Module 19: Security

- The Security Problem
- Authentication
- Program Threats
- System Threats
- Threat Monitoring
- Encryption
The Security Problem

- Security must consider external environment of the system, and protect it from:
 - unauthorized access.
 - malicious modification or destruction
 - accidental introduction of inconsistency.

- Easier to protect against accidental than malicious misuse.
Authentication

- User identity most often established through *passwords*, can be considered a special case of either keys or capabilities.
- Passwords must be kept secret.
 - Frequent change of passwords.
 - Use of “non-guessable” passwords.
 - Log all invalid access attempts.
Program Threats

• Trojan Horse
 – Code segment that misuses its environment.
 – Exploits mechanisms for allowing programs written by users to be executed by other users.

• Trap Door
 – Specific user identifier or password that circumvents normal security procedures.
 – Could be included in a compiler.
System Threats

- **Worms** – use spawn mechanism; standalone program
- **Internet worm**
 - Exploited UNIX networking features (remote access) and bugs in *finger* and *sendmail* programs.
 - Grappling hook program uploaded main worm program.
- **Viruses** – fragment of code embedded in a legitimate program.
 - Mainly effect microcomputer systems.
 - Downloading viral programs from public bulletin boards or exchanging floppy disks containing an infection.
 - *Safe computing.*
The Morris Internet Worm

- Grappling hook
- Wolf
- Target system
- Infected system
- RSH attack
- Finger attack
- Sendmail attack
- Request for worm
- Worm sent
Threat Monitoring

- Check for suspicious patterns of activity – i.e., several incorrect password attempts may signal password guessing.

- Audit log – records the time, user, and type of all accesses to an object; useful for recovery from a violation and developing better security measures.

- Scan the system periodically for security holes; done when the computer is relatively unused.
Threat Monitoring (Cont.)

• Check for:
 – Short or easy-to-guess passwords
 – Unauthorized set-uid programs
 – Unauthorized programs in system directories
 – Unexpected long-running processes
 – Improper directory protections
 – Improper protections on system data files
 – Dangerous entries in the program search path (Trojan horse)
 – Changes to system programs: monitor checksum values
Network Security Through Domain Separation Via Firewall

- Internet access from company’s computers
- DMZ access from Internet
- access between DMZ and company’s computers
- Internet
- company computers
- DMZ
Encryption

• Encrypt clear text into cipher text.

• Properties of good encryption technique:
 – Relatively simple for authorized users to incrypt and decrypt data.
 – Encryption scheme depends not on the secrecy of the algorithm but on a parameter of the algorithm called the encryption key.
 – Extremely difficult for an intruder to determine the encryption key.

• *Data Encryption Standard* substitutes characters and rearranges their order on the basis of an encryption key provided to authorized users via a secure mechanism. Scheme only as secure as the mechanism.
Encryption (Cont.)

- Public-key encryption based on each user having two keys:
 - public key – published key used to encrypt data.
 - private key – key known only to individual user used to decrypt data.

- Must be an encryption scheme that can be made public without making it easy to figure out the decryption scheme.
 - Efficient algorithm for testing whether or not a number is prime.
 - No efficient algorithm is known for finding the prime factors of a number.
Java Security Model

Diagram showing the Java security model, including layers such as local or remote classes, class loader, verifier, domains, security manager, and computer system.