One of the tree applications in Chapter 10 is **binary search trees**.

In Chapter 10, binary search trees are used to implement bags and sets.

This presentation illustrates how another data type called a **dictionary** is implemented with binary search trees.
The Dictionary Data Type

- A dictionary is a collection of items, similar to a bag.
- But unlike a bag, each item has a string attached to it, called the item's **key**.
The Dictionary Data Type

- A dictionary is a collection of **items**, similar to a bag.
- But unlike a bag, each item has a string attached to it, called the item's **key**.

Example:
The **items** I am storing are records containing data about a state.
The Dictionary Data Type

- A dictionary is a collection of *items*, similar to a bag.
- But unlike a bag, each item has a string attached to it, called the item's *key*.

Example:
The *key* for each record is the name of the state.

Washington
The Dictionary Data Type

void Dictionary::insert(The key for the new item, The new item);

- The insertion procedure for a dictionary has two parameters.
The Dictionary Data Type

- When you want to retrieve an item, you specify the key...

```cpp
Item Dictionary::retrieve("Washington");
```
The Dictionary Data Type

- When you want to retrieve an item, you specify the key... ... and the retrieval procedure returns the item.

```java
ItemDictionary.retrieve("Washington");
```
The Dictionary Data Type

- We'll look at how a binary tree can be used as the internal storage mechanism for the dictionary.
A Binary Search Tree of States

The data in the dictionary will be stored in a binary tree, with each node containing an **item** and a **key**.
A Binary Search Tree of States

Storage rules:

1. Every key to the **left** of a node is alphabetically **before** the key of the node.
A Binary Search Tree of States

Storage rules:

1. Every key to the left of a node is alphabetically before the key of the node.

Example:
'Massachusetts' and 'New Hampshire' are alphabetically before 'Oklahoma'
A Binary Search Tree of States

Storage rules:

① Every key to the **left** of a node is alphabetically **before** the key of the node.

② Every key to the **right** of a node is alphabetically **after** the key of the node.
A Binary Search Tree of States

Storage rules:

1. Every key to the **left** of a node is alphabetically **before** the key of the node.
2. Every key to the **right** of a node is alphabetically **after** the key of the node.
Retrieving Data

Start at the root.

1. If the current node has the key, then stop and retrieve the data.

2. If the current node's key is too large, move left and repeat 1-3.

3. If the current node's key is too small, move right and repeat 1-3.
Start at the root.

1. If the current node has the key, then stop and retrieve the data.

2. If the current node's key is too **large**, move **left** and repeat 1-3.

3. If the current node's key is too **small**, move **right** and repeat 1-3.
Start at the root.

1. If the current node has the key, then stop and retrieve the data.

2. If the current node's key is too large, move left and repeat 1-3.

3. If the current node's key is too small, move right and repeat 1-3.
Retrieve 'New Hampshire'

Start at the root.

1. If the current node has the key, then stop and retrieve the data.

2. If the current node's key is too **large**, move **left** and repeat 1-3.

3. If the current node's key is too **small**, move **right** and repeat 1-3.
Retrieve 'New Hampshire'

Start at the root.

❶ If the current node has the key, then stop and retrieve the data.

❷ If the current node's key is too **large**, move **left** and repeat 1-3.

❸ If the current node's key is too **small**, move **right** and repeat 1-3.
Adding a New Item with a Given Key

1. Pretend that you are trying to find the key, but stop when there is no node to move to.

2. Add the new node at the spot where you would have moved to if there had been a node.
Pretend that you are trying to find the key, but stop when there is no node to move to.

Add the new node at the spot where you would have moved to if there had been a node.
Adding

1. Pretend that you are trying to find the key, but stop when there is no node to move to.

2. Add the new node at the spot where you would have moved to if there had been a node.
Adding

1. Pretend that you are trying to find the key, but stop when there is no node to move to.
2. Add the new node at the spot where you would have moved to if there had been a node.
Adding

❶ Pretend that you are trying to find the key, but stop when there is no node to move to.

❷ Add the new node at the spot where you would have moved to if there had been a node.
1. Pretend that you are trying to find the key, but stop when there is no node to move to.

2. Add the new node at the spot where you would have moved to if there had been a node.
Adding

1. Pretend that you are trying to find the key, but stop when there is no node to move to.

2. Add the new node at the spot where you would have moved to if there had been a node.
Where would you add this state?
Adding

Kazakhstan is the new right child of Iowa?
Removing an Item with a Given Key

1. Find the item.
2. If necessary, swap the item with one that is easier to remove.
3. Remove the item.
Removing 'Florida' 

1. **Find** the item.
Removing 'Florida'

Florida cannot be removed at the moment...
... because removing Florida would break the tree into two pieces.
Removing 'Florida'

If necessary, do some rearranging.

The problem of breaking the tree happens because Florida has 2 children.
Removing 'Florida'

2 If necessary, do some rearranging.

For the rearranging, take the **smallest** item in the right subtree...
Removing 'Florida'

2. If necessary, do some rearranging.

...copy that smallest item onto the item that we're removing...
Removing 'Florida'\\

2 If necessary, do some rearranging.

... and then remove the extra copy of the item we copied...
Removing 'Florida'

2. If necessary, do some rearranging.

... and reconnect the tree
Removing 'Florida'

Why did I choose the **smallest** item in the right subtree?
Removing 'Florida'

Because every key must be smaller than the keys in its right subtree
Removing an Item with a Given Key

1. Find the item.
2. If the item has a right child, rearrange the tree:
   - Find smallest item in the right subtree
   - Copy that smallest item onto the one that you want to remove
   - Remove the extra copy of the smallest item (making sure that you keep the tree connected)

else just remove the item.
Binary search trees are a good implementation of data types such as sets, bags, and dictionaries.

Searching for an item is generally quick since you move from the root to the item, without looking at many other items.

Adding and deleting items is also quick.

But as you'll see later, it is possible for the quickness to fail in some cases -- can you see why?
Presentation copyright 1997 Addison Wesley Longman,
For use with *Data Structures and Other Objects Using C++*
by Michael Main and Walter Savitch.

Some artwork in the presentation is used with permission from Presentation Task Force
(copyright New Vision Technologies Inc) and Corel Gallery Clipart Catalog (copyright
Corel Corporation, 3G Graphics Inc, Archive Arts, Cartesia Software, Image Club

Students and instructors who use *Data Structures and Other Objects Using C++* are welcome
to use this presentation however they see fit, so long as this copyright notice remains
intact.

THE END