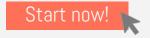
Stimuli-Sensitive Hawkes Processes for Personalized Student Procrastination Modeling

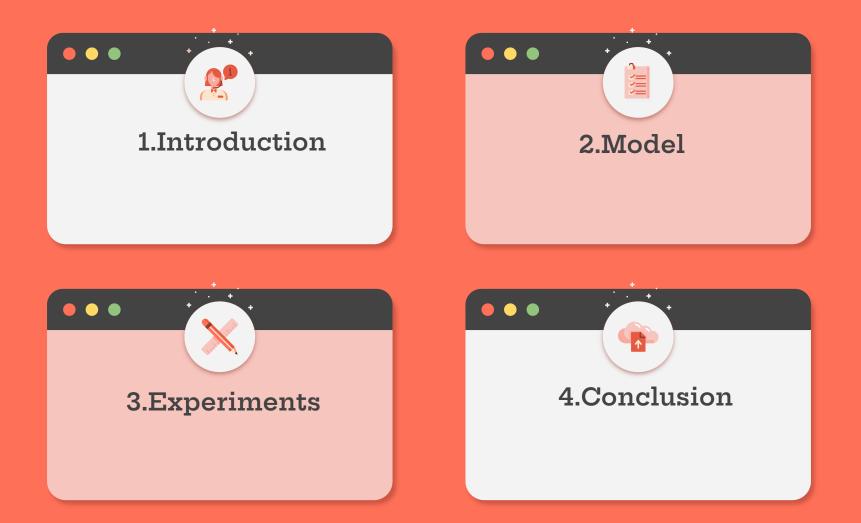
Mengfan (Miley) Yao

Sigian Zhao

Shaghayegh Sahebi

Reza Feyzi Behnagh





•••

1.1 Procrastination Modeling in MOOCs

MOOCs? = Massive Open Online Courses Procrastination? Voluntary delay (≈ cramming behaviors) $\mathbf{\hat{v}}$

Why Important?

Bad & prevalent Detect & predict regulate & prevent

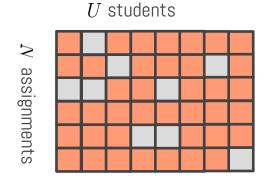
	1.Introduction	2.Model	3.Experiments	4.Conclusion
•••			1.2.	1 Limitations
• • •	Not personalized	· ·	: triggers of procrastina	tion
			1.2.2 Prop	osed solutions

 We propose a novel temporal point process model by collaboratively modelling all student sequences together including the missing ones, which captures 3 dynamic types of external triggering stimuli of procrastination.

	1.Introduction	2.Model	3.Experiments	4.Conclusion
2.1.Formulation			•• 2. N	ſodel
2.2. Intensity Function 2.3.0bjective				introduce our model: awkes Process model
2.4.0ptimization				

2.1. Formulation

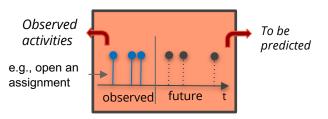
NxU student-assignment pairs



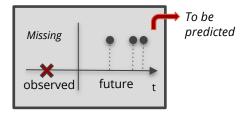
$$(u_i, a_j) \quad X_{ij} = \{x_{ij}^{\tau} | \tau = 1, ..., K_{ij}\}$$

Step index

Current/finished assignments

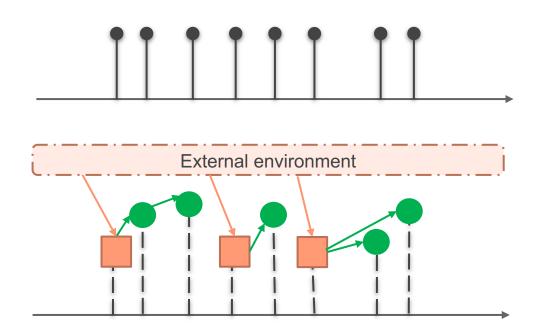


Future/missed assignments



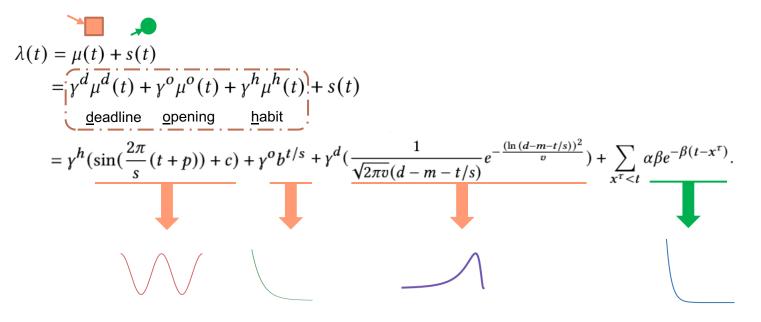
2.1. Formulation (cont.)

• Furthermore, we assume that there are two types of triggers: internal stimuli (🔎) and external ones (🎽).



2.2. Intensity Function

- Typically, a point process is defined by the intensity function that describes the number of activities as a function of time, conditioning on the observed history.
- In this work we parameterize each student-assignment pair's intensity via the following:



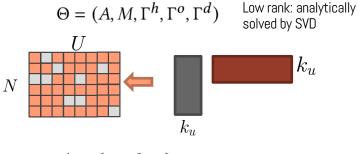
2.3. Objective Function

• MLE of observing the history of *one* student-assignment pair:

$$l(X;\theta) = \log L(\theta) = \sum_{\tau=1}^{K} \log(\lambda(x^{\tau}) - \int_{0}^{x^{K}} \lambda(u) du$$

• Total Loss of observing *all* sequences in observed sequence set ${\cal O}$:

$$\begin{split} & \min_{\Theta,\phi} \mathcal{L} = -\frac{1}{|\mathcal{O}|} \sum_{X_{ij} \in \mathcal{O}} l(\mathcal{X}_{ij}; \Theta_{ij}, \phi_i) \\ & \text{s.t. } \mathbf{A} \geq 0, \Gamma_d \geq 0, \Gamma_o \geq 0, \Gamma_h \geq 0, \mathbf{c} \geq 1, \mathbf{v} > 0, 1 > \mathbf{b} > 0 \\ & tr(\theta_u) \leq k_u, \text{ for } \theta_u \in \Theta_{ij}. \end{split}$$



 $\phi = \{ \mathbf{c}, \mathbf{p}, \mathbf{b}, \mathbf{v} \}$ Shared across assignments

2.4. Optimization

• We adopt Accelerated Gradient Method (AGM) framework for the inference of parameters

To compute the proximal operator with matrix format: $\Theta = (A, M, \Gamma^h, \Gamma^o, \Gamma^d)$

$$\begin{aligned} \theta_{u}^{*} &= \operatorname{argmin}_{\theta_{u}} \mathcal{M}_{\gamma, \theta_{u}^{S}}(\theta_{u}) \\ &= \operatorname{argmin}_{\theta_{u}} \frac{\gamma}{2} \|\theta_{u} - P_{\theta_{u}}(\theta_{u}^{S} - \frac{1}{\gamma} \nabla_{\theta_{u}} \mathcal{L})\|_{F}^{2}. \end{aligned}$$

To compute the proximal operator with vector format: $\phi = \{c, p, b, v\}$

 $\phi_u^* = \operatorname{argmin}_{\phi_u} \mathcal{M}_{\phi_u^S, \gamma}(\phi_u)$ = $\operatorname{argmin}_{\phi_u} \frac{\gamma}{2} \|\phi_u - P_{\phi_u}(\phi_u^S - \frac{1}{\gamma} \nabla_{\phi_u} \mathcal{L})\|_F^2.$

3. Experiments

3.1.1. Baselines

We consider the following baselines from these 4 aspects:

Model	Solf avaiting	Non-constant	Infer completely	Application	
	Self-exciting	base of time	missing seq.	in Education	
Poisson	×	×	×	×	
HRPF	×	×	\checkmark	×	
RMTPP	\checkmark	\checkmark	×	×	
ERPP	\checkmark	\checkmark	×	×	
DHPR	\checkmark	×	\checkmark	×	
HPLR	\checkmark	×	\checkmark	×	
EdMPH	\checkmark	×	×	\checkmark	
SSHP	\checkmark	\checkmark	\checkmark	\checkmark	

3.Experiments

3.1.2. Datasets

•••

Synthetic datasets

We simulated 500 students 20 assignments and sampled ~100 activities per student-assignment pair via Ogata Thining. Then we created:

Syn-10

Randomly selected **10%** pairs and their activities to be entirele missing

Syn-90

Randomly selected **90%** pairs and their activities to be entirele missing

Real-world datasets

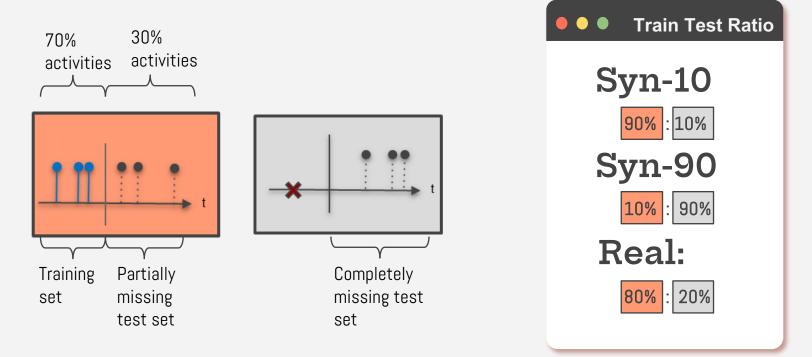
CANVAS

It is from the Canvas Network online platform; we extracted ~729K timestamps from **384** and **6** graded quizstyle assignment

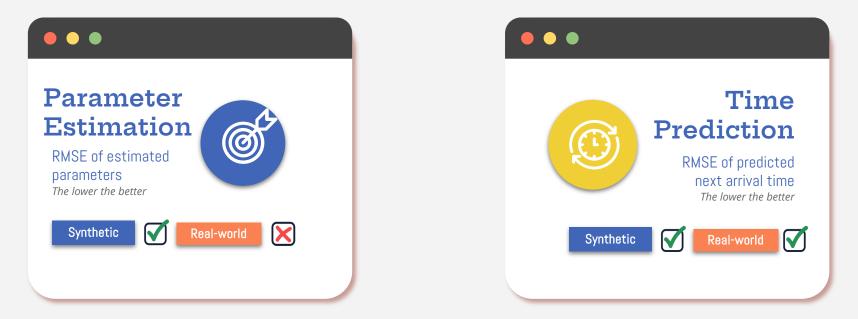
MORF

It is collected from an 8-week Big Data in Education course on the Coursera platform; we extracted ~52K timestamps from 246 students and 8 assignments.

3.2. Experiment Setup



3.3. Evaluation

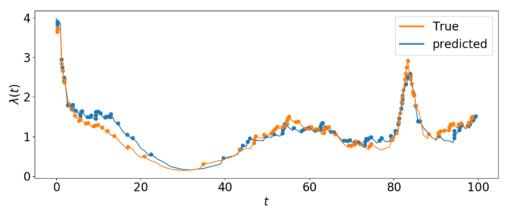


3.2 SSHP Evaluation - Parameter Estimation

Datasets	5	v	b	р	с	Α	M	Γ^d	Γ^{o}	Γ^{h}
Syn-10	part. miss.	1.33	0.1	1.33	0.09	0.05	2.64	1.65	1.08	0.16
	compl. miss.	1.23	0.12	1.39	0.16	0.13	2.60	2	1.54	0.13
Syn-90	part. miss.	1.34	0.10	1.33	0.09	0.06	2.39	1.80	1.14	0.18
	compl. miss.	1.31	0.12	1.38	0.16	0.12	2.61	1.97	1.51	0.17

• RMSE of parameters learned by SSHP in synthetic datasets.

• Visualization of the predicted Intensity of a synthetic sequence.

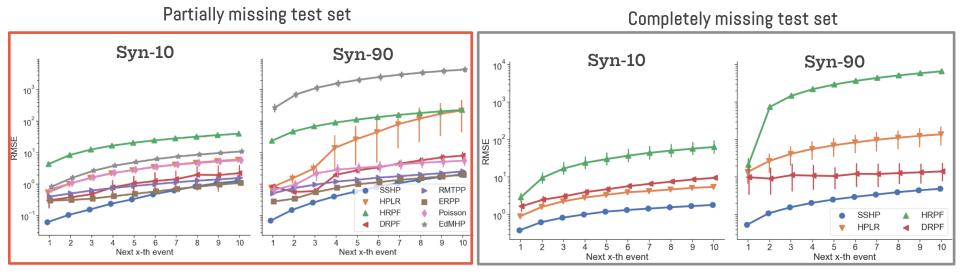


- Marginally higher RMSE in Syn-90 than Syn-10: robust to missing ratio
- The figure demonstrates model's ability in accurately capturing the dynamics of the sequence.

3.Experiments 4.Conclusion

3.2. SSHP Evaluation - Time prediction (synthetic)

2.Model



1.Introduction

- Smaller RMSE than baselines in all settings
- Smaller RMSE increase in Syn-90 comparing with Syn-10
- Similarly, smaller RMSE increases in completely missing test set

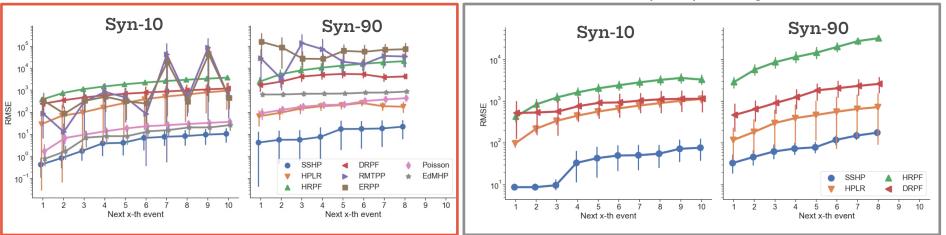
1.Introduction

4.Conclusion

3.2. SSHP Evaluation – Time prediction (real)

Partially missing test set

Completely missing test set

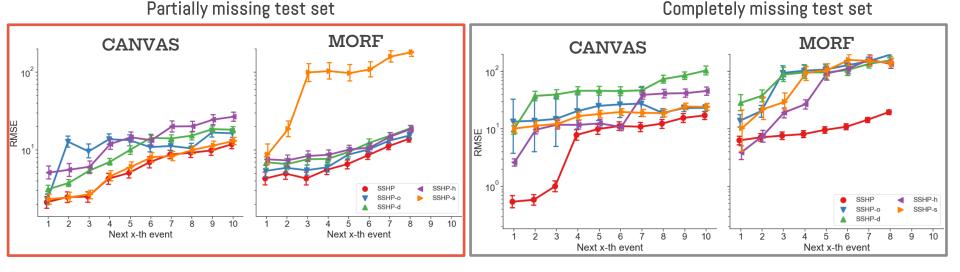


 Consistent performance of SSHP with Syn-10 and Syn-90: i.e. smaller RMSE, more robust to missing ratio and missing history.

3.Experiments

3.3. Ablation Study

• To verify each component's importance in the intensity function, we compare SSHP to its variations SSHP-*s* (internal self-excitement), SSHP-*o* (assignment opening), SSHP-*h* (habit) and SSHP-*d* (deadline).

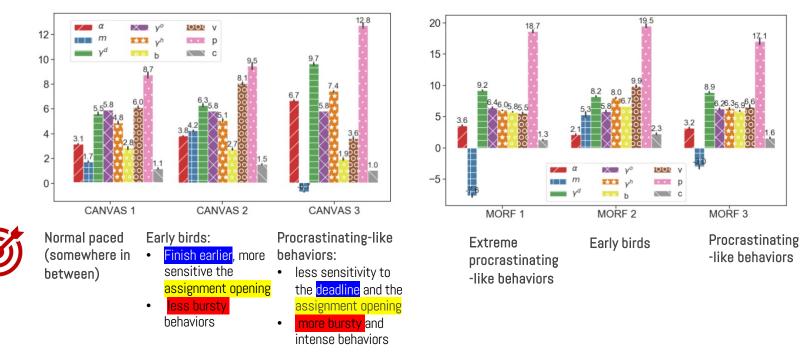


- Smaller RMSE of SSHP: importance of modeling each type of stimuli
- In partially missing set: internal triggering is more important in MORF (more bursty)
- In completely missing set: deadline is the most important factor, especially in CANVAS

4.Conclusion

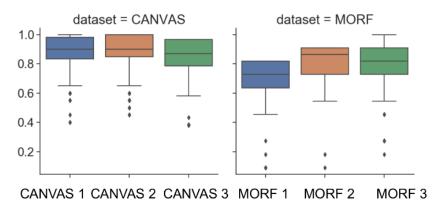
3.4. Procrastination Analysis – clustering analysis

• To see if the learned parameters can describe students' cramming and procrastination behaviors, we cluster all student-assignment pairs via K-Means (via elbow method).



3.4. Procrastination Analysis – association with grades

• We check the distribution of grades of these clusters and run Kruskal-Wallis to check the significance of differences between each pairs of clusters.



- P-values of KS <<0.05: significant differences in grade distributions among clusters
- Procrastination like behaviors (MORF 1 and CANVAS 3) are associated with lower grades
- SSHP captures meaningful underlying procrastination patterns and performances

4.Conclusion

4.Conclusions

• • •

•••

We propose our novel Stimuli-sensitive Hawkes Process model that address the limitations of literature (static, not personalized, discards missing sequences, not sensitive to external stimuli).

SSHP achieves better performances than state-of-the-art in synthetic and real datasets SSHP successfully captures **3 types of procrastination external stimuli** (deadline, assignment opening and student habits), and each of them has shown to be **important** in ablation study.

•••

We provide an effective solution to the problem of procrastination modeling, and identify meaningful types of procrastination behaviors associated with grades (lowperforming extreme procrastinators)

Thank you!

This paper is based upon work supported by the National Science Foundation under Grant Number 1917949.

Feel free to let us know if you have questions!

myao@albany.edu

ny.edu szhao2@albany.edu

edu ssahebi@albany.edu

du rfeyzibehnagh@albany.edu

https://persai-lab.github.io/