Project grade reports have been emailed to unixid@albany.edu where unixid is your IT-SUNIX login id. To appeal the grading, first email the TA, Xunyu Pan, at xypan@cs.albany.edu, about the question or to make an appointment with him. See me if it isn’t resolved.

See me for questions on course material and problems in doing the projects and homeworks.

Problems 1-2

1. Always write the UNITS with answers that are measurements or are calculated from measurements. HB 2-4 requested the frame buffer sizes “(in bytes)”. So the first answer should be written 460,800 bytes. Reasonable equivalents are acceptable, like 1.875MB.

2. Answers to questions like HB 2-8 should be expressed, with units, in a form so significance of the magnitude is immediately understandable, for example, 54.2 ns/pixel, or 5.42x10^{-8} sec./pixel. \(\frac{1}{18,432,000} \) sec./pixel is not acceptable even though it is strictly correct.

Problem 3 Problems like HB 2-14 request students to imagine, think of and analyze the consequences of facts given in the textbook. Merely restating those facts without pointing out how they identify an advantage of one technology over another is unacceptable (for full credit).

A few students realized that the varifocal display has an advantage for people with only one good eye. Others realized the stereoscopic display is smaller and/or less expensive.

Problem 4 I’m sorry some people missed the announcement that there was a typographical error and the assigned problem is 2-19, not the previous problem 2-14.

I gave credit to people who gave an answer about the architecture of libraries to support varifocal compared to stereoscopic displays. Everyone is still expected to have learned the general distinctions between GL, GLU and GLUT.

People who didn’t answer 4 at all have a chance to hand in a written answer in 1 week and recoup the credit.

Problem 5 It is not strictly correct that the redisplay callback is called whenever the “window is moved” (although I accepted that for full credit.) Desktop window systems can usually copy the pixel map covering of a window region into another region of the frame buffer when that window is moved. They sometimes have a “backing store” feature that retains a copy of the pixmap so when a previously covered window is exposed, the window system can redraw it quickly. In that case, the redisplay callback in the graphics application would not be called.

The redisplay callback function is called only when the window system needs the graphics application to redraw the window, or graphics application requests it. In GLUT, The redisplay callback is certainly called the first time the window appears. The graphics application cannot predict when it will be called again, except when a redisplay is requested, say by GLUT’s GLUTPostRedisplay() or GLUTSwapBuffers function.