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Abstract

The goal in network state prediction (NSP) is to classify
the global state (label) associated with features embed-
ded in a graph. This graph structure encoding feature
relationships is the key distinctive aspect of NSP com-
pared to classical supervised learning. NSP arises in
various applications: gene expression samples embedded
in a protein-protein interaction (PPI) network, tempo-
ral snapshots of infrastructure or sensor networks, and
fMRI coherence network samples from multiple subjects
to name a few. Instances from these domains are typ-
ically “wide” (more features than samples), and thus,
feature sub-selection is required for robust and gener-
alizable prediction. How to best employ the network
structure in order to learn succinct connected subgraphs
encompassing the most discriminative features becomes
a central challenge in NSP. Prior work employs con-
nected subgraph sampling or graph smoothing within
optimization frameworks, resulting in either large vari-
ance of quality or weak control over the connectivity of
selected subgraphs.

In this work we propose an optimization framework
for discriminative subgraph learning (DSL) which simul-
taneously enforces (i) sparsity, (ii) connectivity and (iii)
high discriminative power of the resulting subgraphs of
features. Our optimization algorithm is a single-step
solution for the NSP and the associated feature selec-
tion problem. It is rooted in the rich literature on
maximal-margin optimization, spectral graph methods
and sparse subspace self-representation. DSL simulta-
neously ensures solution interpretability and superior
predictive power (up to 16% improvement in challenging
instances compared to baselines), with execution times
up to an hour for large instances.
Keywords: Network State Prediction; Subspace
Learning; Self-Representation; Subgraphs Detection;
Alternating Optimization;

1 Introduction

Global network state prediction (NSP) [8, 9, 17, 23]
is a supervised learning problem in which features are
embedded in a network as node/edge weights. The
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basic premise in this setting is that the global state of
the network is determined by local network processes
which modify connected feature values in a predictable
manner. Given a set of network samples over the same
nodes and similar or identical interconnecting structure,
how to select connected subgraphs to accurately predict
the global network states?

The NSP problem arises in many applications: phe-
notype prediction based on gene expression within a
protein interaction network [17], learning rate predic-
tion based on functional MRI scans [4], outlier states
in the opinion dynamics in social networks [3], conges-
tion regime prediction in communication networks and
others. Common to all the above settings is the impor-
tance of network locality in selecting predictive features
for the global state. In addition, datasets fitting this set-
ting are typically “wide”: involving significantly more
features than labeled instances. Hence, it becomes im-
perative to learn robust and general predictors of the
global state when only a subset of the features are con-
sidered, a problem commonly referred to as feature se-
lection [6]. The distinctive characteristic of NSP is the
network structure which can be exploited to detect ro-
bust and interpretable feature subsets.

Intuitively, a good solution for the problem should
identify a small number of features (i) sparsity, form-
ing connected subgraphs (ii) connectivity, whose feature
values accurately predict the global state (iii) discrim-
inative power. Satisfying all three design principles si-
multaneously is a challenging task, hence, prior work
typically prioritizes a subset of them. Some methods
enforce connectivity by directly growing [17] or sam-
pling [23] connected subgraphs. Such approaches suffer
limited prediction quality and/or instability due to the
local exploration of the exponential space of connected
subgraphs. Other approaches enforce the design princi-
ples within optimization frameworks [8, 9]. Due to the
inherent complexity of simultaneous optimization of all
three, these methods partition the principles in inde-
pendent steps resulting in sub-par performance.

An illustration of the above phenomenon is pre-
sented in Fig. 1a by superimposing the subgraphs se-
lected by (i) L1DSL (one of the methods proposed in
this paper), (ii) the state-of-the-art optimization ap-
proach DIPS [9] and a ground truth (GT) subgraph
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Figure 1: (a): Comparison of the subgraphs detected by
DSL (blue squares) and DIPS [9] (red circles) superim-
posed with a ground truth GT subgraph in a synthetic
network dataset. (b) AUC of GT subgraph recovery for
L1DSL and DIPS for increasing Gaussian noise added
to non-GT feature values.

injected in a synthetic dataset. When constrained to se-
lect a fixed-size subgraph, our proposed method L1DSL
recovers the connected GT subgraph, while DIPS recov-
ers the GT only partially due to its two-step indepen-
dent enforcement of the three design principles. More-
over our method consistently recovers 90% of the GT
nodes for increasing noise added to non-GT feature val-
ues (Fig. 1b), while the accuracy of the baseline method
quickly degrades due to its susceptibility to noise.

We address drawbacks of existing work on NSP by
proposing DSL (pronounced DieSeL): an optimization
framework for NSP and the associated feature selection
problem. We combine the three design principles dis-
cussed above in a unified objective function and pro-
pose an algorithm for its optimization. We enforce
sparsity by a self-representation penalty term which se-
lects a sparse and consistent subset of features in all
training network samples. Connectivity and discrimi-
native power are enforced by appropriate regularization
inspired by spectral graph methods and subspace max-
margin optimization. We construct a solver for the ob-
jective function and study its utility and effectiveness
on synthetic and real-world datasets from multiple do-
mains, demonstrating its superior quality compared to
several baselines.

Our main contributions in this work are as follows:
1. Novelty: We combine all three design principles for
NSP: sparsity, connectivity and discriminative power in
a novel unified optimization framework, called DSL.
2. Quality: DSL consistently outperforms state-of-
the-art baselines on real-world and synthetic datasets
for both recovery of ground truth subgraphs and in clas-
sification accuracy (7% − 16% improvement compared
to baselines) employing small-size selected subgraphs.
3. Interpretability and wide applicability: DSL
discovers interpretable feature subgraphs: known genes
associated with liver metastasis in PPI networks and

natural “corridor” patterns of bike commute behavior
distinguishing between workdays and weekends.

2 Related work

Early existing methods for NSP focus on direct explo-
ration of the space of connected subgraphs [17, 23].
NGF [17] explores the structure of PPI networks em-
ploying the random forest classifier iteratively fitted to
growing connected structural subgraphs. MINDS [23]
adopts a similar tree construction, while seeking to im-
prove the running time and quality by a Markov Chain
Monte Carlo (MCMC) sampling scheme in the subgraph
space. Both methods suffer from limited quality and
high running time due to the need to explore a large
space of connected subgraphs.

An alternative family of approaches for NSP were
recently proposed following an optimization strategy [8,
9]. DIPS [9] is the state-of-art approach, which intro-
duces a two-stage solution to learn subgraphs: discrimi-
native subspace learning followed by matrix approxima-
tion. This method avoids the search in the exponential
space of candidate subgraphs, thus, addressing major
drawbacks of NGF and MINDS. However, its `1-norm
based node selection mechanism is sensitive to noise and
outliers and in addition subgraph selection is performed
in two independent steps, limiting the quality of ob-
tained solutions.

Subspace learning for non-network data is also rel-
evant to our setting. In sparse subspace clustering
(SSC) [14, 20] the goal is to approximate unlabeled data
by selecting features comprising a subspace. This prob-
lem, however, is unsupervised and does not consider a
network structure among features. Our subspace repre-
sentation is similar to that in SCC, but it additionally
integrates the network structure and the class label in-
formation. Supervised feature selection for non-network
data has also been considered extensively in the litera-
ture [12, 26, 6]. Such methods do not consider a network
structure among the features, thus limiting their accu-
racy for our setting as we demonstrate experimentally.

There is also related work on support vector ma-
chines (SVM) [7, 28], a classification scheme which com-
putes an optimal separating hyperplane between classes.
SVMs have further been combined with subspace learn-
ing approaches such as matrix factorization [24, 11].
Our work is different from the above in that we con-
sider a graph structure among features and employ self-
representation as opposed to matrix factorization. We
consider both the `2-SVM [7] and `1-SVM [28] models
as regularizers in our objective. The L1-norm SVM[28]
learns to ignore redundant features (sparsity), thus, al-
lowing for automatic feature selection, which makes it
often a better choice in very high dimensional data.
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3 Notation and preliminaries

Global network state prediction can be viewed as a gen-
eralization of the classical supervised learning problem,
where the knowledge of the network structure can be
employed to improve the classification as well as provide
explanation for the selected features. We first introduce
the notation and preliminaries employed in our problem
formulation and solution.

The input to the problem is a set of network samples
(or graph signals). A network sample is a triple Si =
(Vi, Ei, Xi), where Vi = v1, v2, ..., vm is a set of nodes,
Ei ⊆ Vi × Vi is a set of undirected edges, and Xi is a
function associating each node with a real number. The
function Xi can be thought of as a graph signal over the
nodes of the sample.

Let DS = {(S1, y1), (S2, y2), ..., (Sn, yn)} be a net-
work dataset of n network samples annotated by cor-
responding discrete global states (or labels) yi. Similar
to Dang et al. [9], we adopt a summary graph structure
S = (V, E,W ) to represent all Si ∈ DS, where V =
V1 ∪ V2... ∪ Vn, E ⊆ V ×V and Ei ⊆ E,∀Ei. Each edge
E(p, q) ∈ E is associated with a positive weight Wpq de-
fined as the fraction of network samples containing that
edge in their structure, i.e., Wpq = n−1 ×

∑
iEi(p, q)

with Ei(p, q) = 1 if vp connects vq in Si. The Laplacian
matrix L associated with the aggregate network S is de-
fined as L = D−W , where D is the diagonal matrix of
weighted node degrees with elements Dpp =

∑
qWpq.

Arranging the node values of all networks samples
Xi in the columns of a matrix, we obtain the data matrix
X ∈ Rm×n, where m is the number of nodes in the
network also referred to as the feature dimension. In our
formulation we will enforce a sub-selection of connected
features (rows of X). In the sparse subspace clustering
literature [14] such selection is enforced through the
product XTΦ, where Φ is a feature selection matrix
with zero elements on the diagonal diag(Φ) = 0 to
avoid individual columns being represented solely by
themselves [14].

4 DSL: discriminative subgraph learning

Our goal is to simultaneously select connected sub-
graphs which are also predictive of the global state. We
formalize the problem as an optimization which linearly
combines (i) selection of subgraphs, (ii) connectivity and
(iii) discriminative power of the selection on the training
network samples.
Subspace selection. We enforce selection of a rep-
resentative subset of features by minimizing the recon-
struction error for the data matrix X via its subspace
representation through an unknown feature selection

matrix Φ:
∥∥XT −XTΦ

∥∥2

F
, where the reconstruction er-

ror is quantified in terms of the Frobenius norm of the
residual matrix. To control how many features we se-
lect, we need to control the sparsity of the selection ma-
trix Φ. A widely adopted approach is to add an `1-norm
regularizer ‖Φ‖1, however, this choice would not enforce
that the same node feature is selected across network
samples. Intuitively we would like rows of Φ to contain
only high values (the corresponding node is selected) or
only values close to 0. To enforce sparsity and row con-
sistency in the selection matrix, we adopt the `2,1-norm

defined as ‖Φ‖2,1 =
∑
i

√∑
j Φ2

ij =
∑
i ‖Φi‖2, where

Φi is the i-th row of Φ.
Subgraph connectivity. Our second goal is to ensure
that our selection of nodes encoded in Φ is also smooth
(connected) with respect to the summary graph struc-
ture S interconnecting features. We achieve this by a
regularizer involving the trace of the following quadratic
form of the Laplacian matrix: tr

(
ΦTLΦ

)
. Each diago-

nal element in the product is of the form:

(4.1) (ΦTLΦ)k,k = ΦT
kLΦk =

∑
(i,j)∈E

wij(Φik−Φjk)2,

where Φk is the k-th column in Φ, i.e. the selector
vector for the k-th instance. Intuitively, this criterion
penalizes for selection of non-neighbor features in each
network sample.
Discriminative power. Our third goal is to ensure
that the selected subgraphs are discriminative, i.e., the
included features should be able to correctly separate
networks instances with different global states. We em-
ploy a loss function inspired by maximal margin opti-
mization in SVM. Intuitively, feature values in selected
subgraphs should render different class instances on op-
posite sides of a separation hyperplane (w, b), such that
the margin defined by support vectors is maximized.
We further allow for soft margin to avoid overfitting.
DSL objective. Incorporating the above principles
into a single objective, we obtain the following opti-
mization for discriminative subgraph learning:

argmin
Φ,w,b

∥∥XT −XTΦ
∥∥2

F
+ λ1 ‖Φ‖2,1 + λ2tr

(
ΦTLΦ

)
+ π

{
‖w‖f + C

n∑
i

`
(
yi,w

T x̂i + b
)}

, s.t diag(Φ) = 0

The first two terms in the objective reflect the subspace
learning, the third term incorporates smoothness with
respect to the graph structure, while the last term
captures the soft margin maximization. The function
`
(
yi,w

T x̂i + b
)

is the hinge loss function, in which w
is the normal vector to the hyperplane, b is an offset
term, and C is the soft-margin control parameter. Each
regularizer has a corresponding balance parameter: λ1,
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λ2 and π, controlling the importance of sparsity, graph
smoothness and discriminative power respectively.

The norm f on the vector w orthogonal to the
separation hyperplane ‖w‖f is either f = 1 or f = 2,
giving rise to two flavors of DSL: L1DSL and L2DSL
respectively. In addition, the notation x̂i = ΦTxi
denotes the projection of the i-th sample value onto the
selection matrix Φ. Intuitively, we are penalizing mis-
classification based on the sub-selection of the features
through Φ as opposed to when considering all features.
Note that we also add the 0 constraint for diagonal
entries of the selection matrix Φ, a typical constraint in
sparse subspace learning to prevent the selection matrix
from representing each feature by itself as opposed to as
linear combination of other features.

By design our DSL objective can be viewed as a nat-
ural generalization of sparse subspace clustering, spec-
tral graph partitioning and maximal margin learning.
We optimize all those objectives simultaneously to learn
discriminative connected subgraphs.

5 Optimization for DSL: learning algorithm

The optimization in the DSL objective is with respect
to two sets of parameters: the selection matrix Φ,
and the orthogonal vector to the separation hyperplane
including offset (w, b). Since the hinge loss, `2,1-norm
and trace norm are not smooth, it is hard to develop
an optimization that updates them simultaneously as
in the Nesterov method [21]. Hence we design an
alternating minimization method to optimize Φ and
(w, b) in sequence. We next outline the optimization of
the corresponding sub-problems and then present the
steps of the overall algorithm. During each iteration,
we initially ignore the constraint of zero on Φ’s diagonal
and correct for it at the end of the iteration.
Updates for Φ. When the separating hyperplane and
offset (w, b) are fixed, the optimization simplifies to:

(5.2)

argmin
Φ

∥∥∥XT −XTΦ
∥∥∥2
F

+ λ1 ‖Φ‖2,1 +

λ2tr
(
ΦTLΦ

)
+ C∗

n∑
i

`
(
yi,w

TΦTxi + b
)
,

where C∗ = πC. Optimizing directly with the non-
smooth hinge loss function is challenging. Hence, in line
with the optimization literature on SVMs, we introduce
slack variables for each instance ξi, separating the non-
smooth hinge loss in constraints:
(5.3)

argmin
Φ,ξ

∥∥∥XT −XTΦ
∥∥∥2
F

+ λ1 ‖Φ‖2,1 + λ2tr
(
ΦTLΦ

)
+ C∗

n∑
i

ξi

s.t yi

(
wTΦTxi + b

)
≥ 1− ξi; ξi ≥ 0

To solve the problem in Eq. 5.3, we construct the
corresponding Lagrangian function and derive a closed-

form update. The Lagrangian has the following form:
(5.4)

L (Φ, ξ,α,γ) =
∥∥∥XT −XTΦ

∥∥∥2
F

+ λ1 ‖Φ‖2,1 + λ2tr
(
ΦTLΦ

)
+ C∗

n∑
i

ξi −
n∑
i

γiξi −
n∑
i

αi

[
yi

(
wTΦTxi + b

)
− 1 + ξi

]
,

where α and γ are vectors of Lagrangian multipliers of
length |DS|. Setting the gradient ∇ΦL = 0, we obtain:

Φ =

(
XXT + λ1D + λ2L

)−1

2
(
∑
i

αiyixiw
T + 2XXT ),

where D is a diagonal matrix with elements Dii =
(2 ‖Φi‖2)−1 when ‖Φi‖2 6= 0, and Dii = 0 otherwise.
Similarly, solving for ∇ξL = 0, we get:

(5.5) γ = C∗1−α,

where 1 is a vector of ones of size |DS|. By substituting
the optimal values of Φ and γ back in the Lagrangian
(Eq. 5.4), and after some simplifying variable substitu-
tions we obtain the following dual Lagrangian function:

(5.6) Ld(α) =
∑
i

∑
j

αiαjyiyjpij −
n∑
i

αiqi + g,

where pij ,qi and g are defined as follows:

pij =
[
tr
(
wxTi ZTRZxjw

T
)
−wTwxTi ZTxj

]
qi = 1− yib− 2yiw

T
(
XXTZT

)
xi

−yitr
[(

XXTZ− 2XXTZTRZ
)
xiw

T
]

−yitr
[
wxTi

(
ZTXXT − 2ZTRZXXT

)]
g = tr

(
XXT

)
− 2tr

(
XXTZXXT

)
−2tr

(
XXTZTXXT

)
+ 4tr

(
XXTZTRZXXT

)
Z = 1

2

(
XXT + λ1D + λ2L

)−1

R = XXT + λ1D− λ2L

The detailed steps of the above derivation are avail-
able in the supplementary material [27]. Based on La-
grangian duality, Ld(α) provides a lower bound for the
optimal solution of the original minimization problem
w.r.t. Φ from Eq. 5.2, as long as the KKT conditions
for non-negativity of the Lagrangian multipliers γ and
α are satisfied [5]. Hence, to obtain a minimizer for
Eq. 5.2, we maximize the dual Lagrangian Ld(α), while
satisfying the KKT conditions. Note, that g can be dis-
carded as it does not depend on α, leading to the dual
optimization:

(5.7) argmax
α

1

2
αTKα− qα s.t 0 ≤ α ≤ C∗1,

where K ∈ Rn×n is a square matrix with elements
Kij = 2yiyjpij and q ∈ Rn is the vector of qi elements.
Note, that the added box constraint on α ensures that
the non-negativity KKT conditions are satisfied for both
α and γ (due to Eq. 5.5). The resulting quadratic
programming problem is concave (due to Lagrangian
duality) and can be efficiently solved by the sequential
optimization techniques widely employed in the the
SVM literature [18, 22]. The obtained optimal α is
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Algorithm 1 DSL Optimization
Input: Training data (X, y), and parameters (λ1, λ2, C, π).
Output: The subgraph selection matrix Φ and a classifier (w, b)

1: Initialize: Φ← I

2: while (w, b) and Φ have not converged do
3: (w, b)← argminw,b ‖w‖f + C

∑n
i `
(
yi,w

T x̂i + b
)

4: while Φ has not converged do

5: α← argmaxα
1
2
αTKα + qα, s.t0 ≤ α ≤ C∗1

6: Dii ← (2 ‖Φi‖2)−1 if ‖Φi‖2 6= 0 or Dii ← 0

7: Φ← (XXT+λ1D+λ2L)−1

2
(
∑
i αiyixiw

T + 2XXT )

8: return {Φ, (w,b)}

employed in Eq. 5.4 to derive the update of Φ. Note
that the diagonal matrix D depends on Φ. We update
it iteratively, based on the current Φ from the previous
iteration.
Updates for (w, b) : When Φ is fixed, the optimization
of (w, b) simplifies to the standard linear SVM:

(5.8) argmin
w,b

‖w‖f + C

n∑
i

`
(
yi,w

T x̂i + b
)
,

where minimization of ‖w‖f ensures maximal margin
and the hinge loss penalizes misclassification. It can be
solved via quadratic programming (QP) optimization
and we employ existing efficient solvers for this partic-
ular quadratic program [15].

The steps of the overall alternating optimization
procedure are summarized in Alg. 1. After initialization
of the selection matrix and classifier, we repeat the
sequential updates until convergence (Steps 2-7). When
the subgraph selection Φ is fixed, we fit an optimal
soft margin SVM for these features in Step 3 and then
perform the necessary Φ updates (Steps 4-7). The
dual Lagrangian is first maximized to obtain an optimal
α (Step 5), which is then employed with the current
estimate of D (Step 6) in the update for Φ (Step 7).
Complexity analysis. Due to the enforced sparsity of
Φ, most feature loadings shrink to zero quickly and as
a result the “feature-selected” data matrix X̂ = ΦTX
(after projection on Φ) quickly becomes much sparser
than the full matrix. If sΦ denotes the average number
of non-zero elements in X̂, then the complexity of
each SVM fit (Step 3) will incur O(sΦn) cost when
employing fast sparse solvers [16]. We optimize α by
sequential minimal optimization (SMO) which has a
cubic complexity O(n3) in the worse case, but much
faster running times have been demonstrated in practice
ranging between linear and quadratic time cost [22].
The update of D’s diagonal in (Step 6) is linear in the
number of non-zero elements in Φ: O(sΦ).

If approached naively the update of Φ in Step 7 has
a complexity of O(m3) as it involves an inversion of a
quadratic-in-m matrix. However, notice that two of the
summands A = XXT + λ2L are constant symmetric

Dataset |V| |E| |DS| [λ1, λ2, π]
Synthetic 100 563 300 [ 0.1, 0.3,1]
Bike [2] 142 1,723 299 [ 0.5,0.08,1]
CCT [25] 4,665 270,571 184 [ 0.1, 0.1,1]
ADNI [1, 9] 6,216 683,760 173 [ 0.1,0.01,1]
Liver [19, 9] 7,383 251,916 123 [0.05, 0.1,1]
Embryo [13, 9] 1,321 5, 227 34 [ 0.1,0.05,1]

Table 1: Summary statistics of evaluation datasets and the

optimal parameters for DSL obtained by cross-validation.

matrices and so is their sum A. The only varying
term in the inversion is the diagonal matrix λ1D. We
can compute the inverse in O(msX) time, where sX
is the number of non-zero elements of X by exploiting
this sparse update structure via the Sherman-Morrison
formula for sparse inverse updates:

(5.9) (A + λ1D)−1 = A−1 − A−1ddTA−1

1 + dTA−1d
,

where d =
√
λ1diag(D) is a column vector, the square

root is applied element-wise, and thus λ1D = dT d.
Note also that the second matrix in Φ’s update is
a linear combination of constant for the inner loop
matrices weighted by α plus a globally constant matrix
2XXT which can be pre-computed once at the cost of
O(min(m2, s2

X)) memory. Assuming this memory cost
is paid this matrix can also be computed in O(msX).

The total complexity of the method is then
O(tosΦn + toti[n

3 + msX + sΦ]), where to and ti are
the number of iterations of the outer and inner loops
respectively. Assuming constant number of steps to con-
vergence and that Φ is sparser than X, the dominating
factors in the complexity remain O(n3 +msX), arising
from (i) the SMO (Step 5) which as per Platt et al. [22]
is at most quadratic as opposed to cubic; and (ii) Φ in
(Step 7). We employ a standard desktop machine with
limited memory for our experiments, and thus, do not
perform a high-memory-cost pre-computation, resulting
in slightly higher experimental running times which still
complete in at most 1h for our biggest instances.

6 Experimental evaluation

6.1 Datasets. We employ both synthetic and real-
world datasets for evaluation and summarize their
statistics in Tbl. 1.
Synthetic: We generate geometric synthetic networks
by uniform sampling of node coordinates in a unit
square and connecting two nodes if their distance is
smaller than a threshold τ = 0.2. We select well-
connected subgraphs as the target (ground truth) dis-
criminative subgraph and generate balanced set of in-
stances labeled by two global states. Nodes in the target
subgraph are randomly assigned values from [50, 100] in
positive instances and [−100,−50] in negative counter-
parts. All remaining nodes are assigned random values
from a Gaussian distribution N (µi, σ

2), where µi is the
sample mean of the ground truth values in instance i
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and σ2 is a standard deviation which we vary.
Real-world: We also employ five real-world datasets.
Nodes in the Bike [2] are bike rental stations in the
Boston city, while edges are connected based on a
distance threshold, similar to our synthetic data (see
Figure 4(a)). Nodes’ feature values correspond to the
number of check-outs in a day, while the global states
correspond to weekday versus weekends. We employ
the last 299 days for this experiment as they span the
time when the survice is rolled out to the whole city
(initially only the downtown area was covered by the
service).The CCT dataset contains city cellular HTTP
traffic data records [25] for a large city with millions
of people. Nodes correspond to stations at which
hourly requests are counted (features) and node pairs
are once again connected based on a distance threshold.
Global labels associated with hourly samples reflect
if the sample occurred within workday hours (8am-
16pm) or outside this range. The network structure
in both spatial datasets (CCT and Bike) is a k nearest
neighbour (kNN) graph based on the locations of nodes.

The ADNI [1] dataset contains fMRI resting state
measurements for subjects labeled by AD: suffering
Alzheimer’s disease and NC: healthy normal controls.
The graph structure associates functional links (nodes)
with their level of coherence (feature values). Nodes are
connected if the corresponding functional links share
a brain region. We also employ two gene expres-
sion datasets: Embryonic development [13] and Liver
metastasis [19]. Their network structures are functional
protein-protein interaction (PPI) networks [10], while
node features correspond to binarized (in Embryo) or
continuous (in Liver) gene expression values for healthy
and normal subjects (global labels). We further nor-
malize the values in each column of the Liver data set.
We obtained the ADNI and the two PPI datasets from
the authors of DIPS [9], and thus, have effectively fol-
lowed the same preparation protocol to enable a fair
comparison between our method, DIPS and additional
baselines.

6.2 Experimental setup. We evaluate our
method’s ability to discriminate between global
labels, detect ground truth subgraphs, ensure connec-
tivity in the selected subgraphs; and measure overall
running time.
Baselines: We compare the two flavors of DSL: L1DSL
and L2DSL (employing f = 1 and f = 2 norm for
the margin in Eq. 4) to the state-of-the-art method
DIPS [9]. We also compare to two recent graph-agnostic
feature selectors: FSASL [12] and UDFS [26]. FSASL
takes into account an inferred notion of structure among
feature angle similarity. UDFS selects a discriminative

subset from the full set of features and employs the same
shrink-enforcing regularizer as DSL based on the `2,1
norm. Linear SVM is employed for prediction using
the selected features for the latter two baselines. Our
selection of baselines ensures that the state-of-the-art
graph-aware method is considered, as well as graph-
agnostic alternatives which enforce sparsity and margin
maximization similar to DSL, which constitute design
advantages lacking in DIPS [9].
Metrics: When ground truth (GT) desired feature sub-
graphs are available, we calculate the area under the
ROC (AUC) for recovering GT nodes in the selection.
We quantify the testing prediction accuracy based on
selected subgraphs (feature subsets) in 5-fold stratified
cross-validation (CV). We also measure the “commu-
nity” structure of selected subgraphs in terms of the
conductance φ of their induced subgraphs within the
summary network structure S.
Implementation: Our methods are implemented in
Matlab 2017b and all reported running times are
for single-core (non-parallel) execution on an Intel(R)
Xeon(R) Gold 6138 CPU @ 2.00GHz processor in a Dell
PowerEdge system.

6.3 Classification accuracy We first evaluate the
ability of competing methods’ selected features to dis-
criminate between global states in cross-validation on all
real-world datasets (Fig. 2). For these experiments we
fix the number of selected features for each of the com-
peting techniques (we varying between 1% and 2% of
all features in the respective datasets) and train a linear
SVM (C=1) on only the selected features. L1DSL con-
sistently outperforms all alternatives for varying num-
ber of features with the gap in performance from the
best baseline being highest for small number of selected
features. This superior performance is due to the simul-
taneous sparse and consistent selection of discrimina-
tive connected subgraphs. Each baseline enforces only
a subset of all those requirements: (i) DIPS employs
a non-sparse discriminative subspace learning, which is
then independently thresholded and smoothed against
the graph structure, while (ii) FSALSL and UDFS do
not take advantage of the graph structure.

In the Bike dataset (Fig. 2a), both DSL variants
exhibit the largest improvement (15% higher accuracy)
with as little as 10 selected features. More importantly
DSL methods reach very close to the saturation accu-
racy of 95% with as little as 5 features. While the
gap from DIPS closes, the latter continues to under-
perform DSL with higher number of features. L1DSL
consistently outperforms alternatives by 10% for sub-
graph selection sizes between 40 and 100 on the CCT
dataset Fig. 2b. On this dataset L2DSL is slightly worse
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Figure 2: Comparison of prediction accuracy in 5-fold cross-validation on real datasets for increasing number of
selected features by each of the competing techniques.

for smaller number of features and all methods’ per-
formance degrades significantly when restricted to less
than 40 features. All alternatives do not exceed 73% ac-
curacy and reach their peaks when employing as many
as 90 (DIPS), 70 (FSASL) and 60 (UDFS) features,
while L1DSL reaches its peak for 40-node subgraphs
(1% of all features in CCT). Both CCT and Bike are spa-
tial datasets where local connectivity matters in select-
ing connected discriminative subgraph patterns, thus,
resulting in the biggest advantage for DSL methods.

The advantage of our methods in Liver (Fig. 2c)
is also most evident when restricted to small number
of features (both DSL variants are indistinguishable on
this data). DSL’s accuracy peaks at 95%, employing
30-node subgraphs, while DIPS reaches its highest
93% with more than twice the number of features.
The performance of DIPS on Liver is slightly different
than reported in [9] due to our additional column-
wise normalization of the data matrix. The other
baselines also require higher number of features to reach
their maximal accuracy. L1DSL dominates alternatives
in ADNI reaching accuracy of 82% with 85 nodes,
while the best accuracy of DIPS is 77% with also
85 nodes. UDFS and FSASL perform significantly
worse on this data. L2DSL does not perform on par
with L1SVM on ADNI, which could be explained by
its higher propensity to consider more and redundant
features to maximize the margin as it enforces less
shrinkage via an L2 as opposed to L1 norm on w.
ADNI and Liver are both complex networks (unlike Bike
and CCT), featuring high node degrees and potentially
some edges which are “less aligned” with the underlying
process which determines the global network state. The
optimal graph smoothness regularizer weights λ2 for
these datasets are also lower (see Tbl. 1), corroborating
the hypothesis of comparatively lower importance of the
network structure.

7 Quality of feature selection

For datasets with ground truth (GT) features of in-
terest, we compare the techniques by their ability to
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(a) Liver GT ROC (b) Parameter sensitivity

Figure 3: (a) ROC for selecting ground truth genes
(from [19]) in Liver. (b) Parameter sensitivity on the
Bike dataset varying λ1 and λ2.

recover these GT features in their selected subgraphs.
We first compare L1DSL (L2DSL’s performance is in-
distinguishable from L1DSL’s here) and DIPS on syn-
thetic data and increasing variance σ2 applied to non-
GT nodes’ values (Fig. 1). We restrict both methods
to report 15 features and provide a visual comparison
of the selected features by DSL (squares) and DIPS
(crosses) and the GT nodes (large round circles) in
Fig. 1a (σ2 = 40). DSL matches the well-connected
ground truth exactly, while DIPS selects only a subset
of those nodes and also includes noisy singleton nodes.
We have selected the optimal graph smoothness regu-
larizer for DIPS, so enforcing more smoothness for this
method leads to strictly poorer AUC of recovering the
GT. DIPS is more sensitive to noise since in his sub-
space projection step it considers all features to com-
pute cross-sample similarity graphs. As we increase the
variance of values in non-GT nodes DIPS’ GT-detection
AUC decreases drastically, that of L1DSL remains more
stable, opening a performance gap of 24% at σ2 = 102

(Fig. 1b).
We also quantify the feature selection quality for the

Liver dataset for which we use the GT genes associated
with the disease reported in the original paper [19]
(Fig. 3a). In this experiment we plot the ROC curves
for the competing techniques. At small FPRs, DSL
methods perform similar to DIPS and UDFS, however,
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Bike CCT ADNI Liver Embryo
Accuracy DSL 0.89 0.81 0.78 0.95 0.88

DIPS 0.73 0.69 0.71 0.88 0.80
φ DSL 0.9 0.12 0.91 0.82 0.90

DIPS 0.97 0.98 0.83 0.99 0.97
Time DSL 2s 28m 45m 61m 78s

DIPS 1s 9m 4m 5m 15s

Table 2: Comparison of DSL and DIPS on real-world
datasets in terms of accuracy, conductance φ of the
discovered subgraphs and running time. Each method
is allowed to select the number of features resulting in
the larges accuracy.

the TPRs of L1DSL and L2DSL grow at a faster rate
than that of alternatives. At FPR=0.5, the TPR of
all alternatives does not exceed 0.5, while both DSL
methods achieve a TPR of 0.8. It is important to note
that the GT set of genes is likely incomplete resulting in
limited TPR growth at low FPR regimes. However, the
newly predicted genes by DSL are likely going to provide
good targets for additional genes associated with the
disease as their selection optimizes both smoothness
w.r.t. the PPI structure (guilt by association) and their
discriminative power for the global state.

7.1 Parameter sensitivity While our model re-
quires three parameters: λ1, λ2 and π, it is not very sen-
sitive to their values. This is demonstrated by the rela-
tively stable optimal parameters selected across datasets
by cross-validation (last column of Tbl. 1). Particularly,
the optimal weight of the SVM margin maximization π
is always one (and the performance is similar for a range
of values). There is more variability in the optimal se-
lections of λ1 and λ2 across datasets (typically small
values between 0.01 and 0.1), however, the resulting ac-
curacy is stable across wide ranges of those values within
a dataset. We demonstrate this behavior by plotting the
accuracy as a function of λ1 and λ2 for the Bike dataset
in Fig. 3(b). In this dataset the accuracy remains 4% of
the optimal accuracy for wide ranges of the parameters.
We observe similar trends in other datasets and almost
no variation when varying π between [1, 5].

7.2 Quality, connectivity and running time.
Table 2 offers a comprehensive comparison of DIPS
and DSL on all datasets, where accuracy is presented
alongside with running time and conductance φ of the
selected subgraphs. The accuracy separation is at
least 7% and reaches up to 16% on the Bike data.
The selected subgraphs by DSL, not only have higher
discriminative power, but are also better connected
(lower conductance φ signifies lower cut to volume ratio
for selected nodes). One exception to this trend is
the ADNI dataset in which the conductance of DSL’s

solution is slightly higher. Note that the structure of
this dataset is very regular: S is the dual graph of a
fully-connected coherence network among brain regions,
and hence, since there are no good cuts in this graph
the conductance community measure is less informative.
Our methods’ superior quality come at the cost of higher
running time than that of DIPS. The main reason is
our joint connected discriminative subgraph selection,
which requires more computations than DIPS’ two-step
independent, though less accurate, optimization. Our
methods’ implementation complete in at most an hour
on the biggest evaluation datasets. It is important to
note that our DSL implementation does not employ
the optimal pre-computation of large static matrices (as
discussed in Sec. 5), hence, its running times could be
improved at the cost of higher memory footprint.

(a) L1DSL (b) DIPS (c) UDFS

Figure 4: Visualization of the subgraphs selected by
competing methods in the Boston Bike Trips Data.

7.3 Discriminative subgraphs in bike commutes
We visualize the selected subgraphs in the Bike data
in Fig. 4, where nodes are plotted according to the
geographical coordinates of bike rental stations in the
city of Boston. Consistent with the analysis on synthetic
data, DIPS and UDFS tend to select more disconnected
subgraph which collectively have lower discriminative
power for weekday versus weekend commute pattern
prediction. Interestingly, L1DSL selects a long NE-SW
“corridor” which passes through downtown as the most
discriminative, leading to an intuitive interpretation
that this corridor’s rental pattern might discriminate
well between weekday commutes to the downtown areas
from the periphery and the likely lack thereof during
weekends.

8 Conclusion

We presented a novel optimization framework for the
problem of global network state prediction and feature
selection, called DSL. It enforces simultaneously the
natural requirements for sparsity, connectivity in the
network structure, and discriminative power of selected
subgraph solutions. We demonstrated DSL’s superior
quality when employed on both synthetic and real-world
problem instances and in comparison to state-of-the-art
baselines. Our method was able to recover ground truth
subgraphs in synthetic and gene expression datasets
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with consistently better accuracy than competitors.
The subgraphs learned by DSL enabled between 7%
and 16% improvement of cross-validation classification
accuracy compared to the closest baseline. In addition,
we demonstrated the interpretability and applicability
of DSL’s solutions by uncovering known target genes
involved in liver metastasis and by intuitive commute
subgraph patterns in transportation networks capable of
distinguishing between workday and weekend activity.
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DSL: Discriminative Subgraph Learning via Sparse Self-Representation

(Supplementary Material)

Lin Zhang∗ Petko Bogdanov †

1 Introduction

In this supplementary material we present the detailed
derivations for the steps of the DSL algorithm for dis-
criminative subgraph learning from network data [1].
While the information in the main paper is self-
contained and sufficient for understanding the specific
steps of the algorithm, here we further illustrate how
these steps were obtained. We refer to specific sections
and equations in the main paper and hence this is only
an accompanying supplement.

2 Update for Φ

In Section 5, we form the Lagrangian in Eq. 5.4 and
then set the gradient ∇ΦL = 0 to obtain a closed-form
solution for Φ as follows:

(2.1)

∂L

∂Φ
= 2

(
XXT Φ−XXT + λ1DΦ + λ2LΦ

)
−

n∑
i

αiyixiw
T = 0

After separating terms involving Φ from those which do
not and inverting the common multipliers of Φ terms we
get the optimal estimate of Φ:
(2.2)

Φ =
1

2

(
XXT + λ1D + λ2L

)−1
(∑

i

αiyixiw
T + 2XXT

)

3 Dual Lagrangian function Ld(α)

We first take the solution for γ and substitute it into
the Lagrangian from Eq.5.4 (in the main paper). After
simplification, we obtain the following:
(3.3)

L (Φ, ξ,α,γ) = tr
(
XXT −XXT Φ−ΦT XXT + ΦT XXT Φ

)
+ tr

[
ΦT (λ1D− λ2L)Φ

]
−

n∑
i

αiyiw
T ΦT xi −

n∑
i

αiyib+

n∑
i

αi

Next, we show how to derive the dual Lagrangian Ld in
form presented Eq. 5.6 in the main paper by substituting
Φ by its optimal solution. We define an intermediate
variable Z which is simply the inverted matrix in the
update for Φ.

(3.4) Z =
1

2

(
XXT + λ1D + λ2L

)−1

∗University at Albany—SUNY, lzhang22@albany.edu
†University at Albany—SUNY, pbogdanov@albany.edu

Φ can be re-written in terms of Z as follows:

(3.5) Φ = Z

∑
j

αiyjxjw
T + 2XXT



3.1 Substituting Φ in the Lagrangian: We next
substitute the reformulated Φ in each of the terms from
the Lagrangian which contain it in separate subsections
and simplify the resulting expressions.

3.1.1 Substituting Φ in −
∑n

i αiyiw
TΦTxi, we get:

(3.6)

−
n∑
i

αiyiw
T ΦT xi

= −
n∑
i

αiyiw
T

Z

∑
j

αjyjxjw
T + 2XXT

T

xi

= −
n∑
i

αiyiw
T

Z
∑
j

αjyjxjw
T + 2ZXXT

T

xi

= −
n∑
i

αiyiw
T

Z
∑
j

αjyjxjw
T

T

xi

−
n∑
i

αiyiw
T
(
2ZXXT

)T
xi

= −
∑
i

∑
j

αiαjyiyjw
T (wxT

i ZT )xj − 2

n∑
i

αiyiw
T
(
XXT ZT

)
xi

3.1.2 Substituting Φ in tr
(
−XXTΦ

)
, we get:

(3.7)

− tr
(
XXT Φ

)
= −tr

[
XXT Z

(∑
i

αiyixiw
T + 2XXT

)]

= −tr
[
XXT Z

(∑
i

αiyixiw
T

)
+ 2XXT ZXXT

]

= −tr
[
XXT Z

(∑
i

αiyixiw
T

)]
− tr

(
2XXT ZXXT

)
= −

∑
i

αiyitr
(
XXT Zxiw

T
)
− 2tr

(
XXT ZXXT

)
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3.1.3 Substituting Φ in tr
(
−ΦTXXT

)
we get:

(3.8)

− tr
(
ΦT XXT

)
= −tr

(∑
i

αiyixiw
T + 2XXT

)T

ZT XXT


= −tr

(∑
i

αiyixiw
T

)T

ZT XXT + 2XXT ZT XXT


= −tr

(∑
i

αiyixiw
T

)T

ZT XXT

− 2tr
(
XXT ZT XXT

)
= −

∑
i

αiyitr
(
wxT

i ZT XXT
)
− 2tr

(
XXT ZT XXT

)

3.1.4 Before we substitute Φ in tr
(
ΦTXXTΦ

)
+

tr
[
ΦT (λ1D− λ2L) Φ

]
we first simplify the term as:

(3.9)
tr
(
ΦT XXT Φ

)
+ tr

[
ΦT (λ1D− λ2L)Φ

]
= tr

[
ΦT

(
XXT + λ1D− λ2L

)
Φ
]
.

Next, we define a second variable R as follows:
R =

(
XXT + λ1D− λ2L

)
. With these simplifications

we substitute Φ in the quadratic in the trace ΦTRΦ:
(3.10)

ΦT RΦ =(∑
i

αiyixiw
T + 2XXT

)T

ZT RZ

(∑
i

αiyixiw
T + 2XXT

)
=

(∑
i

αiyiwxT
i + 2XXT

)(
ZT RZ

∑
i

αiyixiw
T + 2ZT RZXXT

)
=
∑
i

αiyiwxT
i ZT RZ

∑
i

αiyixiw
T

+ 2XXT ZT RZ
∑
i

αiyixiw
T +

∑
i

αiyiwxT
i ZT RZXXT

+ 4XXT ZT RZXXT .

Next after taking the trace of this expression we get:
(3.11)

tr
[
ΦT RΦ

]
=

=
∑
i

∑
j

αiαjyiyjtr
(
wxT

i ZT RZxjw
T
)

+ 2
∑
i

αiyitr
[(

XXT ZT RZ
)

xiw
T + wxT

i ZT RZXXT
]

+ 4tr
(
XXT ZT RZXXT

)
So far we have substituted all occurrences of Φ by

its form from Eq.2.5 into the Lagrangian. Hence, all
terms are functions of α.

3.2 Optimization w.r.t αi. In the following subsec-
tions we first illustrate the details of optimizing w.r.t.
αi and then assemble them into the dual optimization
objective.

3.2.1 Single αi case: Integrating all terms involving
a single αi, we get:
(3.12)
n∑
i

αi −
n∑
i

αiyib− 2

n∑
i

αiyiw
T
(
XXT ZT

)
xi

−
∑
i

αiyitr
(
XXT Zxiw

T
)
−
∑
i

αiyitr
(
wxT

i ZT XXT
)

+ 2
∑
i

αiyitr
[(

XXT ZT RZ
)

xiw
T + wxT

i ZT RZXXT
]

=
n∑
i

αi

{
1− yib− 2yiw

T
(
XXT ZT

)
xi − yitr

(
XXT Zxiw

T
)

− yitr
(
wxT

i ZT XXT
)

+ 2yitr
[(

XXT ZT RZ
)

xiw
T + wxT

i ZT RZXXT
]

3.2.2 Double αi case: Integrating all terms involv-
ing products of αi and αj , we get:
(3.13)∑

i

∑
j

αiαjyiyjtr
(
wxT

i ZT RZxjw
T
)

−
∑
i

∑
j

αiαjyiyjw
T (wxT

i ZT )xj

=
∑
i

∑
j

αiαjyiyj

[
tr
(
wxT

i ZT RZxjw
T
)
−wT (wxT

i ZT )xj

]
3.3 Assemble: Combining the above expressions
from Section 3.2.1 and 3.2.2 together and after incorpo-
rating simplifying variable described below we obtain:

(3.14) L (Φ, ξ,α,γ) =
∑
i

∑
j

αiαjyiyjpi,j −
∑
i

αiqi + g,

where
(3.15)

Z = 1
2

(
XXT + λ1D + λ2L

)−1

R = XXT + λ1D− λ2L

g = tr
(
XXT

)
− 2tr

(
XXT ZXXT

)
−2tr

(
XXT ZT XXT

)
+ 4tr

(
XXT ZT RZXXT

)
pi,j =

[
tr
(
wxT

i ZT RZxjw
T
)
−wT wxT

i ZT xj

]
=
[
tr
(
wxT

i ZT RZxjw
T
)
− (wT w)(Zxi)

T xj

]
qi = 1− yib− 2yiw

T
(
XXT ZT

)
xi − yitr

(
XXT Zxiw

T
)

−yitr
(
wxT

i ZT XXT
)

+2yitr
[(

XXT ZT RZ
)
xiw

T + wxT
i ZT RZXXT

]
= 1− yib− 2yiw

T
(
XXT ZT

)
xi

−yitr
[(

XXT Z− 2XXT ZT RZ
)
xiw

T
]

−yitr
[
wxT

i

(
ZT XXT − 2ZT RZXXT

)]
This leads to the dual optimization as follows,

(3.16) argmax
α

1

2
αTKα− qα s.t 0 ≤ α ≤ C∗1,

where K ∈ Rn×n is a square matrix with elements
Kij = 2yiyjpij and q ∈ Rn is the vector of qi elements.
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