Utilizing elements of Python and Myro from Kumar's LCR, create a complete Python program that makes the robot *draw something interesting*.

It would be a good idea to begin with quickly doing the first few exercises from Ch. 4 right away, plus additional experimentation with variations of them. I put copies of LCR and ThinkCSPython on the desktops of the lab laptops.

Points for credit:

1. Utilize a function to make the robot draw a line of length specified by a function argument. It will be necessary for you to calibrate your robot to determine the conversion factor from length (you choose units) to move time.

2. Utilize a function to make the robot turn the number of degrees specified by the function argument.

3. Reproduce the drawing of a square from LCR Ch. 4.

4. Utilize a function to make the robot draw a curved line. (It would be a segment of a circle.) You will have to experiment with the (1) the *motors* and/or the *move* operation from Myro described in Ch. 2 plus (2) timing of robot motions described in Ch. 4 to do this.
 TIP: Refer to Ch. 4 exercises.

5. Make the robot draw something interesting, where the drawing is done by a function you write, plus the function should take an argument that controls an aspect of the drawing. **5A:** It MUST use loops!

6. Make sure your work file is organized so (1) there is the main() function. (2) The main function prompts for input of the two parameters to control the drawing. (Since you're using version 2 of Python, input will work for integer or floating point input.

7. The drawing should be varied by the two parameters.

Example
Tip: Making something circular or star shaped may be easier and more fun.