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Abstract—Many complex networked systems, both natural and

human-made, exhibit periodic behavior driven by underlying

seasonal processes: election cycles and regular sporting events

in social networks, cell cycle phases in gene networks, and load

variation in infrastructure networks due to weather or daylight

patterns. The “natural” periodicity may vary across network

communities. At the same time this periodic community behavior

is central to (i) understating the overall system dynamics and (ii)

for detection of the communities themselves. The predominant

approach to dynamic community detection first detects communi-

ties and then as a second step quantify seasonality in their activity.

How to jointly detect communities and their inherent periodicity,

while also accounting for non-periodic one-off events?

We propose PERCeIDs, a framework for periodic overlapping

community detection from temporal interaction data. We model

observed pairwise interaction activity as a mixture of periodic

and outlier (non-periodic) components. We explicitly enforce

periodic structure within our model by learning a succinct

Ramanujan basis dictionary for community behaviors. By explic-

itly modeling periodicity, PERCeIDs outperforms baselines on

both detecting highly overlapping communities with up to 2-

fold improvement in NMI compared to state-of-the-art baselines,

while offering an interpretable temporal structure for discovered

communities in the dataset. Implementation of our method is

available for download [64].

Index Terms—Dynamic networks, Community detection, Peri-

odicity detection, Tensor factorization, Optimization.

I. INTRODUCTION

Periodicity is a common pattern in natural networks: animal
mobility [37], neuron activation in the brain [10] and pathway
expression during the cell cycle [50] all exhibit periodic
behavior. Similar patterns have been observed in social [34],
[35] and infrastructure [30] networks as well. This periodic
behavior arises in connected subnetworks which share (i)
functions in biological networks: gene or neural pathways;
(ii) interests in social networks: fans of a football team or
a celebrity; or (iii) geographical locality in infrastructure
networks: neighborhoods, towns etc. In light of this, How can
we identify communities in dynamic networks which share both
membership and periodic temporal behavior?

Community detection in static networks has a long re-
search history [20], [54], [62], [63], however, methods in
this category do not consider the temporal information of
interactions. Evolutionary clustering [9], [31], [46] consid-
ers the evolution of the community membership itself and
methods in this group exhaustively partition every snapshot
into non-overlapping clusters. More recent approaches for
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Fig. 1. (a) Venn diagram of the sets of Reddit users in three subreddit channels
and (b) hourly interaction time series within the subredit channels spanning
January-April, 2009.

dynamic networks assume stationary community membership
and persistent activity [3], [7], [17], [25], [39], [49], enabling
better detection of known ground truth communities due to
the additional information encoded in the temporal behavior.
We generalize the definition employed by the latter group of
methods by modeling dynamic behavioral communities as a
persistent set of nodes whose interaction activity is a mixture
of (i) periodic “oscillations” and (ii) one-off (outlier) periods
of increased activity.

Consider, as an example, three subreddit channels in Reddit
- r/Frugal, r/self and r/Programming - whose user base and
activity are summarized in Fig. 1. The three subreddits vary
in both the number of participating users and activity levels,
however, their user bases overlap significantly 1(a). While
r/Programming observes daily oscillations with occasional
larger bursts, the patterns in r/Frugal and r/self, which are
subreddits on frugal living or advice and discussion on per-
sonal issues, respectively, are quite different 1(b). The overlap
of members makes separating these communities challenging,
however, community-specific temporal interaction patterns,
including differences in periodicity as well as occurrences of
bursts, can be exploited in addition to network separability
to improve community detection. Our goal in this work is to
infer such behavioral communities from raw interaction data
without a priori knowledge of the community delineation (e.g.
subreddits within which the interaction occurred).

We propose PERCeIDs: a framework for periodic commu-
nity detection which models behavioral communities as groups
of nodes with high within-group interactions and group-



specific periodic patterns of activity levels which occasionally
observe bursts. The objective in PERCeIDs seamlessly incor-
porates (i) network locality based on tensor decomposition,
(ii) parsimonious per-community period estimation employing
a Ramanujan basis dictionary and the theory of Nested Peri-
odic Matrices (NPM), and (iii) sparse outlier burst detection.
Unlike the majority of existing work, we do not require prior
knowledge of natural seasonality in the data, but estimate those
directly from raw interaction events. PERCeIDs is flexible
in that it handles communities with different periodicity,
including communities which are not periodic within the same
model. While this flexibility comes with the computational
cost of accounting for large numbers of candidate periods, we
propose an effective and efficient procedure for estimating the
maximal period in a given dataset. Our framework outperforms
state-of-the-art baselines on both synthetic and real-world
datasets: an increase in NMI from 0.2 to 0.4, and a decrease
in Jensen-Shannon divergence from 0.3 to nearly 0. Beyond
community detection PERCeIDs characterizes the temporal
community behavior as a mixture of periodic and outlier
components which is useful on its own in explanatory analytics
and modeling and prediction tasks.

Our contributions in this paper are as follows:
• Novelty: To the best of our knowledge, PERCeIDs is the
first dynamic community detector which learns temporal
periodicity directly from network interactions without prior
knowledge.
• Accuracy and robustness: PERCeIDs exploits the co-
dependence of network locality and regular temporal activity,
making it robust to noise, community overlap, bursty activity
and varying temporal observation windows. It consistently
outperforms state-of-the-art alternatives enabling up to two-
fold increase in NMI on synthetic data and up to 23% on
real-world data.
• Practical efficiency: While we explicitly optimize both
community membership and periodicity fit, our optimization
framework does not incur significant computational overhead
compared to simpler and less-accurate alternatives, making it
applicable to real world datasets.

II. RELATED WORK

Community detection. Community detection is a fundamental
network analysis task with a long history of research in the
case of static networks [6], [20], [36], [55], [62], [63]. Addi-
tional consideration of timing of node interactions has been
shown to improve the quality of community detection [23],
[25], [49]. A key distinction among models for the dynamic
setting is the expected temporal behavior of communities. One
group of methods focus on long-term evolution and postulate
that the community membership changes over time [7], [9],
[31], [40], [45], [53], [54], with provisions for local smoothing
[47]. Alternative models for short-term evolution assume a
stationary membership and varying activity (number of in-
teractions) over time. In this second group, some methods
assume persistent activity in a single active interval [3],

[16], [22], [39], [52], others expect recurrent user-provided
consistency [49], while a different group of methods learns
data-driven community dynamics [41] with proposals for reg-
ularization to enforce constant “on/off” periods of activation,
and thus, robustness to the temporal resolution [25]. Our
work similarly assumes stationary community membership,
however, it models the temporal activity as a mixture of
periodic and outlier (one-off) behavior components learned
directly from temporal interaction data.
Period estimation. Period estimation has been classically
approached by Fourier methods [29], [38], where time series
are transformed into frequency domain and natural periods in
the data are determined based on high-amplitude frequency
bins. Such approaches often predict a large number of spu-
rious periods [57]. Auto-correlation is another approach for
period estimation [14], however, it cannot determine periods
automatically, but typically requires a threshold for dominant
periods, post-processing or joint consideration with the Fourier
spectrogram [59]. Recently Tenneti and colleagues proposed
an efficient parameter-free and sparse solution for period
estimation based on a periodic dictionary [57], improving on
earlier work which suffered solution ambiguity due to non-
orthogonality of the employed dictionary [51]. The key idea in
the former is the adoption of Nested periodic matrices (NPM)
which enable significant improvements over Fourier and other
bases in the context of timeseries [57]. We model the temporal
community activity as a mixture of periodic (based on NPMs)
and bursty (outlier) patterns while simultaneously detecting
the community membership which gives rise to this activity.
Hence, our methodology can be viewed as a generalization
of NPM-based models (i) applied to dyadic interaction data
and (ii) also allowing for occasional outlier (non-periodic)
behavior.
Anomaly and change point detection in networks. Another
relevant set of problems is anomaly detection in networks [2],
[5], particularly in the case of community structure in dynamic
graphs. Many of the existing techniques define anomalies in
the changes on vertices/edges [4], global snapshots [33] and
in between [11], [42], [43], [60]. These methods are either
focused on consecutive snapshot distance scores or longer
timeseries, but restricted to nodes/edges or statistics of the full
graph. Different from those, our model focuses on deviations
from periodic behavior at the community level. Closer to
our approach are tensor-based community and change point
detectors [23], [25], [32]. These methods discover change
points as a post-processing step to the factorization, while we
learn a mixture of seasonal and outlier components jointly
with the community membership, resulting in better quality
of our method on a variety of tasks as we demonstrate in the
evaluation.

III. PRELIMINARIES AND NOTATION

Before we formalize our problem of periodic community
detection, we introduce some necessary preliminaries and
the notation we adopt throughout the paper (summarized in
Tbl. I). A dynamic network G is a sequence of network



snapshots (or instances) G = {G1, G2, ..., GT } over a fixed
finite set of nodes |V | = m and exhibiting varying connections
among them over time. Each snapshot Gt = {V,Wt} is
characterized by a symmetric adjacency matrix Wt 2 Rm⇥m

whose elements denote the number of interactions among a
pair of nodes at time t. Collectively the snapshot adjacency
matrices form a 3-way node⇥node⇥time tensor W 2m⇥m⇥T .

A time series (or a signal) x(t) is g-periodic if there
exists an integer g such that |x(n+ g)� x(n)|  ✏, 8n,
where g is the smallest among all integers that satisfy the
inequality and ✏ is a small real value. Different from traditional
Fourier methods for period estimation, we employ a sparse
representation (SR) to learn periods in community activity
by employing Nested Periodic Matrices (NPM) [57]. Let the
integers {d1, d2, ...dK} be the divisors of g sorted in increasing
order. The Nested Periodic Matrix (NPM) for period g is
defined as:

�g = [Pd1 ,Pd2 , ...PdK ] , (1)

where each Pdi 2 Rg⇥�(di) is a period basis matrix for
period di. Columns of Pdi are time series with period di

and � (di) denotes the Euler totient function evaluated at di,
i.e. the number of integers between 1 and di that are co-
prime to di. Note that since g =

P
i � (di), �g 2 Rg⇥g

is a square matrix [26]. For example, a 15-periodic signal
(g = 15) can be well represented as a combination of two
3- and 5-periodic symbols (the non-trivial divisors of 15),
resulting in the NPM : �15 = [P3,P5]. While there are
different bases to construct the Pi matrices in an NPM , we
employ a Ramanujan basis dictionary (RBD) that is a common
family for constructing NPMs. The RBD is based on the
Ramanujan sum [57]:

Cdi(g) =
diX

k=1,gcd(k,di)=1

e
j2⇡kg/di , (2)

where j is the imaginary unit and gcd denotes the greatest
common divisor function, i.e. the values of k and di are co-
prime. For a divisor di of g, the Ramanujan basis dictionary
matrix Pdi is comprised of a series of down-shifted sequences
of Ramanujan sums with the following shape:

Pdi =

2

664

Cdi(0) Cdi(g � 1) ... Cdi(1)
Cdi(1) Cdi(0) ... Cdi(2)
... ... ... ...

Cdi(g � 1) Cdi(g � 2) ... Cdi(0)

3

775 (3)

It can be shown that the columns of Pdi are orthogonal to
each other and that the resulting Pdi is full-rank [57].

IV. PROBLEM FORMULATION

Given a dynamic network G with a corresponding adjacency
tensor W our aim is to detect periodic behavioral communi-
ties: overlapping sets of nodes exhibiting a mixture of periodic
and outlier interaction activity levels. With this design goal in
mind, we next formalize an optimization objective grounded
in tensor factorization and time series period estimation.

G A set of implicit dynamic network instances
Gt Network snapshot at time t

Bp,q The lp,q-norm of B, Bp,q =
⇣Pm

i=1 kBikqp
⌘ 1

q

kBk⇤ kBk⇤ =
P

i |�i| nuclear norm
�i the i-th largest singular value of B
Bi,Bi the i-th row and column of B
W 2m⇥m⇥T adjacency tensor
Wt 2 Rm⇥m adjacency matrix at time t
W(i) The mode-i matrix of W .
� 2R T ⇥N Nested periodic matrix
U 2 Rm⇥K Community matrix
X 2 RT⇥K Temporal profile matrix of communities
Y 2 RN⇥K Sparse coefficients of periods
H 2 RN⇥N The penalty matrix for the dictionary
K Number of communities
m Number of nodes in the network
T Number of time points
N Number of columns of the dictionary �
� The Khatri-Rao product

TABLE I
KEY NOTATION USED THROUGHOUT THE PAPER

Community membership via tensor factorization. A natural
and widely-adopted approach to grouping nodes in dynamic
networks is to factorize the adjacency tensor W , yielding a
coupling of nodes to factors which can be interpreted as soft
community membership and temporal activity profiles for each
of the factors. We adopt a non-negative CP decomposition
in which the tensor is decomposed into a sum of rank-one
tensors as W =

P
k uk � uk � xk [23], where the factors

uk corresponding to the node modes of the tensor are the
same due to the symmetry of temporal snapshots. Stacking
the factor vectors uk and xk in matrices U and X yields a
concise matrix CP objective:

 (U,X) = kW � [U,X]k2F , (4)

where [U,X] is a shortcut for the three-way product of the
factor matrices leading to the k-rank reconstruction of W .
Period activity estimation. To learn periodicity in commu-
nities’ activity, we further impose structure on the temporal
profiles within X via a sparse periodic+outlier decomposition.
More specifically, we cast the period estimation problem as a
sparse representation via a Ramanujan basis dictionary (RBD)
within the Nested Periodic Matrices (NPM) framework. The
RBD, among other possible basis families, is advantageous due
to its orthogonality ensuring solution uniqueness. Intuitively,
we seek to represent the temporal activity of a community as
a linear combination of short-period time series, called basis.
We also enforce a sparse selection of the basis and allow for
non-periodic one-off components leading to a sparse low-error
reconstruction.

We formulate the period estimation for the temporal profile
of the i-th community Xi 2 RT⇥1 as estimating a sparse
mixture fit y of the bases from the NPM:

argmin
y,o

kyk1 , s.t. Xi = �yi + oi + e, (5)

where � 2 RT⇥N denotes a Ramanujan basis NPM with
columns periodic individual bases extended to the length of



Fig. 2. An illustration of the proposed period estimation model: The columns
of X represents signals with periods of 2, 3, 5, respectively. In addition, each
column has a outlier. We define a periodic dictionary � = [P2,P3,P5]
for learning the periods of X. Each column can be expressed as a linear
combination of basis in the � and outliers, where Y contains the sparse
coefficients of these combinations.

the input signal T , oi is a sparse time series modeling large
one-off deviations (outliers) from the periodic behavior and
e is a low-amplitude Gaussian noise in the temporal activity
profile. We introduce the outlier term oi to account for natural
bursty time intervals which are typical in real-world data. This
also adds representational flexibility as communities which do
not exhibit any periodicity can still be fit as a sequence of
outlier time intervals in oi and a near-zero period mixture yi.

The number of columns N of � is determined by the
maximum candidate period gmax of interest. Recall that in
the basic NPM model � is composed of stacked submatrices
corresponding to the divisors of the maximal period of interest
(Eq. 1). While a default gmax = T would exhaustively cover
all possible periods in the data, it comes at a high computa-
tional cost. We allow a user to define gmax = N  T and
also propose an efficient and effective data-driven estimator
for this parameter directly from data in Sec. V-B which works
well in practice.

An illustration of the decomposition from Eq. 5 is presented
in Fig. 2. The temporal profiles are in the columns of X and
a specific profile X2 is reconstructed as a sum of a periodic
component �y2 and a bursty (outlier) component o2. In this
example the NPM of the Ramanujan basis � = [P2P3P5]
contains only the nested matrices for periods 2 (first column)
and 3 (columns 2-3) and 5 (columns 4-7) extended to the
length of the temporal profile X. The fit y2 for X2, has
non-zero elements for the second and third basis vectors
(corresponding to period 3), while its outlier profile contains
an outlier burst in the 5-th time step of o2 which cannot be
explain by the learned periodicity.

Our goal is to characterize faithfully and concisely the
natural behavioral communities in the data both in terms
of membership and periods. Hence, in order to improve the
explanatory power of our model, we seek to encourage fits
with a sparse basis of short periods representing the overall
periodicity of a given activity profile. Without any constraints,
the objective Eq. 5 will not select such minimum-basis repre-
sentation. Hence, we introduce a penalty for selecting a large-

period basis through a diagonal cost matrix of monotonically
increasing elements: H 2 RN⇥N

,Hii = p
2, where p is the

period of the i-th column in �. In addition, we add weighting
parameters �1 and �2 to balance the fit between periodic and
outlier components. Combining the fit for all communities we
obtain the following activity objective in matrix form:

argmin
Y,O

kX��Y �Ok2F + �1 kHYk1 + �2 kOk1 , (6)

where yi fits are stacked in the columns of Y, the term
kHYk1 sparsifies the selected periodicity fits by progressively
penalizing larger periods, and kOk1 is comprised of the outlier
component fits for each community in its columns. Note
that we have incorporated the constraint from Eq. 5 as a
reconstruction penalty term excluding the Gaussian error.
Periodic community detection. We integrate the community
membership and periodic activity objectives above into a
unified periodic community objective as follows:

argmin
U,X,Y,O

1

2
kW � [U,X]k2F + �0 kX��Y �Ok2F

+ �1 kHYk1 + �2 kOk1 ,
(7)

where �0 is a balance parameter to control the relative impor-
tance of the periodic activity fit and the tensor reconstruction
error. Minimizing this objective will enforce the selected
communities to have pronounced periodicity since, if present,
they will lead to a small fitting error in the activity term. At the
same time, the model provides flexibility to fit both periodic
and outlier behavior specific to each community. By setting a
proper combination of �1 and �2, a user can promote periodic
or bursty behavior in the fit.

V. OPTIMIZATION SOLUTION

A. PERCeIDs: a periodic community detector

We adopt an Alternating Optimization (AO) approach for
the objective from of Eq. 7, i.e., to minimize the objective
function we minimize over each individual variable in turn.
We first separate Eq. 7 into subproblems involving individual
variables, obtaining the following:
8
>>>>>>><

>>>>>>>:

U : argmin
U�0

1
2 kW � [U,X]k2F (a)

X : argmin
X�0

1
2 kW � [U,X]k2F + �0 kX��Y �Ok2F (b)

Y : argmin
Y

�0 kX��Y �Ok2F + �1 kHYk1 (c)

O : argmin
O

�0 kX��Y �Ok2F + �2 kOk1 (d)

(8)
We iteratively optimize the sub-problems until a convergence
stopping criteria is met. We next discuss the optimization of
individual sub-problems and then combine those in our overall
optimization scheme PERCeIDs.
Updates for U: The tensor factorization objective Eq. 8(a)
can be rewritten based on the modes of W as follows:

argmin
U�0

1

2

���W(i) �U(i)

�
X�U(j 6=i)

�T���
2

F
(9)



where W(i) is the mode-i matrix obtained by linearizing all in-
dices of the tensor except the i-th. In our case, we will consider
the two (equivalent) linearizations for the node modes, i.e.,
i 2 (1, 2), and not the one for the temporal dimension. Due
to the non-negativity constraint on U, this objective is not the
original unconstrained CANDECOMP/PARAFAC (CP) tensor
decomposition [27], and thus cannot be directly solved by
Alternating Least Squares (ALS) [12]. Instead, we employ
Alternating Optimization Alternating Direction Method of
Multipliers (AOADMM) [28], to handle this subproblem. The
0�1 penalty function D(U) is employed to enforce the non-
negativity constraint:

[D(U)]ab =

(
0 if Uab � 0

+1 otherwise,
(10)

leading to the following revised Eq. 9 for mode i = 1 (i = 2
is handled analogously):

argmin
U(1),Ù(1)

1

2

���WT
(1) �RÙ(1)

���
2

F
+D(U(1)),

s.t U(1) = ÙT
(1),U � 0,

(11)

where R = X � U(2), ⌘ = tr
�
RTR

�
/K, and Ù(1) is an

auxiliary ADMM variable. We employ the ADMM algorithm
and iterate over the following updates:

8
>>>><

>>>>:

Ù(1)  
�
RTR+ ⌘I

��1
h
RTWT

(1) + ⌘
�
U(1) +Q(1)

�T i
(a)

U(1)  argmin
U(1)

D(U(1)) +
⌘
2

���U(1) � ÙT
(1) +Q(1)

���
2

F
(b)

Q(1)  Q(1) +U(1) � ÙT
(1) (c),

(12)
where Q(1) is an intermediate variable. Since D(U(1)) is an
element-wise indicator function, the update of U(1) can be
obtained by thresholding at zero, where Û(1) = ÙT

(1) �Q(1).
The final community matrix U is then computed as the average
of the two node factors U = 1

2

⇥
U(1) +U(2)

⇤
due to the

adjacency tensor symmetry.
Updates for X: The update of the temporal factor X in
Eq. 8(b) is also not a standard tensor factorization objective
due to the periodic decomposition term. However, similar to
the updates of U, we can employ AOADMM, reformulating
the objective as follows:

argmin
X,X̀

1

2

���WT
(3) �VX̀

���
2

F
+ �0 kX��Y �Ok2F +D(X)

s.t X = X̀T
,X � 0,

(13)
where W(3) is the mode-3 (temporal) unfolding matrix of
W , V = U�U, and X̀ is an auxiliary ADMM variable. The
optimization via ADMM iterates over the following updates,
8
>>><

>>>:

X̀ =
�
VTV + ⇢I

��1
h
VTWT

(3) + ⇢ (X+ S)T
i

X = argmin
X

�0 kX��Y �Ok2F + ⇢
2

���X� X̀T + S
���
2

F
+D(X)

S = S+X� X̀T

(14)
where ⇢ = tr

�
VTV

�
/K and S is an intermediate variable.

To update X (second update), we obtain the result from the

first two terms and then threshold at zero. We solve the
minimization for X by setting the gradient of the first two
terms (w.r.t X) to zero, leading to the closed-form solution:

X =
h
2�0(�Y +O) + ⇢(X̀T � S)

i
/ (2�0 + ⇢) (15)

Updates for Y: The objective in Eq. 8(c) is a generalized
lasso regression w.r.t. Y [58], thus, it can be reduced to a
standard lasso problem as follows:

argmin
T

�0

��F��H�1T
��2
F
+ �1 kTk1 , (16)

where F = X �O and T = HY. Note, that H is invertible
since it is a diagonal matrix with non-zero diagonal elements.
We solve the standard lasso problem in Eq. 16 by the least-
angle regression (LARS) algorithm [19] (details omitted due
to space constraints). Given a solution for T, the periodicity
mixture matrix Y is computed as Y = H�1T.
Updates for O: By substituting Z = X��Y and ↵ = �2

2�0
,

we can rewrite Eq. 8(d) as argmin
A

1
2 kO� Zk2F + ↵ kOk1.

This has a similar form to the soft-thresholding problem [8],
and therefore, O can be optimzed based on the following
lemma.

Lemma 1: Aij = sign (Bij) ⇥ max (|Bij |� ↵, 0) is a
closed-form solution for argmin

A

1
2 kA�Bk2F + ↵ kAk1, if

↵ > 0.
Lemma 1 gives us an element-wise update for O:

Oij = sign (Zij)⇥max

✓
|Zij |�

�2

2�0
, 0

◆
. (17)

Overall algorithm: PERCeIDs. We summarize all optimiza-
tion steps discussed above in Alg. 1. The input to PERCeIDs
is the adjacency tensor, the maximal candidate period to be
considered, number of communities to extract and the balance
parameters. Each of the variables is updated in turn while
holding the remaining fixed in the main loop (Steps 4-28).
Note that we have omitted the iteration super-index q in the
steps for cleaner notation. First the node factors U of the
tensor are fit in Steps 5-13. While at convergence we expect
them to be close to each other, we still need to update them
independently and only average them after convergence (Step
29). Next we update the temporal profile X (Steps 14-21), the
period matrix Y (Steps 22-24) and the outlier time steps O
(Steps 25-27). Finally, we check for convergence of each of
the variables and the global objective (Steps 28-29).

Updating the tensor factors, U(i) in Step 9 and X in
Step 17, are the most expensive operations. Since the Step
9 and 11 involve a matrix inversion, the worst-case com-
plexity is O

�
K

3
�
. In particular, computing RTWT

(i) and
VTW(3) in these steps requires a large amount of mem-
ory due to the high dimensionality of W(i). Instead of
computing those directly, we make use of the MTTKRP
operation [25] which exploits sparsity in the matrix when
available and has a complexity of O (mK), where m is the
number of nonzero elements in W . The update of T in
Step 23 has a complexity of O

�
T

2
K + T

3
�

[19]. Therefore,



Algorithm 1: PERCeIDs: Periodic Community Detection
1 Input: Observations W , maximum period gmax, number of

communities K, and balance parameters (�0,�1,�2)
2 Output: Community membership U, temporal profile X, community

periods Y and outlier time steps O
3 Initialize: ✓ = 10�3, q = 0.
4 while not converged do

5 // Update Uq+1
(1) and Uq+1

(2) :
6 for i = 1:2 do

7 R = X�U(j 6=i,j2(1,2)) and ⌘ = tr
�
RTR

�
/K;

8 while not converged do

9 Ù(i) =�
RTR+ ⌘I

��1
h
RTWT

(i) + ⌘
�
U(i) +Q

�T i
;

10 U(i) = max
h
ÙT

(i) �Q(i), 0
i

;

11 Q(i) = Q(i) +U(i) � ÙT
(i);

12 end

13 end

14 // Update Xq+1:
15 V = Uq+1

(1) �Uq+1
(2) and ⇢ = tr

�
VTV

�
/K;

16 while Xq+1 has not converged do

17 X̀ =
�
VTV + ⇢I

��1
h
VTW(3) + ⇢ (X+ S)T

i
;

18 X =
h
2�0(�Y +O) + ⇢(X̀T � S)

i
/ (2�0 + ⇢);

19 X = max (X, 0);
20 S = S+X� X̀T ;
21 end

22 // Update Yq+1:
23 Update T using the LARS algorithm Eq. 16;
24 Y = H�1T;
25 // Update Oq+1:
26 Z = Xq+1 ��Yq+1;
27 Oij = max

⇣
|Zij |� �2

2�0
, 0

⌘
· sign (Zij);

28 // Check the convergence:
29

��Uq+1 �Uq
��
1  ✓,

��Xq+1 �Xq
��
1  ✓,��Yq+1 �Yq

��
1  ✓,

��Oq+1 �Oq
��
1  ✓ and��� f

q+1�fq

fq

���  ✓, where fq is the objective value of Eq. 7;
30 q = q + 1;
31 end

32 U = 1
2

⇥
U(1) +U(2)

⇤
;

the overall complexity of each iteration of the proposed
method is O

⇥
mK + 2tU(i)

K
3 + tXK

3 + tT(T 2
K + T

3)
⇤
,

where tU(i)
, tX and tT denote the number of iterations of the

sub-scripted variables. As the number of factors is typically a
constant with respect to the input size, the overall complexity
of an iteration can be simplified to O(m+ tTT

3).

B. Estimating the maximum candidate period gmax

One important parameter for PERCeIDs is the maximum
candidate period gmax which determines the width N of
the periodic dictionary matrix �. On one hand, we would
like to consider as many potential periods as possible (i.e.
gmax = T ), while on the other artificially high gmax may
incur unnecessary computational overhead as our basis ensures
that large periods are “decomposed” into a minimal set of co-
prime divisors [56]. Hence, we develop an efficient estimator
for gmax based on the intuition that the temporal factors of
W , even if not corresponding to accurate communities, will
contain noisy versions of the periods. We can then, “de-noise”
these observations for a reliable global estimate for gmax.

Algorithm 2: Estimate gmax

1 Input: Observations W
2 Output: Maximum period gmax

3 Compute X by NTF on W ;
4 Compute covariance matrix E = XXT ;
5 Separate signal from noise covariance: [Es, En] = RPCA(E);
6 Es = M⇤MT ;
7 ⇧opt = M⇤

�
⇤+ µMTEnM

��1
MT ;

8 Xs = ⇧optX;
9 Prange = autocorr(Xs);

10 gmax = max(Prange).

The steps of our proposed gmax estimation approach are
listed in Alg. 2. We first obtain a temporal factor X by
standard NTF on W (Step 3). In [15], the maximum period
is estimated by applying auto-correlation, however, such an
approach neglects the inherent noise in the data. To address
this, we first reduce the noise in our observed temporal factors
X via a de-noising linear projection [48], inferred based on the
covariance matrices of the noise-free signal Xs and that of the
noise Xn, denoted Es and En respectively. We formulate the
separation of the noise-free and noise covariances as a matrix
decomposition problem assuming an additive model for the
observed covariance: E = Es + En. We have the following
objective:

argmin
Es,En

kE�Es �Enk2F + �1 kExk⇤ + �2 kEnk1 , (18)

where we have imposed a low-rank regularizer on the noise-
free covariance estimate and sparsity regularizer on the noise
covariance with �1 and �2 serving as balance parameters.
This can be solved by Robust principal component analysis
(RPCA) [13] (Step 5, where we have skipped the optimization
details for brevity). We then perform an eigen decomposition
of the estimated noise-free covariance (Step 6) and compute
the optimal noise reduction projector for X (Step 7) as:

⇧opt = M⇤
�
⇤+ µMTEnM

��1
MT

, (19)

where M and ⇤ are the eigenvectors and diagonal eigenvalue
matrix of Es. Given the estimated projector ⇧opt, we obtain
the de-noised temporal factor Xs (Step 8) and employ a
scalable auto-correlation approach to analyze Xs (Step 9) and
estimate hidden periods. We estimate the maximum period as
the largest period detected by auto-correlation which survives a
threshold of one standard deviation. Finally, gmax is estimated
as the maximum period from each factor (Step 10).

Among the most expensive steps of Alg. 2 are the EVD
in Step 6 and the matrix inversion in Step 7, both with cubic
worst case complexity O(T 3) (assuming T > m). However,
this cost is incurred only once before PERCeIDs, and is
comparable with each iteration of our main algorithm.

VI. EXPERIMENTS

A. Datasets

We summarize the datasets we use for validation in Table II.



Statistics PERCeIDs LARC [25] NTF [23]

Dataset |V| T K ĝmax DIV NMI Time DIV NMI Time DIV NMI Time
Synthetic 150 200 5 17 0.03 0.98 5 0.30 0.87 3 0.28 0.82 3
Football 115 1243 12 26 0 1 5 0.008 0.91 3 0.14 0.77 3

Reality Min. 94 8636 7 23 0.55 0.21 20 0.65 0.17 40 0.80 0.06 7
Reddit-Episode 242 8636 7 31 0.80 0.004 15 0.88 0.003 30 0.94 0 10

Reddit-TVshows 3538 1641 6 39 0.81 0 76 0.82 0 70 0.96 0 48
TABLE II

DATASET STATISTICS, ESTIMATES OF MAXIMUM PERIOD ĝmax PER DATASET BASED ON ALG. 2, AND COMPARISON OF COMMUNITY DETECTION
QUALITY (DIV AND NMI) AND RUNNING TIME IN SECONDS FOR PERCEIDS AND COMPETITORS.

Synthetic data: The synthetic data generator has two major
components: ground truth soft communities and their tempo-
ral profiles. We follow the methodology in [44] to sample
temporal interaction events within the communities, namely
members in the same community are randomly connected over
time, proportional to their matching strength of associations to
each of the communities. The temporal community profiles are
generated as a periodic signal by following experimental setup
by Tenneti et al. [57]. In addition, we injected non-periodic
outlier bursts in time of random magnitude and random
noisy individual edges among arbitrary pairs (regardless of
community membership).
Real-world data: We also evaluate our techniques on three
real-world datasets. Reality Mining [18] includes proximity-
based interactions between roughly 100 friends, lab-mates, and
other colleagues at MIT over the course of nine months. This
dataset provides high resolution temporal information, which
we aggregate at the hourly level. We use unweighted lab group
membership as our community ground truth.

Reddit [1] is a set of datasets derived from a dump of all
public reddit comments between 2008 and the first half of
2015. We construct datasets from groups of subreddits, which
we use as ground truth communities; links are determined by
(undirected) replies to comments or top-level posts. Reddit-
Episode is a smaller dataset of tv shows from the first half
of 2009; Reddit-TVshow is a set of more developed similar
subreddits from the last two months of 2010. Resolution is
hourly in all cases.

Football provides a ground truth community membership
for a semi-synthetic dataset with generated temporal behavior.

B. Experimental setup

Baselines: We compare against two dynamic community
detectors based on tensor factorization: LARC and NTF.
LARC [25] is a state-of-the-art overlapping community de-
tection method that combines data reconstruction and smooth
temporal activation over time. Non-negative Tensor Factor-
ization (NTF) [24] is a tensor factorization-based method for
overlapping community detection employing CP decomposi-
tion.

Optimal hyper-parameters for all competing techniques
were estimated by grid search for each experimental setting.
Metrics: When datasets have ground truth (GT), we measure
the level of agreement between GT and the obtained commu-
nities by all methods using the following metrics:

1) Normalized Mutual Information (NMI) [21] adopts the
criterion used in information theory to compare the detected
communities and the ground-truth communities. This version
of NMI is adapted to overlapping communities.

2) Jansen-Shannon divergence (DIV) [61] measures the
correspondence between ground-truth and detected results
represented as probability distributions over nodes.

We also calculate the area under the ROC (AUC) for
recovering ground truth injected bursts in the temporal profile.
Implementation of our method in MATLAB is available for
download [64].

C. Community detection on synthetic data

In the synthetic datasets, we evaluate the performance of
our methods and competitors under a variety of conditions,
including different-length observation windows, varying noise,
random bursts, and increasing community membership over-
lap. All comparison results are averages of 5 runs with random
per-run initialization presented to each competing technique.

We first vary the observation window to evaluate how much
of the timeline needs to be observed for accurate periodic
community detection. Due to the existence of periodicity in
activity, our method should be able to detect communities
without access to the full time length of the data. In the
first column of Fig. 3, we demonstrate that the performance
of PERCeIDs is more stable and consistently better than
alternatives even with a small number of observed time points.
However, since both LARC and NTF do not model periods,
the increasing observation window gives minimal extra infor-
mation to improve their results.

We next consider the impact of noise on periodic com-
munity detection since noise can interfere with the natural
periodicity in the temporal profiles of communities. Results
of this experiment are presented in the second column of
Fig. 3. To demonstrate our method’s robustness to noise, we
add random (“salt-and-pepper”) noise to the adjacency tensor.
In this experiment PERCeIDs similarly has consistently better
accuracy than baselines due to the noise robustness of our
periodic decomposition of the temporal community profiles.

When increasing the bursty behavior in the activity, we show
that our proposed method’s accuracy has a significant separa-
tion from alternatives as well. This is due to the flexibility
introduced by the additive outlier component O, allowing it
to faithfully capture outlier time periods while maintaining a
high performance in community detection.
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Fig. 3. Community detection comparison of the competing techniques on the synthetic dataset by varying different settings: the first row shows DIV results
while the second row shows NMI comparisons. In the first column, we show results for varying length of temporal observation window; in the second column,
we show results for increasing random noise added to the adjacency tensor; in the third column, we present the results for varying ratio of bursty outliers
added to the data; the last column shows the results for increasing overlap in community membership.

In the last column of Fig. 3, we present the results of varying
degrees of overlap in the ground truth communities. Increasing
overlap of community members decreases the separability of
communities, particularly when the temporal behavior is not
properly accounted for. With the presence of (non-periodic)
global noise obscuring communities, our method maintains a
significant performance improvement over baselines through
more than 50% overlap between adjacent communities. The
competing methods are unable to effectively separate ground
truth communities from noise at any level.

D. Experiments on real world datasets
We also demonstrate the performance of PERCeIDs on a

variety of real and modified real/semi-synthetic datasets de-
scribed above. In table II we show that PERCeIDs outperforms
baselines on all presented datasets, improving community
detection both in high resolution settings (Reality Mining) and
larger and sparser datasets (Reddit-TVshows).

E. Period analysis
Beyond the analysis of community detection quality, we also

evaluate the competing techniques on their ability to estimate
the periods of community activity profiles. While our model
explicitly estimates the periods in activity, competitors lack
this ability. For a fair comparison, we apply the same NPM
period estimation method on the temporal profiles obtained by
baselines as a post-processing step and term them LARC++
and NTF++.

In Fig. 4, we present the estimated period for all methods
of a community in the synthetic data with ground truth hidden
periods of 11 and 13. The result from LARC’s temporal
profile contains multiple erroneous periods, which leads to
a significantly large spurious period (obtained as product of
the smaller ones). Though NTF finds the ground truth (GT)
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Fig. 4. (a): Period estimation comparison. LARC++ and NTF ++ are
the corresponding baseline methods equipped with a post-processing period
estimation based on NPM analysis of their temporal factors, akin to the one
which we incorporate in PERCeIDs. (b): ROC comparison of known burst
(outlier) detection injected in synthetic data.

periods, their strength is weaker than its highest-amplitude
period which is spurious. This phenomenon is due to both
LARC’s and NTF’s inability to directly consider periodicity in
their models, leading to “wrong” community fits compared to
GT and thus inaccurate activity profiles with mixed periods. In
comparison, our method successfully detects the ground truth
periods of 11 and 13 and they appear as the only significant
loadings, i.e. no obvious spurious periods are detected due to
the efficient Ramanujan subspace estimation and simultaneous
periodicity and membership fitting.

F. Burst (outlier) detection
Our method accounts for intermittent and irregular activity

bursts in the temporal profile. To evaluate its effectiveness in
detecting such deviations from periodic behavior, we inject
bursts (spikes) into the community activity level and calculate
the area under the ROC (AUC) for identifying the ground truth
burst positions when detecting communities. The results from
this evaluation are presented in Fig. 4(b) (this results shows



Fig. 5. Sensitivity study of the parameters.

the performance on one community, while other communities
have similar behavior).

Since LARC and NTF don’t model bursts directly, we rank
their detected temporal profiles based on thresholding the
temporal profiles they estimate, i.e. high levels are treated
as predictions for bursty periods. LARC and NTF perform
similarly to each other and not markedly better than ran-
dom. LARC enforces smoothness in the temporal activity
over time, in fact seeking to “smooth” bursts. NTF has no
assumption on the temporal activity, but promotes minimum
reconstruction error, thus failing to accurately detect outlier-
like bursts. Compared to the baselines, PERCeIDs explicitly
models pronounced outliers and as a result its corresponding
TPR grows at a much faster rate than that of alternatives
achieving close to optimal TPR at FPR=0.25.

G. Parameter sensitivity

We also study the sensitivity of PERCeIDs to its hyper-
parameters, which include �0, �1 and �2 for temporal profile
fitting, periodicity learning and outlier modeling. We fix one
parameter and vary the other two and evaluate the DIV in
the synthetic data, presented in Fig. 5. It is clear from this
evaluation that our method is not sensitive to its parameters
within reasonably large ranges of their values [1, 100]. For
example, the maximal DIV change is less than 0.005 when
varying �0 and �1, with the DIV close to optimal through out
this range. We observe similar robustness to parameters in real
world data experiments as well.

VII. CONCLUSION

We proposed a novel algorithm for periodic community
detection, termed PERCeIDs. We model the activity of com-
munities as a mixture of hidden periodic signal and outlier
bursts over time. Our model is rooted in parsimonious period
estimation based on nested periodic matrices with Ramanujan
basis, enabling PERCeIDs to detect jointly and faithfully the
community membership and periods of activity from raw

network interactions without prior knowledge. We demon-
strated that our method is robust to noise, outlier non-periodic
behavior, and significant membership overlap in ground truth
communities via an extensive evaluation in both synthetic
and real-world datasets. It consistently outperformed state-of-
the-art alternatives with up to two-fold improvement in NMI
of ground truth community detection on synthetic data and
up to 23% improvement in real-world datasets. In addition,
PERCeIDs dominated alternatives on period estimation as
well as irregular outlier activity bursts detection and exhibited
robustness to its hyper parameters.
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