, we will discuss solutions for this more
general version of the objective. The sparse TGSD problem can
be viewed as a generalization of matrix completion when missing
values are present, and sparse coding when the input is complete.
In particular, the missing value objective is a generalization of
low-rank matrix completion [8, 57], since choosing trivial identity
matrix dictionaries of appropriate sizes reduces our objective to that
in matrix completion ∥Ω ⊙ (D −AB)∥2F . Different from the above,
TGSD can harness the representative power of various dictionaries
to capture structures in both rows and columns. Similarly, selecting
identity matrix dictionaries in the absence of missing values reduces
our objective to matrix factorization with sparsity regularization.
It is important to note that our optimization solutions discussed
next are applicable to any dictionaries, making TGSD general and
flexible to both existing as well as "custom" new dictionaries.

4 OPTIMIZATION SOLUTIONS FOR TGSD
We derive an optimization technique for the missing values objec-
tive from Def 3.1 and discuss how it can be customized for decom-
position without missing values. Since the objective from Def. 3.1
is jointly convex, we employ Alternating Direction Method of Mul-
tipliers (ADMM) [7] to solve it. We first introduce intermediate
variables D = X , Z = Y and V = W which help ensure that all
subproblems have a closed-form solution, and rewrite the objective
as:

argmin
D ,Y ,W ,Z ,V

∥D − ΨYW Φ∥2F + λ1 ∥Z ∥1 + λ2 ∥V ∥1 +λ3 ∥Ω ⊙ (D − X) ∥
2
F

s .t . Y = Z ,W = V , D = X
(2)

With some algebraic transformations, the corresponding La-
grangian function is as follows:

L = ∥D − ΨYW Φ∥2F + λ1 ∥Z ∥1 + λ2 ∥V ∥1 + λ3 ∥Ω ⊙ (D − X) ∥2

+
ρ1
2

Z − Y + Γ1
ρ1

2
F
+
ρ2
2

V −W + Γ2
ρ2

2
F
,

(3)

where Γ1 and Γ2 are the Lagrangian multipliers and ρ1 and ρ2 are
penalty parameters. Next we derive the individual variable updates
for ADMM.
Update D: Let P = ΨYWΦ, we have the optimization problem for
Y as follows:

argmin
D

∥D − P ∥2F + λ3 ∥Ω ⊙ (D − X) ∥
2
F (4)

By taking the gradient and equating it to zero, we have D = (P +
λ3Ω ⊙ X) ⊘ (I + λ3Ω), where ⊘ is element-wise division.
Update Y : Let B =WΦ, we then have the following optimization
problem for Y :

argmin
Y

∥D − ΨYB ∥2F +
ρ1
2

Z − Y + Γ1
ρ1

2
F

(5)

Setting the gradient with respect to Y to zero, we get:

2ΨT ΨYBBT + ρ1Y = 2ΨTDBT + ρ1Z + Γ1 . (6)

• Case 1: If Ψ is a dictionary of orthogonal atoms, we can simplify
the above as follows:

Y = (2ΨTDBT + ρ1Z + Γ1)(2BBT + ρ1I)−1 . (7)

• Case 2: If Ψ is not orthogonal, we cannot solve the problem as
outlined above, and thus, develop a more general solution. Note
that both BBT and ΨT Ψ are positive semi-definite and symmetric.
Let their eigenvalue decomposition be as follows: ΨT Ψ = Q1Λ1QT

1
and BBT = Q2Λ2QT

2 , where Q1, Q2 are orthonormal eigenvector
matrices and Λ1, Λ2 are diagonal non-negative eigenvalue matrices.
Let Π1 be the quantity on the right side of Eq. 6, and let us multiply
the equation on both sides by the eigenvector matrices as follows:

Π1 = 2ΨTDBT + ρ1Z + Γ1

⇒ Π1 = 2Q1Λ1QT
1 YQ2Λ2QT

2 + ρ1Y

⇒ QT
1 Π1Q2 = 2Λ1QT

1 YQ2Λ2 + ρ1QT
1 YQ2

(8)

Substituting E1 = QT
1 YQ2 in Eq. 8 we obtainQT

1 Π1Q2 = 2Λ1E1Λ2+
ρ1E1, and an element-wise solution for E1 as follows:

[E1](i , j) = [Q
T
1 Π1Q2](i , j)/2[Λ1](ii)[Λ2](j j) + ρ1 (9)

Finally, we update Y based on E1: Y = Q1E1QT
2 .

Update W : When we fix other variables and set A = ΨY , the
problem w.r.t.W is reduced to:

argmin
W

∥D − AW Φ∥2F +
ρ2
2

V −W + Γ2
ρ2

2
F

(10)

• Case 1: For orthogonal Φ we can set the gradient w.r.t.W to zero,
obtaining:

W = (2ATA + I ρ2)−1(2ATXΦT + ρ2V + Γ2).
• Case 2: For non-orthogonal Φ, we get W = Q3E2QT

4 , where
E2(i, j) = [QT

3 Π2Q4]i , j/2[Λ4]ii [Λ3]j j +ρ2 and (Q3,Λ3 and (Q4,Λ4)

are the (eigenvector, eigenvalue) matrices of ATA and ΦΦT , respec-
tively.

Algorithm 1 TGSD (with missing values)
Input: Input X , mask Ω, dictionaries {Ψ, Φ}, k , λ1, λ2
1: Initialize Y = Z = 1,W = V = 1
2: while not converged do
3: P = ΨYW Φ
4: D = (P + λ3Ω ⊙ X) ⊘ (I + λ3Ω)
5: B =W Φ
6: Y = (2ΨTDBT + ρ1Z + Γ1)(2BBT + ρ1I)−1
7: A = ΨY
8: W = (2ATA + I ρ2)−1(2ATXΦT + ρ2V + Γ2)

9: Vi j = siдn
(
Hi j

)
×max

(��Hi j
�� − λ1

ρ2
, 0
)

10: Zi j = siдn
(
Hi j

)
×max

(��Hi j
�� − λ1

ρ1
, 0
)

11: Γi+11 = Γi1 + ρ1 (Z − Y)
12: Γi+12 = Γi2 + ρ2 (V −W)
13: i ← i + 1
14: Convergence condition:

��f i+1 − f i �� ≤ ε , where f i+1 and f i are the objective
values of Eq. 4 at iterations i + 1 and i .

15: end while

Update Z and V : The problems w.r.t Z and V are:
argmin

Z
λ1 ∥Z ∥1 +

ρ1
2

Z − Y + Γ1
ρ1

2
F

argmin
V

λ2 ∥V ∥1 +
ρ2
2

W −V + Γ2
ρ2

2
F

(11)

Closed-form solutions are available due to [28]:
Zi j = siдn

(
H (1)i j

)
×max

(���H (1)i j ��� − λ1
ρ1

, 0
)

Vi j = siдn
(
H (2)i j

)
×max

(���H (2)i j ��� − λ2
ρ2

, 0
)
,

(12)

where H (1) = Y − Γ1
ρ1 and H (2) =W − Γ2

ρ2 .

The overall TGSD algorithm. We show all updates within the
overall optimization procedure in Alg. 1. We repeat updates from
Step 3 to Step 12 until convergence. We demonstrate experimentally
that key hyper-parameters like the number of components k can
be in a supervised manner by cross-validation. A similar approach
can be employed for the sparsity regularizers λ1 and λ2.

The complexity of TGSD is dominated by the matrix inversions
in Step 6 and 8. Although the complexity of a quadratic matrix
inversion is in general cubic, in practice our overall running time
is practical due to fast convergence and the ability to work with
reduced dictionaries as demonstrated in scalability experiments in
Fig. 6. The optimization procedure can be minimally altered for the
case without missing values by setting Ω to an all-ones matrix and
removing the optimization of D from step 4, in which the overall
complexity remains the same. For orthogonal dictionaries we can
use the more efficient updates from step 8 and step 6 forW and
Y , respectively. When either of the dictionaries (graph or time)
is non-orthogonal, we need to work with the general solutions
employing eigenvalue decomposition (Case 2 in the updates of
Y andW). Non-orthogonal versions come with extra cost due to
the eigendecompositions, however the overall complexity remains
unchanged since the inversions remain the most costly steps.

5 DICTIONARIES FOR TGSD
Our framework can flexibly accommodate many graph and time
dictionaries. For the purposes of evaluation we employ several
popular alternatives listed in Tbl. 1. We experiment with multiple
versions of TGSD employing different combinations of graph and
time dictionaries. Our naming convention specifies them in order.
For example, when employing GFT for Ψ and DFT for Φ, we denote

Graph dictionaries Temporal dictionaries
GFT (G) Wavelet (W) DFT (D) Ramanujan (R) Spline (S)

Orthogonal ✓ ✓ ✓
Parameter-free ✓ ✓ ✓

Table 1: Summary of dictionaries we experiment with.

our method: TGSD G+D. We next provide a brief definition of the
dictionaries and refer to relevant work for more details.

The Graph Fourier Transform (GFT) [13] basis consists of
the eigenvectors U of the graph Laplacian matrix L, where L =
UΛUT . Graph signal processing draws a parallel between GFT and
the discrete Fourier transform (DFT) where small eigenvalues in Λ
correspond to “low-frequency” components as they tend to identify
larger regions in the graph structure. These "low-frequency" can
also be used capture higher order dependencies between nodes
while the "high-frequencies" capture more local dependencies [37].
GFT is orthonormal sinceU is an eigenvector matrix.

Graph-HaarWavelets [11] have been adopted for many graph
data analytics tasks [11] and are central to one of our baselines
Gems-HD [50]. An orthonormal basis is computed by thresholding
the Fiedler vector, obtaining recursive bisections of the graph. Let
V ′ be a subset of nodes obtained in the recursive partitioning tree
andV ′1 andV ′2 the two subsets obtained by thresholding the Fiedler
vector at 0 for the subgraph induced byV ′. The basis function ϕ ′(v)
for V ′ is defined as:

ϕ′(v) =



√
|V ′2 |√

|V ′1 |
√
|V ′1 |+|V

′
2 |

if v ∈ V ′1 ,

−

√
|V ′1 |√

|V ′2 |
√
|V ′1 |+|V

′
2 |

if v ∈ V ′2 ,

0 if v < V

(13)

TheDiscrete Fourier Transform (DFT) [45] dictionaryW for
temporal signals of length N is defined as:

W =
1
√
N


1 1 1 ... 1
1 ω ω2 ... ωN−1

.

.

.
.
.
.

.

.

.
. . .

.

.

.

1 ω (N−1) ω2(N−1) ... ω (N−1)(N−1)


, (14)

where ω = e
−2π i
N and i is the imaginary unit. This basis is unitary.

The Ramanujan periodic dictionary [45], similar to DFT, is
applicable to periodic signals and is constructed by stacking period-
specific sub-matrices of varying width R =

[
Φ1, ..,Φдmax

]
, where

дmax is the a maximum modeled period and Φi is the periodic
basis of period дi . Period-specific matrices Φд =

[
Dd1 ,Dd2 , ...DdK

]
have columns determined by the divisors {d1,d2, ...dK } of д. Ddi ∈

Rд×ϕ(di) is a periodic basis for period di of the following circulant
matrix form:

Ddi =


Cdi (0) Cdi (д − 1) ... Cdi (1)
Cdi (1) Cdi (0) ... Cdi (2)
...

Cdi (д − 1) Cdi (д − 2) ... Cdi (0)

 , (15)

where the number of columns, ϕ (di) denotes the Euler totient
function. Elements Cdi (д) are computed as the Ramanujan sum:

Cdi (д) =
di∑

k=1,дcd (k ,di)=1
e j2πkд/di , (16)

where дcd(k,di) is the greatest common divisor of k and di . This
dictionary is not orthogonal.

The Spline dictionary [16] is applicable for encoding smoothly-
evolving time series and can be constructed by employing B-splines

Task Baselines Quality metric
1. Decomposition MCG, LRDS, GEMS-HD, SVD RMSE v.s. model size
2. Imputation MCG, LRDS, GEMS-HD, BRITS RMSE v.s. % missing
3. Interpolation MCG, LRDS, GEMS-HD, BRITS RMSE v.s. % missing
4. Node clustering CCTN, PCA Accuracy
5. Period detection NPM, FFT, AUTO Accuracy

Table 2: Summary of evaluation tasks, baselines and metrics.

Bi ,d (u), defined by the Cox-de-Boor formula:

Bi ,p =
u − ui

ui+p − ui
Bi ,p−1(u) +

ui+p+1 − u

ui+p+1 − ui+1
Bi+1,p−1(u),

where Bi ,0 = 1 if ui ≤ u < ui+1, and 0 otherwise. Bi ,d (u) is non-
zero in the range of [ui ,ui+d+1). This dictionary is non-orthogonal.

6 EXPERIMENTAL EVALUATION
We evaluate TGSD on five tasks listed in Tbl. 2 and compare against
a total of 10 baselines across tasks (detailed in Sec. 6.2) on 6 datasets
(Tbl. 3). Our goal is to test the accuracy, scalabilty and conciseness
of our model. We quantify model conciseness in terms of number of
non-zero values (nnz) in its representation and measure scalability
in terms of running time of single-core MATLAB implementations.

6.1 Datasets.
Table 3 shows the statistics of our real-world and synthetic datasets.
The graph structure in our Synthetic data consists of 7 overlap-
ping groups (on average 10% of nodes in each group belong to
other groups). We generate independently periodic time series for
each group similar to the protocol in [45]. We scale node signals
randomly (uniform in [1, 10]) and add Gaussian noise at SNR = 10.

We also employ 2 real-world data-sets for reconstruction, im-
putation and interpolation experiments; and 3 more real-world
data sets with ground-truth communities to evaluate clustering.
The Bike [1] dataset contains daily bike check-out counts at rental
stations in Boston. Pairs of stations are connected by an edge if
within approximately 2.22 km. The graph in the Traffic [5] dataset
corresponds to a highway network where nodes are locations of
inductive loop sensors. We use the average speed (at a resolution
of 3 hours) at sensors as our evolving graph signal. We normalize
both the Bike and Traffic datasets by using the MATLAB’s function
normr which scales each to a norm of 1: ∥Xi ∥2 = 1,∀i ∈ [1,n].

The Reality Mining [14] tracks the number of hourly interac-
tions of 142 people at MIT where an edge between two individuals
exists if they interacted at least 50 times. We employ lab group mem-
bership (provided in the dataset) as community ground truth. The
two Reddit datasets [29] are derived from public reddit comments
between 2008 and 2015. Undirected user-user edges exist if a user
replied at least once to another user’s top-level post. Reddit-epi
consists of 242 users who posted in one of 25 subredits dedicated
to popular shows. Reddit-sp involves 625 users in 6 sports-related
subreddits. Resolution of the datasets is hourly in both cases. The
subreddit in which a user participates the most is treated as the
ground truth community assignment for that user.

6.2 Baselines
In the decomposition, imputation and interpolation tasks, we em-
ploy three baselines: MCG [23], LRDS [38] and Gems-HD [50]
(Tbl. 2).MCG imputes matrix missing values based on rank mini-
mization and by incorporating a row and a column similarity graph.

Dataset Nodes Edges t k Resolution
Synthetic 175-50k 2k-500k 200-50k 7 -
Bike [1] 142 3446 628 NA 1 day
Traffic [5] 1938 5318 720 NA 3 hour

Reality Mining [14] 94 1546 8636 5 1 hour
Reddit-epi [29] 242 1220 3728 25 1 hour
Reddit-sp [29] 625 2872 4325 6 1 hour

Table 3: Summary of evaluation datasets.

10
1

10
2

10
3

10
4

.25

.5

.75

1

R
M

S
E

10
3

10
4

0

2

4

R
M

S
E

10
2

10
3

10
4

10
5

nnz

0

2

4

R
M

S
E

SVD

MCG

LRDS

Gems-HD

TSGD W+D

TSGD W+R

TGSD G+D

TGSD G+R

(a)

(b)

(c)

Figure 2: Decomposition quality as a function of model size. (a) Synthetic,
(b) Bike and (c) is Traffic.

We define the column graph by connecting neighboring time-steps,
thus enforcing smoothness in time. LRDS also employs rank mini-
mization within a regularizer that combines graph and temporal
smoothness.Gems-HD is a state-of-the-art graph signal processing
method for evolving graph signals. As it does not handle missing
values, we impute them as a pre-processing step employing [35] and
denote the resulting 2-step method Gems-HD+. We also compare
to BRITS [9] which interpolates missing values in times series by
employing a bi-directional recurrent neural network. It also takes
advantage of the correlation structure among uni-variates. We per-
form exhaustive hyper-parameter search for all baselines (details in
the supplement) and report results for the best parameter settings.

For clustering we compare against the state-of-the-art for graph
time series clustering CCTN [30], and to PCA [21]. We employ
k-means to cluster the low-dimensional representations of com-
peting methods, following the protocol from CCTN [30]. We em-
ploy three baselines for period detection: the state-of-art period
learning method NPM [45], FFT [26], and a method combining
auto-correlation and Fourier transform AUTO [27]. When the in-
put contains missing values, we first impute using splines [35]
resulting in baselines: NPM+, FFT+ and AUTO+.

6.3 Graph signal decomposition
We first evaluate the ability of our model to succinctly reconstruct
evolving graph signals. We vary the parameters of all competing
methods and report the RMSE of their reconstruction as a function
of the number of non-zero model coefficients (NNZ) in Fig. 2. We
plot only Pareto-optimal points for all methods, i.e. parameter set-
tings resulting in dominated points are omitted for clarity of the
figures. We add SVD in the comparison as a “strawman” baseline.

The variants of TGSD dominate all baselines in the small nnz
range, since the dual encoding requires fewer coefficients to rep-
resents trends in the signal. Since our synthetic datasets have a
clear community structure with periodic and synchronous within-
community signals, TGSD is able to represent the data using a

20% 40% 60%
missing percentage

.014

.015

.018

R
M

S
E

(a) Synthetic-impute

20% 40% 60%
missing percentage

.014

.017

.020

R
M

S
E

(b) Synthetic-interpolate

Gems-HD+

LRDS

MCG

BRITS

TGSD G+S

TGSD G+D

TGSD G+R

TGSD W+D

(c) Synthetic-legend

20% 40% 60%
missing percentage

.015

.020

.025

.030

R
M

S
E

(d) Bike-impute

20% 40% 60%

missing percentage

.015

.023

.030

R
M

S
E

(e) Bike-interpolate

Gems-HD+

LRDS

MCG

BRITS

TGSD G+D

TGSD G+S

TGSD W+D

(f) Bike-legend

20% 40% 60%
missing percentage

.006

.008

.010

R
M

S
E

(g) Traffic-impute

20% 40% 60%
missing percentage

.009

0.011

.013

.064

.065

R
M

S
E

(h) Traffic-interpolate

Gems-HD+

LRDS

MCG

BRITS

TGSD G+S

TGSD G+R

(i) Traffic-legend
Figure 3: Comparison of quality for missing value imputation (a), (d), and
(g); and for interpolation (b), (e), and (h)

small number of coefficients (Fig. 2(a)). TGSD’s quality similarly
dominates alternative in real-world datasets for small nnz.

Gems-HD achieves a good-quality reconstruction when larger
models are allowed in the Traffic dataset (Fig. 2(c)) as it employs a
small number of the atoms to express a signal on a graph. These
atoms select the communities in the graph and a coefficient matrix
is used to reconstruct community signals. With sufficient number
of coefficients Gems-HD is able to express a large portion of the
communities and their conserved temporal patterns in the Traffic
dataset. LRDS and MCG require significantly more coefficients on
all datasets (the x-axis is logarithmic), as their primary goal is data
imputation and their models are not explicitly sparsified. TGSD
outperforms SVD following a similar trend with increasing models
size. The quality advantage of TGSD is thanks to the structural
knowledge encoded in the dictionaries enabling sparser encodings.

6.4 Missing value imputation.
Next we evaluate TGSD’s accuracy in predicting missing values
in temporal graph signals. We vary the ratio of missing values by
randomly removing observations and quantify the accuracy (as
RMSE) of competing techniques to predict them. We perform a
dataset-specific parameter search for each method (details in the
supplement) and report average accuracy of 5 sets of removed
values for each missing percentage level in Figs. 3(a), 3(d), 3(g).

A version of TGSD outperforms all baselines across datasets.
Different dictionaries have advantages in specific settings, however.

On Synthetic data (Fig. 3(a)) all dictionaries for TGSD outperform
baselines, but the GFT + Ramanujan combination dominates since
signals have strong periodicity and the Ramanujan encoding is
known to be advantageous in such scenarios [29]. MCG and LRDS
are the next best methods and follow similar trends. They are both
designed for missing value imputation based on low rank and graph
smoothness regularizers. Gems-HD+ performs well for small num-
ber of missing values but degrades rapidly as the spline-based impu-
tation treats time series independently and does not take advantage
of the graph structure which is critical when many values are miss-
ing. BRITS’s average behavior exhibits an unexpected downward
trend, however, the variance of this method is very large with the
standard deviation being equivalent 24% of average RMSE for all
runs and especially so for higher missing percentage (27%). For con-
text TGSD G+R had an average standard devation of 1%. The tens
of thousands of parameters in BRIT’s model may cause it to overfit
noise. In the Bike dataset (Fig. 3(d)), the DFT dictionary performs
best for TGSD and Gems-HD+ is the second best method. This data
is aggregated at daily resolution hiding finer temporal patterns
and shifting more weight on to the importance of the graph which
may explain Gems-HD+ good performance. LRDS, BRITS and MCG
perform significantly worse in this setting.

In Traffic (Fig. 3(g)), similar to synthetic, the Ramanujan dic-
tionary is preferable for TGSD and LRDS is the best performing
baseline. Traffic time series are periodic and smooth along both
the graph and time, giving TGSD with Ramanujan dictionary an
advantage as it can encode both short- and long-term patterns.
LRDS and MCG both employ temporal smoothness regularization
rendering them the next best methods.

6.5 Temporal interpolation
We also consider a scenario in which whole temporal slices are
missing and quantify the ability of TGSD to interpolate in time.
To this end we remove random slices and present average inter-
polation RMSE. We again perform a dataset-specific grid search
for each methods (detailed in the supplement). Similar to value
imputation, TGSD outperforms all baseline across datasets. The
spline temporal dictionary performs on par with the Ramanujan
and DFT and better on the Traffic dataset. This is expected as tem-
poral smoothness becomes important when entire snapshots are
missing. In Synthetic (Fig. 3(b)) all temporal dictionaries perform
well, with the Ramanujan having some advantage. The DFT dictio-
nary performance degrades for large number of missing snapshots,
while that of Spline and Ramanujan remains stable. BRITS, MCG,
and Gems-HD+ also preform well, while the quality of LRDS is the
outlier. LRDS smooths out based on values in the same row and
column, however, since here whole columns (slices) are missing, its
column smoothing is rendered ineffective.

TGSD has a significant advantage over baselines in the Bike
dataset (Fig. 3(e)). The use of spline interpolation as a preprocessing
step in Gems-HD+ gives it advantage over other baselines, how-
ever, since this preprocessing is graph-agnostic, its performance is
inferior compared to TGSD. While MCG enforces local temporal
smoothness, it ignores long-term dependencies such as periodicity,
hence its inferior quality on this daily resolution dataset. BRITS per-
forms well at both low and high fractions of missing slices in Traffic
(Fig. 3(h)), even outperforming TGSD in those extreme settings by

TGSD CCTN [30] PCA
Dataset ACC Time ACC Time ACC Time
Synthetic 85% 0.6s 14% (20%*) 20s 57% .02s

Reality Mining 63% 80s 55% (50%*) 38m 54% 25s
Reddit-epi 45% 11s 35% (32%*) 2.2h 44% 4s
Reddit-sp 38% 37s 36%(36%*) 4.7h 35% 6s

Table 4: Comparison of TGSD (G+R in Synthetic, G+D otherwise) and base-
lines on node clustering accuracy (ACC) and running time (Time).

small margins. BRITS’ RMSE has a very large standard deviation
(12% of average) across runs indicating potential overfitting to the
observed values leading also to a non-smooth average RMSE trend.
Among the variants of TGSD, the Spline dictionary performs best
in this dataset. Gems-HD+ and MCG have similar performance
while LRDS performs an order of magnitude worse than all other
methods (note that the y axis is discontinuous).

6.6 Clustering node time series
Since our proposed model computes a representation of nodes in
ΨY , we next seek to evaluate the utility of the latter for node time
series clustering on four datasets with ground truth communities:
Synthetic, Reality Mining [14], Reddit-epi [29] and Reddit-sp[29]. We
compare the performance of TGSD, CCTN and PCA in Tbl. 4 in
terms of clustering accuracy and the running time. All methods uses
Kmeans with K equal to the number of clusters to obtain cluster
labels. TGSD exhibits better clustering quality in all datasets and
scales as well as PCA. The periodic dictionaries enable TGSD to
capture the accurate patterns in time series, resulting in effective
features for clustering. We show two sets of results for CCTN for
two values for embedding dimensionality (parameter d in CCTN).
The quality value in brackets is for the default d = 3, while that
outside the brackets is for d set to the ground truth number of
clusters in each dataset. The performance of CCTN is second best
in the Reality mining and Reddit-sp and it is the slowest alternative
among the 3 alternatives. Different from TGSD, CCTN aims to
learn a low-dimensional dictionary to represent all time series.
The learned dictionary does not capture interpretable temporal
structures such as seasonality, but instead seeks to minimize the
reconstruction error in a data-driven manner which may explain its
relatively lower performance in the periodic Synthetic dataset. The
performance of CCTN is also sensitive to the number of embedding
dimensions d . PCA is the second best method on the other two
datasets and is the fastest among the three. It does not explicitly
consider temporal or graph structures in the data and instead seeks
to maximally represent the variance within a pre-specified number
of components (set to the true number of communities). While
PCA is general and fast, its generality becomes a limitation in the
presence of rich graph and temporal structures exploited by TGSD.

6.7 Period detection
We also evaluate the performance of TGSD for period detection.
When using Ramanujan dictionary, we can extract a periodic coef-
ficient matrix A = ΨYW and then predict leading periods similar
to the approach by Tenneti et Al. [45]. We report the accuracy of
the top-k predicted periods in Synthetic data (average of 5 runs),
where k is selected based on the actual number of ground truth
(known) periods used to generate the node time series. We perform
two experiments by varying (i) the SNR and (2) the percentage of

5 10 15 20 25 30

 SNR

0.65

0.7

0.75

0.8

0.85

A
c
c
u

ra
c
y

TGSD G+R

NPM

FFT

AUTO

(a) Varying noise

0.1 0.2 0.3 0.4

Random missing ratio

0.55

0.6

0.65

0.7

0.75

A
c
c
u

ra
c
y

TGSD G+R

NPM+

FFT+

AUTO+

(b) Varying missing values

Figure 4: Period learning in synthetic data.

20% 40% 60%
missing percentage

.0045

.0055

.0065

R
M

S
E

(a) Periodic Signal

20% 40% 60%
missing percentage

.0045

.0049

.0053

R
M

S
E

(b) Smooth Signal

TGSD G+R

TGSD G+D

TSGD W+R

TSGD W+D

TSGD W+S

TSGD G+S

(c) Legend

Figure 5: Comparison of dictionary combinations.

random missing values and report the results in Fig. 4. In both ex-
periments, TGSD exhibits superior quality: 15% improvement over
the best baselines and across SNRs, and up to 10% improvement
over the best baseline for varying levels of missing values. Unlike all
baselines which are designed for time series, TGSD employs jointly
the graph an temporal dictionaries making it less sensitive to noise
and more robust in the presence of missing values. For the case
of missing values, the graph dictionary employed by TGSD allows
for better imputation and, in turn, better periodicity estimation.
In comparison, baselines employ a two-step approach as they are
not designed to handle missing values: they first impute values
using spline interpolation in time and then estimate periodicity.
Although, baselines employ similar dictionaries for time as those
in TGSD (NPM employs the Ramanujan dictionary and DFT and
AUTO are based on the Fourier transform), their inability to model
relationships among individual time series encoded in the graph
structure renders them less accurate than TGSD.
6.8 Dictionary comparison
We compare the dictionary combinations for the missing value
imputation task on synthetic data in Fig. 5. In Fig. 5(a) we generate
the node signals in the same manner as in the Synthetic datasets
employed in previous experiments, namely we allow nodes within
clusters to share periodic trends. As a result, the Ramanujan dic-
tionary coupled with both GFT and Wavelets in the graph domain
performs the best. In contrast, in Fig. 5(b) we generate node signals
using random (non-periodic) and smooth trends. As expected, for
such locally smooth but non-periodic data, the Spline dictionary
works best for encoding the temporal domain. The DFT dictionary
provides a middle ground in terms of quality in both cases.

6.9 Estimation of the number of components k
Another important parameter for TGSD is the number of compo-
nents k for the decomposition. Setting this parameters is a similar
problem to determining an optimal rank for other decomposition
approaches (e.g., PCA, SVD, NMF), for which a cross-validation

Synthetic (7)

Reality Mining (5)

Reddit-epi (25)

Reddit-sp (6)

-100%

-50%

0%

50%

TGSD

SVD

(a) Rank Estimation

10
2

10
3

10
4

n

1

10
2

10
3

10
4

R
u

n
n

in
g

 T
im

e
 (

s
e

c
)

(b) Nodes

10
2

10
3

10
4

t

1

10
2

10
3

10
4

R
u

n
n

in
g

 T
im

e
 (

s
e

c
)

(c) Timestamps

Gems-HD

LRDS

MCG

BRITS

TGSD G+R

TGSD G+D

TGSD-G+R-small

(d) Legend Scalab.

100% 75% 50% 25%

atoms of the GFT

0%

10%

20%

30%

re
la

ti
v
e
 e

rr
o
r

Synthetic

Bike

Traffic

(e) Effect of partial dictionary
Figure 6: Rank detection relative error and variance (TGSD G+R for Synthetic TGSD G+D for all others), scalability comparison as a function of (b) n and (c) t ;
and (d) quality of TGSD value imputation for partial GFT dictionary.

was shown to perform best among alternatives based on statistical
tests and heuristics [46]. In the element-wise k-fold (ekf) cross-
validation folds are values are randomly created and removed from
a matrix, then imputed and predicted by a reconstruction method
with different number of components k [46]. The k leading in the
lowest average SSE is predicted as the optimal rank. We extend this
rank estimation protocol to TGSD and compare the quality of esti-
mating k using TGSD and SVD [46] employing spline-imputation
on Synthetic, Reality Mining [14], Reddit-epi, Reddit-sp [29].

We compare the quality of the two estimates w.r.t. number of
ground truth communities employing 5-fold cross validation and
present results in 6(a). TGSD outperforms SVD in all but the Reddit-
sp datasets. TGSD is able to handle missing values directly meaning
that is not affected by the quality of a reprocessing imputation
scheme used in SVD. It is also able to utilize the graph and temporal
dictionaries to further guide its missing value imputation. A similar
strategy can be adopted for TGSD’s other parameters λ1 and λ2.

6.10 Scalability and partial graph dictionaries.
We next evaluate the scalability of competing techniques with
the number of nodes and time steps. We add a partial dictionary
variant of TGSD, TGSD-G+R-small, in the scalability comparison to
quantify the scalability improvement it may offer. Namely, TGSD-
G+R-small employs 10% of the lowest-frequency GFT atoms, i.e. the
Laplacian eigenvectors corresponding to the smallest eigenvalues.

TGSD-G+R-small scales best among alternatives, while TGSD
with the full GFT and Ramanujan dictionaries are the second fastest
approach (Fig. 6). TGSD with GFT and DFT is the slowest among
TGSD’s variants due to the relatively large dictionaries (the full DFT
is Φ ∈ R(t×t) and the full GFT: Ψ ∈ R(n×n)). Among the baselines,
MCG scales significantly worse than LRDS with both t and n
since the time and graph regularizers employed in the latter retain
convexity of the overall objective and allow for a more efficient
solver. In contrast, MCG employs a nuclear norm to enforce a low
rank, resulting in a O(nt2 + t3) worst-case complexity, where t is
the number of columns. Gems-HD’s running time grows quickly
with the number of nodes as it employs the graph-Haar wavelets
for basis, resulting in a cost of O(n2) per atom (atom encodings
are fit one at a time). BRITS, which is based on deep learning,
scales orders of magnitude worse than all other methods as it needs
to learn many more parameters requiring hundreds of epochs. It
is important to note that while all other methods are executed
on conventional CPU architecture, the running time results we

report for BRITS are for execution on a dedicated GPU server with
state-of-the-art NVIDIA Tesla V100 GPU card.

While a partial graph dictionary offers scalability improvement
(TGSD-G+R-small in Figs. 6(b), 6(c)), it is natural to question if
these savings come at the expense of quality. To investigate this
trade-off, we compare TGSD’s quality on missing value imputation
with decreasing subset of the GFT dictionary atoms.

The GFT has ordered columns of frequencies with the first
column corresponding to the lowest "frequency" and following
columns corresponding to finer partitions, i.e. higher frequencies.
We leverage this information by only employing a fixed percent-
age of the lowest frequency atoms for encoding. We report results
for TGSD in Fig. 6(e) for random value imputation at 25% missing
values in the Synthetic, Bike and Traffic datasets. The only data set
that is significantly impacted by using a reduced GFT is Bike while
the quality on Synthetic and Traffic is practically unaffected when
employing as few as 25% of the atoms. The Bike has the smallest
graph making every column in the GFT important. In contrast the
Traffic dataset has by far the largest graph and signals on it can
be encoded using very few atoms due to strong local similarity of
node behavior (neighboring nodes are consecutive sensors on the
same highway and they observe similar speed).

The promising results on scalability and retained quality for par-
tial dictionaries suggest that there exists a significant opportunity
for further time savings for TGSD by carefully selecting partial
dictionaries for both time and the graph structure. Beyond partial
dictionaries and how to sub-select them, automatic dictionary type
selection and optimal selection of the number of components k also
promise further reduction in the running time and quality improve-
ment for our method. Such considerations is beyond the scope of
this paper, though a promising direction for future investigation.

7 CONCLUSION
In this paper we proposed a general framework for dictionary-based
decomposition of temporal graph signals, called TGSD. Our algo-
rithm employs an ADMM optimization procedure and can take
advantage of multiple existing dictionaries to jointly encode the
time and graph extents of temporal graph signals. We performed
an exhaustive evaluation of TGSD on five application tasks and
demonstrated its effectiveness in both synthetic and real-world
datasets. TGSD dominated baselines across tasks. In particular,
TGSD achieved 28% reduction in RMSE compared to baselines for
temporal interpolation of graph signals when as many as 75% of the
observed snapshots were missing. At the same time, TGSD scaled

best with the size of the input with the fastest variation processing
3.5 million data points in under 20 seconds while producing the
most parsimonious and accurate decomposition models.

ACKNOWLEDGMENTS
This research is funded by an academic grant from the National
Geospatial-Intelligence Agency (Award No. # HM0476-20-1-0011,
Project Title: Optimizing the Temporal Resolution in Dynamic
Graph Mining). Approved for public release, 21-302. The work
is also partially supported by the NSF Smart and Connected Com-
munities (SC&C) grant CMMI-1831547.

REFERENCES
[1] Hubway data visualization challenge:. http://hubwaydatachallenge.org.
[2] L. Akoglu, H. Tong, and D. Koutra. Graph based anomaly detection and descrip-

tion: a survey. Data mining and knowledge discovery, 29(3):626–688, 2015.
[3] V. Amelkin, P. Bogdanov, and A. K. Singh. A distance measure for the analysis of

polar opinion dynamics in social networks. In Proc. of the International Conference
on Data Engineering (ICDE), pages 159–162. IEEE, 2017.

[4] Z. Bar-Joseph. Analyzing time series gene expression data. Bioinformatics,
20(16):2493–2503, 2004.

[5] P. Bickel, C. Chen, J. Kwon, J. Rice, P. Varaiya, and E. van Zwet. Traffic flow
on a freeway network. In Nonlinear Estimation and Classification, pages 63–81.
Springer, 2003.

[6] K. M. Borgwardt, H.-P. Kriegel, and P.Wackersreuther. Patternmining in frequent
dynamic subgraphs. In Proc. of Intl. Conference on Data Mining (ICDM), 2006.

[7] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization
and statistical learning via the alternating direction method of multipliers. Found.
Trends Mach. Learn., 3(1):1–122, Jan. 2011.

[8] R. Cabral, F. De la Torre, J. P. Costeira, and A. Bernardino. Unifying nuclear
norm and bilinear factorization approaches for low-rank matrix decomposition.
In 2013 IEEE International Conference on Computer Vision, pages 2488–2495, 2013.

[9] W. Cao, D. Wang, J. Li, H. Zhou, L. Li, and Y. Li. Brits: Bidirectional recurrent
imputation for time series. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information
Processing Systems 31, pages 6775–6785. Curran Associates, Inc., 2018.

[10] D. Chakrabarti, R. Kumar, and A. Tomkins. Evolutionary clustering. In 12th ACM
international conference on Knowledge discovery and data mining, pages 554–560,
2006.

[11] M. Crovella and E. Kolaczyk. Graph wavelets for spatial traffic analysis. In Proc. of
the joint IEEE Conference on Computer and Communications Societies (INFOCOM),
volume 3, pages 1848–1857. IEEE, 2003.

[12] W. Dong and A. Pentland. A network analysis of road traffic with vehicle tracking
data. In AAAI Spring Symposium: Human Behavior Modeling, pages 7–12, 2009.

[13] X. Dong, D. Thanou, M. Rabbat, and P. Frossard. Learning graphs from data: A
signal representation perspective. IEEE Signal Proc. Magazine, 36(3):44–63, 2019.

[14] N. Eagle and A. S. Pentland. Reality mining: sensing complex social systems.
Personal and ubiquitous computing, 10(4):255–268, 2006.

[15] M. Elad and M. Aharon. Image denoising via sparse and redundant representa-
tions over learned dictionaries. IEEE TIP, 15(12):3736–3745, 2006.

[16] V. Goepp, O. Bouaziz, andG. Nuel. Spline regressionwith automatic knot selection.
arXiv preprint arXiv:1808.01770, 2018.

[17] A. Gorovits, E. Gurjal, V. Papalexakis, and P. Bogdanov. Larc: Learning activity-
regularized overlapping communities across time. In ACM International Confer-
ence on Knowledge Discovery and Data Mining (ACM SIGKDD 2018), 2018.

[18] D. Hallac, J. Leskovec, and S. Boyd. Network lasso: Clustering and optimization
in large graphs. In 21th ACM SIGKDD international conference on knowledge
discovery and data mining, pages 387–396, 2015.

[19] M. Huisman. Imputation of missing network data: Some simple procedures.
Journal of Social Structure, 10:1–29, 2009.

[20] P. Jain, P. Netrapalli, and S. Sanghavi. Low-rank matrix completion using al-
ternating minimization. In Forty-Fifth Annual ACM Symposium on Theory of
Computing, page 665–674, 2013.

[21] I. T. Jolliffe and J. Cadima. Principal component analysis: a review and recent
developments. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 374(2065):20150202, 2016.

[22] M. Joshi and T. H. Hadi. A review of network traffic analysis and prediction
techniques. arXiv preprint arXiv:1507.05722, 2015.

[23] V. Kalofolias, X. Bresson, M. Bronstein, and P. Vandergheynst. Matrix completion
on graphs. arXiv preprint arXiv:1408.1717, 2014.

[24] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolu-
tional networks. CoRR, abs/1609.02907, 2016.

[25] X. Li, M. Zhang, S. Wu, Z. Liu, L. Wang, and P. S. Yu. Dynamic graph collaborative
filtering. arXiv preprint arXiv:2101.02844, 2021.

[26] Z. Li, B. Ding, J. Han, R. Kays, and P. Nye. Mining periodic behaviors for moving
objects. In 16th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 1099–1108. ACM, 2010.

[27] Z. Li, J. Wang, and J. Han. eperiodicity: Mining event periodicity from incomplete
observations. IEEE Trans. Knowl. Data Eng., 27(5):1219–1232, 2015.

[28] Z. Lin, M. Chen, and Y. Ma. The augmented lagrange multiplier method for exact
recovery of corrupted low-rank matrices. ArXiv, abs/1009.5055, 2013.

[29] A. G. Lin Zhang and P. Bogdanov. Perceids: Periodic community detection. In
IEEE ICDM (ICDM), 2019.

[30] Y. Liu, L. Zhu, P. Szekely, A. Galstyan, and D. Koutra. Coupled clustering of
time-series and networks. In 2019 SIAM ICDM, pages 531–539. SIAM, 2019.

[31] P. Lorenzo, S. Barbarossa, and P. Banelli. Sampling and recovery of graph signals.
In Cooperative and Graph Signal Processing, pages 261–282. Elsevier, 2018.

[32] F. Manessi, A. Rozza, and M. Manzo. Dynamic graph convolutional networks.
Pattern Recognition, 97:107000, 2020.

[33] K. Mitra, S. Sheorey, and R. Chellappa. Large-scale matrix factorization with
missing data under additional constraints. In NIPS, pages 1651–1659, 2010.

[34] F. Monti, M. M. Bronstein, and X. Bresson. Geometric matrix completion with
recurrent multi-graph neural networks. CoRR, abs/1704.06803, 2017.

[35] S. Moritz and T. Bartz-Beielstein. imputets: Time series missing value imputation
in r. R Journal, 9(1), 2017.

[36] L. T. Nguyen, J. Kim, and B. Shim. Low-rank matrix completion: A contemporary
survey. IEEE Access, 7:94215–94237, 2019.

[37] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst. Graph
signal processing: Overview, challenges, and applications. IEEE, 106(5):808–828,
2018.

[38] K. Qiu, X. Mao, X. Shen, X. Wang, T. Li, and Y. Gu. Time-varying graph signal
reconstruction. IEEE J. of Selected Topics in Signal Processing, 11(6):870–883, 2017.

[39] S. Ranu, M. Hoang, and A. Singh. Mining discriminative subgraphs from global-
state networks. In Proceedings of the 19th International Conference on Knowledge
Discovery and Data Mining, pages 509–517, New York, NY, USA, 2013. ACM.

[40] K. R. Rao, D. N. Kim, and J.-J. Hwang. Fast Fourier Transform - Algorithms and
Applications. Springer Publishing Company, Incorporated, 1st edition, 2010.

[41] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The
emerging field of signal processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains. IEEE Signal Processing Maga-
zine, 30(3):83–98, May 2013.

[42] A. Silva, P. Bogdanov, and A. K. Singh. Hierarchical in-network attribute com-
pression via importance sampling. In 2015 IEEE 31st International Conference on
Data Engineering, pages 951–962. IEEE, 2015.

[43] A. Silva, A. Singh, and A. Swami. Spectral algorithms for temporal graph cuts.
In Proceedings of the 2018 World Wide Web Conference, pages 519–528, 2018.

[44] H. Tan, Y. Wu, B. Shen, P. J. Jin, and B. Ran. Short-term traffic prediction based
on dynamic tensor completion. IEEE Transactions on ITS, 17(8):2123–2133, 2016.

[45] S. V. Tenneti and P. P. Vaidyanathan. Nested periodic matrices and dictionaries:
New signal representations for period estimation. IEEE Trans. Signal Processing,
63(14):3736–3750, 2015.

[46] S. Wold. Cross-validatory estimation of the number of components in factor and
principal components models. Technometrics, 20(4):397–405, 1978.

[47] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma. Robust face recognition
via sparse representation. IEEE TPAMI, 31(2):210–227, 2008.

[48] C. Xiaming, J. Yaohui, Q. Siwei, H. Weisheng, and J. Kaida. Analyzing and model-
ing spatio-temporal dependence of cellular traffic at city scale. In Communications
(ICC), 2015 IEEE International Conference on, 2015.

[49] S. Yan, Y. Xiong, and D. Lin. Spatial temporal graph convolutional networks
for skeleton-based action recognition. AAAI Conference on Artificial Intelligence,
32(1), Apr. 2018.

[50] Y. Yankelevsky and M. Elad. Finding gems: Multi-scale dictionaries for high-
dimensional graph signals. IEEE Transactions on Signal Processing, 67(7):1889–
1901, 2019.

[51] L. Yao, C. Mao, and Y. Luo. Graph convolutional networks for text classification.
AAAI Conference on Artificial Intelligence, 33(01):7370–7377, Jul. 2019.

[52] B. Yu, H. Yin, and Z. Zhu. Spatio-temporal graph convolutional neural network:
A deep learning framework for traffic forecasting. CoRR, abs/1709.04875, 2017.

[53] G. P. Zhang and M. Qi. Neural network forecasting for seasonal and trend time
series. European journal of operational research, 160(2):501–514, 2005.

[54] L. Zhang and P. Bogdanov. Dsl: Discriminative subgraph learning via sparse
self-representation. In Proceedings of SIAM International Conference on Data
Mining (SDM), 2019.

[55] Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang. A survey of sparse representation:
algorithms and applications. IEEE access, 3:490–530, 2015.

[56] G. Zheng, Y. Yang, and J. Carbonell. Efficient shift-invariant dictionary learning.
In 22nd ACM SIGKDD, pages 2095–2104, 2016.

[57] Y. Zheng, G. Liu, S. Sugimoto, S. Yan, and M. Okutomi. Practical low-rank matrix
approximation under robust l1-norm. In 2012 IEEE Conference on Computer Vision
and Pattern Recognition, pages 1410–1417, 2012.

 http://hubwaydatachallenge.org.

SUPPLEMENT
In what follows we discuss how parameters were set in each exper-
iment in the following order: imputation and interpolation, graph
signal decomposition, clustering, then period detection. Our goal in
providing these experimental details is to facilitate reproduciblity.
Tbl.5 contains the search grid for all methods and their parameters
used in graph signal decomposition (Sec 6.3), imputation (Sec 6.4)
and interpolation (Sec 6.5) experiments. Tbl. 7 shows the estimated

BRITS
Data/Task Syn. and Bike / imputation and interpolation
batch size {54,108,216}
epoch {500,1000,1500}
hidden layer size {34,64,128}
Data/Task Traffic / imputation
batch size {54}
epoch {500,1000,1500}
hidden layer size {34,64,128}
Data/Task Traffic / interpolation
batch size {54}
epoch {500,1000}
hidden layer size {34,64,128}

LRDS
Data/Task All / decomposition, imputation, interpolation
Nuclear norm weight {.1,.5,1}
Smoothness weight {.1,.5,1}
Convergence weight {.1,.5,1}
Data/Task All / only decomposition
“zero” threshold {.0001,.001,.01,.1}

MCG
Data/Task All / decomposition, imputation, interpolation
Nuclear norm weight {.1,.5,1}
Column graph weight {.01,.1,1 }
Row graph weight {.01,.1,1}
Data/Task All / only decomposition
“zero” threshold {.0001,.001,.01,.1}

GEMS-HD
Data/Task Synthetic / decomposition
Target atom sparsity [1:10:100]
Target signal sparsity [1:10:100]
Dictionary size [1:10:100]
Data/Task Bike / decomposition
Target atom sparsity [1:10:100],[100:20:200]
Target signal sparsity [1:10:100],[100:20:200]
Dictionary size [1:10:100],[100:20:200]
Data/Task Traffic / decomposition
Target atom sparsity [1:10:100],[100:20:200],[100:20:220]
Target signal sparsity [1:10:100],[100:20:200],[100:20:220]
Dictionary size [1:10:100],[100:20:200],[100:20:220]

GEMS-HD+
Data/Task All / imputation, interpolation
Target atom sparsity {5,10,15,20,25,30}
Target signal sparsity {5,10,15,20,25,30}
Dictionary size {5,10,15,20,25,30}

TGSD
Data/Dictionaries/Task all/ all/ decomposition
λ1 {.001,.01,.1,1}
λ2 {.001,.01,.1,1},
k [1:10],[10:10:100]
% of Ψ atoms used [10%:10%:100%]
Data/Dictionaries/Task all/ all/ imputation, interpolation
λ1 {.01,.1,1,10}
λ2 {.01,.1,1,10},
λ3 {.1,1,10}
k {5,10,15,20,25,30}

Table 5: Parameter search space for each data set and competing methods
in decomposition, imputation and interpolation experiments. Curly braces
(e.g. {1, 2, 3}) indicate a set of values we tested and brackets (e.g. [1 : 2 : 9]) in-
dicate that we iterate in an interval from the first to the third values by a step
specified in the middle value ([1 : 2 : 9] represents the values {1, 3, 5, 7, 9})

Data-Task Variation λ1 λ2 λ3 k

Synthetic-imputation
TGSD W+D 0.01 1 1 5
TGSD G+D 0.01 0.1 1 5
TGSD G+R 0.1 0.1 1 5

Synthetic-interpolation
TGSD G+S 1 1 1 5
TGSD G+D 1 1 1 5
TGSD G+R 0.01 1 1 30

Synthetic-clustering TGSD G+R 10 .01 NA 7
Synthetic-period detection TGSD G+R .1 .1 10 1
Synthetic-k estimation TGSD G+R .01 .001 10 Vary

Bike-impute TGSD W+D 0.01 0.1 10 25
TGSD G+D 0.01 0.1 10 30

Bike-interpolate TGSD G+D 0.01 0.01 10 25
TGSD G+S 0.01 0.01 10 30

Traffic-impute TGSD G+R 0.1 0.1 10 5
Traffic-interpolate TGSD G+S 1 1 10 5
Reddit-sp-clustering TGSD G+D 1 1 NA 6
Reddit-sp-k estimation TGSD G+D 1 1 10 Vary
Reddit-epi-clustering TGSD G+D 2 0.01 NA 25
Reddit-epi-k estimation TGSD G+D 2 0.01 10 Vary
Reality Mining-clustering TGSD G+D 5 3 NA 5
Reality Mining-k estimation TGSD G+D 5 3 10 Vary

Table 6: Parameters for TGSD

optimal parameters for baselines while Tbl. 6 shows the parameters
we used in TGSD for all experiments.
• Imputation (Sec 6.4) and Interpolation (Sec 6.5). For all
method used in imputation and interpolation experiments we pre-
form a task- and data-specific grid search at 25% missing values and
use the best parameters for all missing value levels. The specific
values searched are shown in Tbl. 5. For BRITS’s and LRDS’s pa-
rameter search spaces we check values both higher and lower than
the default parameters set by the authors in the codes they kindly
have made publicly available. Due to scalability issues the searched
ranges for BRITS are coarser in larger datasets (Tbl. 5) as finer
searches did not complete within weeks on state-of-the-art GPU
servers. For MCG we explore parameters similar to those for LRDS
as they are both low rank methods with smoothing. The authors
of GEMS-HD+ list optimal parameters in their publication and we
tests alternatives “around” these prescribed values. We report the
best found parameters for each experiment in Tbl. 7.
• Data decomposition (Sec 6.3). The parameter settings used in
graph signal decomposition can also be found in Tbl. 5. For MCG
and LRDS we search the same parameter spaces and add a "zero"
threshold parameter which allows us to control the size of the
models. For GEMS-HD we expand the search space to obtain a
clearer trend for the number of nonzero coefficients necessary for
a wide range of RMSE. We test a larger range of values for larger
datasets as they require a larger model sizes (nonzero coefficients).
We do not include an optimal value table for this search space as
the optimal parameters will vary with RMSE and NNZ.
• Clustering (Sec 6.6). For CCTN we use the default parameter λ
value of 2 provided by the authors and for the dimensionality of
the embeddings we report results for both the default parameter 3
and when the dimensionality is set to the ground truth number of
clusters in each dataset (Tbl. 4 in the main paper). CCTN’s limited
scalability made grid search not feasible on our large datasets (it
requires close to 5 hours for a single run on the Reddit-sp). For PCA
we set the number of dimensions equal to the ground truth number
of clusters.
• Period detection (Sec 6.7).We set NPM’s only parameter—the
maximum period in the Ramanujan dictionary—to 50. AUTO’s
maximum period is set to 100. FFT is parameter-free.

BRITS MCG
batch size epoch hidden layer size Nuclear norm weight Column graph weight Row graph weight

Synthetic-impute 54 1000 128 0.1 1 0.01
Synthetic-interpolate 108 500 128 0.1 0.01 0.1
Bike-impute 216 500 64 1 0.01 0.01
Bike-interpolate 216 500 128 0.5 1 0.01
Traffic-impute 54 1000 34 0.1 0.01 0.01
Traffic-interpolate 54 500 128 0.1 0.01 0.01

GEMS-HD+ LRDS
Dictionary Size Target Atom sparsity Target Signal Sparsity Nuclear norm weight Smoothness weight Convergence weight

Synthetic-impute 5 30 15 0.1 0.1 0.1
Synthetic-interpolate 5 5 5 0.1 1 0.1
Bike-impute 20 30 30 1 0.1 1
Bike-interpolate 5 5 5 1 0.1 0.1
Traffic-impute 5 15 30 0.1 0.5 1
Traffic-interpolate 5 5 5 0.1 1 0.1

Table 7: Optimal parameters found by grid search for imputation and interpolation tasks.

BRITS MCG LRDS GEMS-HD+
Avg ± STD Min Max Avg ± STD Min Max Avg ± STD Min Max Avg ± STD Min Max

Synthetic-impute 0.0205 ± 0.0029 0.0193 0.0394 0.0154 ± 0.0006 0.0144 0.0164 0.0152 ± 0.0008 0.0145 0.0162 0.0165 ± 0.0008 0.0152 0.0182
Synthetic-interpolate 0.0167 ± 0.0054 0.0152 0.0554 0.0173 ± 0.0015 0.0155 0.0220 0.0212 ± 0.0013 0.0193 0.0229 0.0167 ± 0.0000 0.0167 0.0167
Bike-impute 0.0346 ± 0.0017 0.0324 0.0422 0.0307 ± 0.0026 0.0265 0.0347 0.0162 ± 0.0001 0.0160 0.0164 0.0174 ± 0.0013 0.0160 0.0218
Bike-interpolate 0.0352 ± 0.0021 0.0329 0.0449 0.0320 ± 0.0016 0.0297 0.0347 0.0335 ± 0.0002 0.0331 0.0337 0.0203 ± 0.0000 0.0203 0.0203
Traffic-impute 0.0110 ± 0.00005 0.0110 0.0112 0.0025 ± 0.0000 0.0025 0.0025 0.0112 ± 0.0047 0.0053 0.0167 0.0083 ± 0.0004 0.0076 0.0091
Traffic-interpolate 0.0138 ± 0.0089 0.0097 0.0340 0.0160 ± 0.0000 0.0160 0.0160 0.0702 ± 0.0004 0.0694 0.0706 0.0111 ± 0.000 0.0111 0.0111

Table 8: Average, standard deviation, minimum, and maximum RMSE found in grid search for each data set and competing method in imputation and interpo-
lation experiments.

(a) λ1 v.s. k (b) λ1 v.s. λ2

Figure 7: Parameter sensitivity analysis for 25% random
missing imputation in the Synthetic

• Parameter search and optimal parameters for TGSD. We
performed grid search for all variations of TGSD for the graph signal
decomposition, imputation, and interpolation experiments (detailed
in Tbl.5). For period detection we set K =1, λ1 = .1, and λ2 = 0.1.
For the estimation of k we set λ1 = 0.01, λ2 = 0.001. The settings
for TGSD in all experiments except graph signal decomposition
can be found in Tbl. 6.

While we can employ cross-validation to learn good regular-
ization parameters values by occluding values from X (akin to
our approach for k estimation), we are also interested in char-
acterizing the sensitivity of TGSD to these parameters. In Fig. 7,
we present the sensitivity of our model to pairs of its key hyper-
parameters {λ1, λ2,k}. We fix one parameter and vary the other
two, and present the random value imputation error at 25% missing
values for the Synthetic data set and TGSD G+D. Our model’s qual-
ity deviates from optimal for high λ1 and λ2. Pushing these values
too high forces TGSD to overly sparse encodings which “underfit”
the data. Reasonably small values in the 0.1 range produce optimal
performance and the quality is not sensitive to variations in the
vicinity of this value.

• Spline imputation. For baselines which do not handle missing
values directly we utilized spline imputation as a preprocessing step.
To this end, we employ Matlab’s "interp1" function. We apply this
imputation method to each node timeseries with missing values to
reconstruct the latter.
• An additional baseline of inconclusive performance. We
also evaluated the Geometric Matrix Completion with Recurrent
Multi-Graph Neural Networks (MCGNN) [34] as a potential base-
line for missing value imputation and temporal interpolation. This
work can be intuitively considered as a deep learning extension
to [23]. Unfortunately, we were not able to obtain competitive re-
sults from MCGNN (at least an order of magnitude worse SSE than
all other competing techniques). Hence we do not report it in the
experimental results. We tested MCGNN with the same row and
column graphs that we adopt for MCG [23] on the synthetic 25%
random missing task with grid search over the parameters in Tbl. 9.
Note, thatMCGNN is a deep learningmethod and the grid searchwe
performed required substantial computational time (over a week).

Order of row Chebyshev polynomial {4,5,6}
Order of column Chebyshev polynomial {4,5,6}
Diffusion steps {24,32,42}
Number of convolution features {5,10,15}

Table 9: Parameter search for MCGNN[34]

While we were not able to obtain competitive results, it is pos-
sible that the method can be competitive if larger grid search is
employed. A possible limitation could be that the column graph
may be ineffective in capturing temporal patterns in the convolu-
tion architecture. We refrain from making any stronger conclusions
based on the experiments we have performed.
• Code. An implementation of TGSD is available at the authors’
website: http://www.cs.albany.edu/~petko/lab/code.html

http://www.cs.albany.edu/~petko/lab/code.html

	Abstract
	1 Introduction
	2 Related work
	3 Problem Formulation
	4 Optimization solutions for TGSD
	5 Dictionaries for TGSD
	6 Experimental evaluation
	6.1 Datasets.
	6.2 Baselines
	6.3 Graph signal decomposition
	6.4 Missing value imputation.
	6.5 Temporal interpolation
	6.6 Clustering node time series
	6.7 Period detection
	6.8 Dictionary comparison
	6.9 Estimation of the number of components k
	6.10 Scalability and partial graph dictionaries.

	7 Conclusion
	Acknowledgments
	References

